Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency
Introduction to concurrency, part 2

Concurrency primitives and challenges, continued

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
1[&‘F

-
InstitL or
17-214 1 SOt



Administrivia

* Homework 5a due 9 a.m. tomorrow
e 2" midterm exam returned today

 Reading due today:

— Java Concurrency in Practice, Sections 11.3 and 11.4

ite f

-
InstitL or
17-214 2 ol



Design tools discussion

siute for
- ‘A
17 214 3 S RESEARCH



Key concepts from last Tuesday

ite f

siute for
- ‘A
17 214 4 S RESEARCH



A concurrency bug with an easy fix:

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public synchronized long balance() {
return balance;

¥

ite f

-
InstitL or
17-214 5 ol



Concurrency control with Java's intrinsic locks

 synchronized (lock) { .. }
— Synchronizes entire block on object 1ock; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock

 synchronized on aninstance method
— Equivalentto synchronized (this) { .. } for entire method

* synchronized on a static method in class Foo
— Equivalentto synchronized (Foo.class) { .. } for entire method

ite f

siute for
- ‘A
17 214 6 S RESEARCH



Today

* Midterm exam 2 recap
 More basic concurrency in Java

— Some challenges of concurrency
* Concurrency puzzlers

e Still coming soon:
— Higher-level abstractions for concurrency

— Program structure for concurrency
— Frameworks for concurrent computation

ite f

-
InstitL or
17-214 7 ol



Another example: serial number generation

public class SerialNumber {
private static long nextSerialNumber = 0;
public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = @0; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

})s
threads[i].start();

¥
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());

ite f

-
InstitL or
17-214 8 ol



Aside: Hardware abstractions

* Supposedly:

— Thread state shared in memory

* A (slightly) more accurate view:

Process
Thread Thread
<.

— Separate state stored in registers and caches, even if shared

17-214

Process

Thread

Thread

~

o

5

institute for
SOFTWARE
RESEARCH




Atomicity

* An action is atomic if it is indivisible
— Effectively, it happens all at once
* No effects of the action are visible until it is complete
* No other actions have an effect during the action

* |nJava, integer increment is not atomic

1. Load data from variable i
it+; is actually 2. Increment data by 1

3. Store data to variable i

site for
- ‘A
17 214 10 S RESEARCH



Again, the fix is easy

public class SerialNumber {
private static int nextSerialNumber = 0;
public static synchronized int generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException{
Thread threads[] = new Thread[5];
for (int i = @0; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

})s
threads[i].start();

¥
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());

ite f

17-214 11 ol



Some actions are atomic

Precondition: Thread A: Thread B:
int 1 = 7; 1 = 42; ans = i;
* What are the possible values tor ans?

te f

17-214 12 ol



Some actions are atomic

Precondition: Thread A:
int 1 = 7; 1 = 42;
* What are the possible values tor ans?

iz

17-214

Thread B:

ans = i;

-
institute for
13 I S SOFTWARE
RESEARCH



Some actions are atomic

Precondition:

Thread A: Th

int 1 = 7; 1 = 42;
* What are the possible values tor ans?

iz

i: 00000...00101010 |

* |nJava:

— Reading an int variable is atomic

— Writing an int variable is atomic

— Thankfully,

17-214

read B:

ans = i;

ans:00000::200101131")

is not possible

-
institute for
14 i S SOFTWARE
RESEARCH



Bad news: some simple actions are not atomic

* Consider a single 64-bit 1long value
— Concurrently:

* Thread A writing high bits and low bits
* Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long 1 = 10000000000; 1 = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

ans: (10000000042 or ...)

- institute for
17-214 15 soriss




Yet another example: cooperative thread termination

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
stopRequested = true;

ite for

17-214 o [0



What went wrong?

* In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another

* JVMs can and do perform this optimization:
while (!done)

/* do something */ ;

becomes:
if (ldone) Process
while (true)
/* do something */ ; Thread Thread

- Pl

e Institute For
17-214 17 SO



How do you fix it?

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}

private static synchronized boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
requestStop();

- site for
17-214 18 |ISYf o



A better(?) solution

public class StopThread {
private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
stopRequested = true;

ite for

17-214 19 sormings



A liveness problem: poor performance

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public synchronized long balance() {
return balance;

¥

ite f

17-214 20 ol



A liveness problem: poor performance

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(BankAccount.class) {
source.balance -= amount;
dest.balance += amount;

¥
¥

public synchronized long balance() {
return balance;

¥

ite f

17-214 21 ol



A proposed fix?: lock splitting

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(source) {
synchronized(dest) {
source.balance -= amount;
dest.balance += amount;

ite f

17-214 22 ol



A liveness problem: deadlock

* A possible interleaving of operations:
— bugsThread locks the daffy account
— daffyThread locks the bugs account
— bugsThread waits to lock the bugs account...
— daffyThread waits to lock the daffy account...

ite f

17-214 23 ol



A liveness problem: deadlock

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(source) {
synchronized(dest) {
source.balance -= amount;
dest.balance += amount;

te f

17-214 24 ol



Avoiding deadlock

* The waits-for graph represents dependencies between threads
— Each node in the graph represents a thread
— An edge T1->T2 represents that thread T1 is waiting for a lock T2 owns

* Deadlock has occurred iff the waits-for graph contains a cycle
* One way to avoid deadlock: locking protocols that avoid cycles

@\ (e

ite f

17-214 25 ol



Avoiding deadlock by ordering lock acquisition

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first) {
synchronized (second) {
source.balance -= amount;
dest.balance += amount;

= Institute for
17-214 26 SOt



Another subtle problem: The lock object is exposed

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first) {
synchronized (second) {
source.balance -= amount;
dest.balance += amount;

= Institute fur
17-214 27 SOt



An easy fix: Use a private lock

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();
private final Object lock = new Object();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first.lock) {
synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;

} o = institute f(')f
17-214 28 sormings



Concurrency and information hiding

* Encapsulate an object's state: Easier to implement invariants
— Encapsulate synchronization: Easier to implement synchronization policy

ite f

17-214 29 ol



Summary

* Concurrent programming can be hard to get right
— Easy to introduce bugs even in simple examples

* Coming soon:

— Higher-level abstractions for concurrency
— Program structure for concurrency

— Frameworks for concurrent computation

ite f

17-214 30 ol



