
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Designing (Sub)systems

Introduction to concurrency and GUIs

Charlie Garrod Bogdan Vasilescu

217-214

Administrivia

• Homework 4a due tonight at 11:59 p.m.
• Homework 4b due Thursday, March 8
• Reading due Tuesday: UML and Patterns Chapters 26.1 and 26.4
– Adapter pattern
– Factory pattern

• Still need Midterm 1?

417-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML More Git

GUIs
Performance

Design

517-214

Key concepts from Tuesday

617-214

Key concepts from Tuesday

• Revise, revise, revise: Refactoring and anti-patterns
• More testing
• Static analysis

717-214

Key concepts from yesterday's recitation

• Discovering design patterns
• Observer design pattern

917-214

Today

• Observer pattern
• Introduction to concurrency
• Introduction to GUIs

1017-214

Observer pattern (a.k.a. publish/subscribe)

• Problem: Must notify other objects (observers) without
becoming dependent on the objects receiving the notification

• Solution: Define a small interface to define how observers
receive a notification, and only depend on the interface

• Consequences:
– Loose coupling between observers and the source of the notifications

– Notifications can cause a cascade effect

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmListener…

1117-214

1217-214

1317-214

1417-214

MULTITHREADED PROGRAMMING
BASICS

1517-214

What is a thread?

• Short for thread of execution
• Multiple threads run in same program concurrently
• Threads share the same address space

– Changes made by one thread may be read by others
• Multithreaded programming

– Also known as shared-memory multiprocessing

1617-214

Threads vs. processes

• Threads are lightweight; processes heavyweight
• Threads share address space; processes have own
• Threads require synchronization; processes don’t

– Threads hold locks while mutating objects
• It’s unsafe to kill threads; safe to kill processes

1717-214

Reasons to use threads

• Performance needed for blocking activities
• Performance on multi-core processors
• Natural concurrency in the real-world
• Existing multi-threaded, managed run-time environments

– In Java threads are a fact of life
• Example: garbage collector runs in its own thread

1817-214

A simple threads example
public interface Runnable { // java.lang.Runnable

public void run();
}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]); // Number of threads;

Runnable greeter = new Runnable() {
public void run() {

System.out.println("Hi mom!");
}

};
for (int i = 0; i < n; i++) {

new Thread(greeter).start();
}

}

1917-214

A simple threads example
public interface Runnable { // java.lang.Runnable

public void run();

}

public static void main(String[] args) {

int n = Integer.parseInt(args[0]); // Number of threads;

Runnable greeter = () -> System.out.println("Hi mom!");

for (int i = 0; i < n; i++) {

new Thread(greeter).start();

}

}

2017-214

A simple threads example
public interface Runnable { // java.lang.Runnable

public void run();
}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]); // Number of threads;

for (int i = 0; i < n; i++) {
new Thread(() -> System.out.println("Hi mom!")).start();

}
}

2317-214

Threads for performance

• Generating cryptarithms from a 344-word corpus

– Test all consecutive 3-word sequences: A + B = C (342 possibilities)

Number of threads Seconds to run
1 22.0

2 13.5

3 11.7

4 10.8

2417-214

Shared mutable state requires synchronization

• If not properly synchronized, all bets are off!
• Three basic choices:

1. Don't mutate: share only immutable state
2. Don't share: isolate mutable state in individual threads
3. If you must share mutable state: synchronize properly

2517-214

The challenge of synchronization

• Not enough synchronization: safety failure
– Incorrect computation
• Changes aren’t guaranteed to propagate thread to thread
• Program can observe inconsistencies
• Critical invariants can be corrupted

• Too much synchronization: liveness failure
– No computation at all
• Deadlock or other liveness failure

2617-214

Today

• Observer pattern
• Introduction to concurrency
• Introduction to GUIs

2717-214

EVENT-BASED PROGRAMMING

2817-214

Event-based programming

• Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
List<String> lst = Arrays.asList(bar);
foo.peek(42)

}

public void performAction(ActionEvent e) {
bigBloatedPowerPointFunction(e);
withANameSoLongIMadeItTwoMethods(e);
yesIKnowJavaDoesntWorkLikeThat(e);

}

public void performAction(ActionEvent e) {
List<String> lst = Arrays.asList(bar);
foo.peek(40)

}

2917-214

Examples of events in GUIs

• User clicks a button, presses a key
• User selects an item from a list, an item from a menu
• Mouse hovers over a widget, focus changes
• Scrolling, mouse wheel turned
• Resizing a window, hiding a window
• Drag and drop

• A packet arrives from a web service, connection drops, …
• System shutdown, …

3017-214

Blocking interaction with command-line interfaces

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {

Question q = question.next();
System.out.println(q.toString());
String answer = input.nextLine();
q.respond(answer);

}

3117-214

Blocking interactions with users

Game PlayerDealer

newGame

addCards

addCards

getAction

action

[action==hit] addCard

blocking
execution

3217-214

Interactions with users through events

• Do not block waiting for user response
• Instead, react to user events

Game PlayerDealer

newGame

addCards

addCards

hit

addCard

3317-214

An event-based GUI with a GUI framework

• Setup phase
– Describe how the GUI window should look
– Register observers to handle events

• Execution
– Framework gets events from OS, processes events

• Your code is mostly just event handlers

GUI
Framework

OS

Application

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, …

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow…

3417-214

GUI PROGRAMMING

3517-214

GUI frameworks in Java

• AWT – obsolete except as a part of Swing
• Swing – the most widely used, by far
• SWT – Little used outside of Eclipse
• JavaFX – Billed as a replacement for Swing

– Released 2008 – has yet to gain traction

• A bunch of modern (web & mobile) frameworks
– e.g., Android

3617-214

GUI programming is inherently multi-threaded

• Event-driven programming

• Swing Event dispatch thread (EDT) handles all GUI events
– Mouse events, keyboard events, timer events, etc.

• Program registers observers (“listeners”)

• No other time-consuming activity allowed on the EDT
– Violating this rule can cause liveness failures

3717-214

Ensuring all GUI activity is on the EDT

• Violating this rule can cause safety failures
– Never make a Swing call from any other thread

• "Swing calls" include Swing constructors

• If not on EDT, make Swing calls with invokeLater()

3817-214

Aside: invokeLater

https://alvinalexander.com/java/java-swingutilities-invoke-later-example-edt

3917-214

Ensuring all GUI activity is on the EDT

• Violating this rule can cause safety failures
– Never make a Swing call from any other thread

• "Swing calls" include Swing constructors

• If not on EDT, make Swing calls with invokeLater()

• The code that initialises our GUI must also take place in an
invokeLater()

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> new Test().setVisible(true));

}

4017-214

Callbacks execute on the EDT

• You are a guest on the Event Dispatch Thread!
– Don’t abuse the privilege

• If > a few ms of work to do, do it off the EDT
– javax.swing.SwingWorkerdesigned for this purpose

• Typical scenario:
– long running task in a background thread
– provide updates to the UI either when done, or while processing.

4117-214

SwingWorker sample usage

https://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html

4217-214

Components of a Swing application

JButton

JPanel

JTextField

…

JFrame

4317-214

Swing has many widgets

• JLabel
• JButton
• JCheckBox
• JChoice
• JRadioButton

• JTextField
• JTextArea
• JList
• JScrollBar
• … and more

• JFrame is the Swing Window

• JPanel (a.k.a. a pane) is the container to which you add your components
(or other containers)

4417-214

To create a simple Swing application

• Make a window (a JFrame)
• Make a container (a JPanel)

– Put it in the window
• Add components (buttons, boxes, etc.) to the container

– Use layouts to control positioning
– Set up observers (a.k.a. listeners) to respond to events
– Optionally, write custom widgets with application-specific display logic

• Set up the window to display the container

• Then wait for events to arrive…

4517-214

E.g., creating a button

//static public void main…
JFrame window = …

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
System.out.println(“Button clicked”);

}
});
panel.add(button);

window.setVisible(true);

panel to hold
the button

register callback

function
callback function

implements

ActionListener

interface

4617-214

E.g., creating a button

//static public void main…
JFrame window = …

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener((e) -> {

System.out.println(“Button clicked");
});
panel.add(button);

window.setVisible(true);

panel to hold
the button

register callback

function
callback function

implements

ActionListener

interface

4717-214

The javax.swing.ActionListener

• Listeners are objects with callback functions
– Can be registered to handle events on widgets
– All registered widgets are called if event occurs

interface ActionListener {
void actionPerformed(ActionEvent e);

}
class ActionEvent {

int when;
String actionCommand;
int modifiers;
Object source();
int id;
…

}

4817-214

Button design discussion

• Button implementation should be reusable but
customizable
– Different button label, different event-handling

• Must decouple button's action from the button itself
• Listeners are separate independent objects
– A single button can have multiple listeners
– Multiple buttons can share the same listener

4917-214

Swing has many event listener interfaces

• ActionListener

• AdjustmentListener

• FocusListener

• ItemListener

• KeyListener

• MouseListener

• TreeExpansionListener

• TextListener

• WindowListener

• …

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;
…

}interface ActionListener {
void actionPerformed(ActionEvent e);

}

5017-214

Summary: Swing constraints

• Time-consuming tasks should not be run on the Event Dispatch
Thread. Otherwise the application becomes unresponsive.

• Swing components should be accessed on the Event Dispatch
Thread only.

• Helpers: invokeLater, SwingWorker

5117-214

SUMMARY DESIGN DISCUSSION:
DECOUPLING YOUR GAME FROM YOUR GUI

5217-214

A GUI design challenge

• Consider a blackjack game, implemented by a Game class:
– Player clicks “hit” and expects a new card
– When should the GUI update the screen?

Game GUI

update

getData

hit()

5317-214

A GUI design challenge, extended

• What if we want to show the points won?

Game GUI

update

PointsPanel

getData

update

getData

update

hit

5417-214

Game updates GUI?

• What if points change for reasons not started by the GUI?
(or computations take a long time and should not block)

Game GUI

update

PointsPanel

getData

update

getData

update

hit

5517-214

Game updates GUI?

• Let the Game tell the GUI that something happened

Game GUI

update

PointsPanel

update(data)

update(data)

update

hit

5617-214

Game updates GUI?

• Let the Game tell the GUI that something happened

Game GUI

update

PointsPanel

update(data)

update(data)

update

hit

Problem: This couples the World to the GUI implementation.

5717-214

Core implementation vs. GUI

• Core implementation: Application logic
– Computing some result, updating data

• GUI
– Graphical representation of data
– Source of user interactions

• Design guideline: Avoid coupling GUI with core application
– Multiple UIs with single core implementation
– Test core without UI
– Design for change, design for reuse, design for division of labor;

low coupling, high cohesion

5817-214

Decoupling with the Observer pattern

• Let the Game tell all interested components about updates

Game GUI

register

update

PointsPanel

notify

notify

update

register

hit

5917-214

Separating application core and GUI, a summary

• Reduce coupling: do not allow core to depend on UI
• Create and test the core without a GUI

– Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

Core

GUI

Core
Tests

GUI
Tests

6217-214

For help writing Swing code

• Sun wrote a good tutorial
– http://docs.oracle.com/javase/tutorial/uiswing/

• The many components shown with examples
– http://docs.oracle.com/javase/tutorial/uiswing/components/componentlist.html

• Listeners supported by each component
– http://docs.oracle.com/javase/tutorial/uiswing/events/eventsandcomponents.html

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/components/componentlist.html
http://docs.oracle.com/javase/tutorial/uiswing/events/eventsandcomponents.html

6317-214

Summary

• Multithreaded programming is genuinely hard
– But it’s a fact of life in Java

• Neither under- nor over-synchronize
– Immutable types are your best friend
– java.util.concurrent is your next-best friend

• GUI programming is limited form of multithreading
– Swing calls mustbe made on event dispatch thread
– No other significant work should be done on EDT

• GUIs are full of design patterns

