Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Designing (sub-) systems

Design for large-scale reuse: Libraries and frameworks (part 2)

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
te‘f

e Institu or
SOFTWARE
17-214 1 RESEAI{\CH

Administrivia

* Homework 4b due tonight(!)
 Midsemester grades summary in your GitHub repo

* Next required reading due Tuesday after spring break(!)
— Effective Java, Items 51, 60, 62, and 64

https://commons.wikimedia.org/wiki/File:1_carcassonne_aerial_2016.jpg

iniug for
17-214 2

Key concepts from Tuesday

e Libraries vs. frameworks
* Whitebox vs. blackbox frameworks

ite f

-
INstitL or
17-214 3 SOt

Today:

e Libraries and frameworks for reuse, continued
— Domain engineering
— Practical considerations

-
institute for

17-214 a |B)) sorrvare

Framework design considerations

* Once designed there is little opportunity for change
 Key decision: Separating common parts from variable parts

— What problems do you want to solve?

* Possible problems:
— Too few extension points: Limited to a narrow class of users
— Too many extension points: Hard to learn, slow
— Too generic: Little reuse value

ite f

siute for
- ‘A
17 214 5 S RESEARCH

17-214 6 STt
RESEARCH

(one modularization: tangrams)
17-214 ol | S

The use vs. reuse dilemma

* Large rich components are very useful, but rarely fit a specific
need

 Small or extremely generic components often fit a specific need,
but provide little benefit

“maximizing reuse minimizes use”
C. Szyperski

u institute for
17-214 8 ol

Domain engineering

e Understand users/customers in your domain
— What might they need? What extensions are likely?

* Collect example applications before designing a framework

 Make a conscious decision what to support
— Called scoping
— e.g., the Eclipse policy:
* Interfaces are internal at first
— Unsupported, may change

* Public stable extension points created when there are at least two
distinct customers

ite f

-
InstitL or
17-214 o ol

Typical framework design and implementation

* Define your domain
— l|dentify potential common parts and variable parts

* Design and write sample plugins/applications
* Factor out & implement common parts as framework

* Provide plugin interface & callback mechanisms for variable parts
— Use well-known design principles and patterns where appropriate...

 Get lots of feedback, and iterate

ite f

17-214 w0 [0

Evolutionary design: Extract interfaces from classes

* Extracting interfaces is a new step in evolutionary design:
— Abstract classes are discovered from concrete classes
— Interfaces are distilled from abstract classes

e Start once the architecture is stable
— Remove non-public methods from class

— Move default implementations into an abstract class which implements
the interface

(credit: Erich Gamma)

ite f

17-214 11 ol

FRAMEWORK MECHANICS

e institute for
17-214 12 Bl e

Running a framework

 Some frameworks are runnable by themselves
— e.g. Eclipse

e Other frameworks must be extended to be run
— Swing, JUnit, MapReduce, Servlets

ite f

17-214 13 ol

Supporting multiple plugins

* Observer design pattern is commonly used

* Plugins can register

for events public class Application {
private List<Plugin> plugins;

* Multiple plugins public Application(List<Plugin> plugins) {

can react to same this.plugins = plugins;
events for (Plugin p : plugins)
p.setApplication(this);
* Different interfaces }
for different events public Message processMsg(Message msg) {
possible for (Plugin p : plugins).
msg = p.process(msg);
return msg;
}
}

e institute for
17-214 14 ol

Methods to load plugins

e Client writesmain(), creates a plugin and passes it to framework

* Framework writes main(), client passes name of plugin as a
command line argument or environment variable

* Framework looks in a magic location
— Config files or .jar files are automatically loaded and processed

e GUI for plugin management

e institute for
17-214 15 ol

Aside: Java reflection

* Reflection enables programmatic access to language elements
— e.g., java.lang.Class,
java.lang.reflect.Method,
java.lang.reflect.Field

* (Can use reflection to dynamically load plugins, e.g.:
Plugin p = (Plugin) Class.forName(args[1l]).newInstance();

ite f

17-214 16 ol

Aside: The java.util.Serviceloader

* Uses reflection to load classes from a standard configuration
(META-INF/services/..)

* E.g,
import java.util.Serviceloader;

for (Plugin p : ServicelLoader.load(Plugin.class)) {

e institute for
17-214 17 ol

Example: An Eclipse plugin

Manifest-Version: 1.0

* Plugin framework based on Bundle-ManifestVersion: 2
OSGl standard Bundle-Name: MyEditor Plug-in
e Starting point: Manifest file Bl.Jndle—SymbollcName: MyEditor;
_ Plugin name 51ngleton.=’Frue
_ Activator clas Bundle-Version: 1.0.0
¢ class Bundle-Activator:
— Meta-data

myeditor.Activator
Require-Bundle:
org.eclipse.ui,
org.eclipse.core.runtime,
org.eclipse.jface.text,
org.eclipse.ui.editors
Bundle-ActivationPolicy: lazy
Bundle-
RequiredExecutionEnvironment:
JavaSE-1.6

= Institute fur
17-214 18 SOt

Example: An Eclipse plugin

e plugin.xml

Main configuration file
XML format
Lists extension points

 Editor extension

17-214

extension point:
org.eclipse.ui.editors

file extension
icon used in corner of editor
class name
unique id
* refer to this editor

* other plugins can extend with
new menu items, etc.!

<?xml version="1.0" encoding="UTF-8"?
<?eclipse version="3.2"?>
<plugin>
<extension
point="org.eclipse.ui.editors
<editor
name="Sample XML Editor"
extensions="xml"
icon="icons/sample.gif"
contributorClass="org.eclipse.ui.text
or.BasicTextEditorActionContributor"
class="myeditor.editors.XMLEditor
id="myeditor.editors.XMLEditor">
</editor>
</extension>

</plugin>

ite f

-
institL or
SOFTWARE
19 RESEARCH

Example: An Eclipse plugin

package myeditor.editors;

e At last, the actual plugm import org.eclipse.ui.editors.text.TextEditor;

* XMLEdltor.Java public class XMLEditor extends TextEditor {
private ColorManager colorManager;

public XMLEditor() {

super();

colorManager = new
ColorManager();

setSourceViewerConfiguratiol
new

XMLConfiguration(colorManager));

setDocumentProvider(

new XMLDocumentProvii

}

public void dispose() {
colorManager.dispose();
super.dispose();

ule f(')f

17-214 20 [HJJ sormvnee

RESEARCH

Example: A JUnit Plugin

public class SampleTest {
private List<String> emptylist;

@Before

public void setUp
emptylList = new ArraylList< In JUnit the plugin
} o -
mechanism is Java

@After <« annotations
public void tearDown() {
emptyList = null;

}

@Test
public void testEmptylList() {
assertEquals("Empty list should have @ elements"”,
0, emptylList.size());

- institute for
17-214 21 ot

Learning a framework

* Documentation
e Tutorials, wizards, and examples

* Other client applications and plugins
e Communities, email lists and forums

Framework

Library

reward

\

effort
17-214 22 sorri

Summary

e Reuse and variation essential
— Libraries and frameworks

* Whitebox frameworks vs. blackbox frameworks

* Design for reuse with domain analysis
— Find common and variable parts
— Write client applications to find common parts

* Revise, revise, revise...

ite f

17-214 23 ol

