Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency
Introduction to concurrency, part 2

Concurrency primitives and challenges, continued
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Administrivia

* Homework 5a due 9 a.m. tomorrow
e 2" midterm exam returned today

 Reading due today:

— Java Concurrency in Practice, Sections 11.3 and 11.4
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Design tools discussion
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Key concepts from last Tuesday
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A concurrency bug with an easy fix:

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public synchronized long balance() {
return balance;

¥
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Concurrency control with Java's intrinsic locks

 synchronized (lock) { .. }
— Synchronizes entire block on object 1ock; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock

 synchronized on aninstance method
— Equivalentto synchronized (this) { .. } for entire method

* synchronized on a static method in class Foo
— Equivalentto synchronized (Foo.class) { .. } for entire method
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Today

* Midterm exam 2 recap
 More basic concurrency in Java

— Some challenges of concurrency
* Concurrency puzzlers

e Still coming soon:
— Higher-level abstractions for concurrency

— Program structure for concurrency
— Frameworks for concurrent computation
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Another example: serial number generation

public class SerialNumber {
private static long nextSerialNumber = 0;
public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = @0; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

})s
threads[i].start();

¥
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());
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Aside: Hardware abstractions

* Supposedly:

— Thread state shared in memory

* A (slightly) more accurate view:

Process
Thread Thread
<.

— Separate state stored in registers and caches, even if shared
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Atomicity

* An action is atomic if it is indivisible
— Effectively, it happens all at once
* No effects of the action are visible until it is complete
* No other actions have an effect during the action

* |nJava, integer increment is not atomic

1. Load data from variable i
it+; is actually 2. Increment data by 1

3. Store data to variable i
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Again, the fix is easy

public class SerialNumber {
private static int nextSerialNumber = 0;
public static synchronized int generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException{
Thread threads[] = new Thread[5];
for (int i = @0; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

})s
threads[i].start();

¥
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());
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Some actions are atomic

Precondition: Thread A: Thread B:
int 1 = 7; 1 = 42; ans = i;
* What are the possible values tor ans?
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Some actions are atomic

Precondition: Thread A:
int 1 = 7; 1 = 42;
* What are the possible values tor ans?

iz
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Some actions are atomic

Precondition:

Thread A: Th

int 1 = 7; 1 = 42;
* What are the possible values tor ans?

iz

i: 00000...00101010 |

* |nJava:

— Reading an int variable is atomic

— Writing an int variable is atomic

— Thankfully,
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Bad news: some simple actions are not atomic

* Consider a single 64-bit 1long value
— Concurrently:

* Thread A writing high bits and low bits
* Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long 1 = 10000000000; 1 = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

ans: (10000000042 or ...)
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Yet another example: cooperative thread termination

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
stopRequested = true;
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What went wrong?

* In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another

* JVMs can and do perform this optimization:
while (!done)

/* do something */ ;

becomes:
if (ldone) Process
while (true)
/* do something */ ; Thread Thread
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How do you fix it?

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}

private static synchronized boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
requestStop();
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A better(?) solution

public class StopThread {
private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(42);
stopRequested = true;
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A liveness problem: poor performance

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public synchronized long balance() {
return balance;

¥
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A liveness problem: poor performance

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(BankAccount.class) {
source.balance -= amount;
dest.balance += amount;

¥
¥

public synchronized long balance() {
return balance;

¥
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A proposed fix?: lock splitting

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(source) {
synchronized(dest) {
source.balance -= amount;
dest.balance += amount;
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A liveness problem: deadlock

* A possible interleaving of operations:
— bugsThread locks the daffy account
— daffyThread locks the bugs account
— bugsThread waits to lock the bugs account...
— daffyThread waits to lock the daffy account...
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A liveness problem: deadlock

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(source) {
synchronized(dest) {
source.balance -= amount;
dest.balance += amount;
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Avoiding deadlock

* The waits-for graph represents dependencies between threads
— Each node in the graph represents a thread
— An edge T1->T2 represents that thread T1 is waiting for a lock T2 owns

* Deadlock has occurred iff the waits-for graph contains a cycle
* One way to avoid deadlock: locking protocols that avoid cycles
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Avoiding deadlock by ordering lock acquisition

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first) {
synchronized (second) {
source.balance -= amount;
dest.balance += amount;
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Another subtle problem: The lock object is exposed

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first) {
synchronized (second) {
source.balance -= amount;
dest.balance += amount;
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An easy fix: Use a private lock

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();
private final Object lock = new Object();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first.lock) {
synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;
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Concurrency and information hiding

* Encapsulate an object's state: Easier to implement invariants
— Encapsulate synchronization: Easier to implement synchronization policy
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Summary

* Concurrent programming can be hard to get right
— Easy to introduce bugs even in simple examples

* Coming soon:

— Higher-level abstractions for concurrency
— Program structure for concurrency

— Frameworks for concurrent computation
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