Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Designing (Sub)systems

Introduction to concurrency and GUIs

Charlie Garrod Bogdan Vasilescu

School of

Computer Science
@

institute for
I S SOFTWARE
RESEARCH

17-214

RRRRRRRR

Administrivia

* Homework 4a due tonight at 11:59 p.m.

e Homework 4b due Thursday, March 8

 Reading due Tuesday: UML and Patterns Chapters 26.1 and 26.4
— Adapter pattern
— Factory pattern

e Still need Midterm 17?

L J
Institute tor
17-214 2 SOt

Intro to Java

Git, Cl

UML GUIs

Static Analysis

Performance

More Git

GUIs

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,
Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,
Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Desi
GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent
Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

17-214

.
institute for
4 I S r SOFTWARE
RESEARCH

Key concepts from Tuesday

-
institute for
17-214 5 sof st

Key concepts from Tuesday

* Revise, revise, revise: Refactoring and anti-patterns
* More testing
e Static analysis

-
institute for
17-214 6 sormst

Key concepts from yesterday's recitation

* Discovering design patterns
* Observer design pattern

-
institute for
17-214 7 sof st

Today

* Observer pattern
* Introduction to concurrency
 |ntroduction to GUIs

-
institute for
17-214 o sormst

Observer pattern (a.k.a. publish/subscribe)

* Problem: Must notify other objects (observers) without
becoming dependent on the objects receiving the notification

e Solution: Define a small interface to define how observers
receive a notification, and only depend on the interface

* Consequences:
— Loose coupling between observers and the source of the notifications

— Notifications can cause a cascade effect

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmListener...

= sl
17-214 10 SOtk

Object 1.

17-214

~

]

.C“eﬂ')r A |

Yo A

2y
|

17-214 12

|

£
l-f~

L{br&(‘y

lebgcﬂa\be(f Evzr\\Il\\-thivB

7 X

H ~subscorbere

&

17-214

N

—S

— — | —

A

F lje 7 (ioo?e \

T —

i
f\o%\{]Uv{:(me g) |

MULTITHREADED PROGRAMMING
BASICS

= |rw‘.l|1ulx‘[)
17-214 14 [BYR sorvare

What is a thread?

* Short for thread of execution
* Multiple threads run in same program concurrently
 Threads share the same address space

— Changes made by one thread may be read by others

 Multithreaded programming
— Also known as shared-memory multiprocessing

= |“‘-|H[‘[|
17-214 15 SOtk

Threads vs. processes

* Threads are lightweight; processes heavyweight
* Threads share address space; processes have own
e Threads require synchronization; processes don'’t

— Threads hold locks while mutating objects

* It’s unsafe to kill threads; safe to kill processes

= |“‘-|H[‘[|
17-214 16 SOtk

Reasons to use threads

* Performance needed for blocking activities
* Performance on multi-core processors
* Natural concurrency in the real-world

e Existing multi-threaded, managed run-time environments
— In Java threads are a fact of life
* Example: garbage collector runs in its own thread

= |“‘-|H[‘[|
17-214 17 SOtk

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parselnt(args[@]); // Number of threads;

Runnable greeter = new Runnable() {
public void run() {
System.out.println("Hi mom!");

}

¥

for (int i = 0; i < n; i++) {
new Thread(greeter).start();

¥

- institute for
17-214 18 sormst

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parselnt(args[@]); // Number of threads;

Runnable greeter = () -> System.out.println("Hi mom!");
for (int 1 = 0; 1 < n; i++) {
new Thread(greeter).start();

¥

- institute for
17-214 19 sormst

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

}

public static void main(String[] args) {
int n = Integer.parselnt(args[@]); // Number of threads;

for (int 1 = 0; 1 < n; i++) {

new Thread(() -> System.out.println("Hi mom!")).start();
}

A institute for
17-214 20 sormst

Threads for performance

* Generating cryptarithms from a 344-word corpus
— Test all consecutive 3-word sequences: A+ B=C (342 possibilities)

Number of threads

1 22.0
2 13.5
3 11.7
4 10.8

- institute for
17-214 23 sor s

Shared mutable state requires synchronization

* If not properly synchronized, all bets are off!
* Three basic choices:

1. Don't mutate: share only immutable state
2. Don't share: isolate mutable state in individual threads
3. If you must share mutable state: synchronize properly

= |“‘-|H[‘[|
17-214 24 SOtk

The challenge of synchronization

* Not enough synchronization: safety failure
— Incorrect computation
e Changes aren’t guaranteed to propagate thread to thread
* Program can observe inconsistencies
* Critical invariants can be corrupted

* Too much synchronization: liveness failure
— No computation at all
* Deadlock or other liveness failure

f

17-214 s B

Today

* Observer pattern
* Introduction to concurrency
 |ntroduction to GUIs

A institute for
17-214 26 sormst

EVENT-BASED PROGRAMMING

= |rw‘.l|1ulx‘[)
17-214 27 DN iorvar

Event-based programming

e Style of programming where control-flow is driven by (usually
external) events

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (42)

& PowerPoint File Edit View Insert Format Arrange Tools SlideShow Window $ Help Mo @ @& & <D 2 o« [100%GE Wed11:03PM Charles Garrod Q&
B 11-introduction-to-concurrency-a

guis.ppx

) erebuss ° & & B i - =N i) a-
A vomo | Themes | Tabes | Charts | SmartArt | Trnstons | Anmations | SidoShow | Review ~
Q) Loyt~ A=+ = ()
New Siide =| Section ~ Text 3 Play
\sigsa ovine

Event-based programming

+ Style of programming where control-flow is driven by (usually

external) events

public void performAction (ActionEvent e) {

bigBloatedPowerPointFunction (e) ; /
withANameSoLongIMadeItTwoMethods (e) ; k_mm)

yesIKnowJavaDoesntWorkLikeThat (e) ;

Glick o add notes

Side ot 20 o5x @ =

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (40)

institute for
17-214 28 sormst

Examples of events in GUIs

* User clicks a button, presses a key

 User selects an item from a list, an item from a menu
* Mouse hovers over a widget, focus changes

e Scrolling, mouse wheel turned

* Resizing a window, hiding a window
 Draganddrop

* A packet arrives from a web service, connection drops, ...
e System shutdown, ...

= sl
17-214 29 SOtk

Blocking interaction with command-line interfaces

Terminal N

File Edit View Search Terminal Help
scripts/kconfig/conf arch/x86/Kconfig

*

Linux Kernel Configuration

*
*
*
*

General setup

*

Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?]
Local version - append to kernel release (LOCALVERSION) []

Automatically append version information to the version string (LOCALVERSION_AUT
0) [N/y/?2]1 y

Kernel compression mode

> 1. Gzip (KERNEL_GZIP)

2. Bzip2 (KERNEL_BZIP2 . .
3. Lzmz (KERNEL_LZMA) d Scanner input = new Scanner(System.in);

h4. L%O (K%RNEL_LZO) while (questions.hasNext()) {
choice[1-4?]: 3 . .

T R e Question g = question.next();
system V IPC (SYSVIPC) [Y System.out.println(g.toString());

POSIX M POS . : i
essage Queues (String answer = input.nextLine();

BSD Process Accounting (B
Export task/process stati g. r‘espond (answer‘) 5

1y }
Enable per-task delay a
17-214 30 s

Blocking interactions with users

)
Gamé Dealer Player
newGame : : :
h' | |
| addCards | |
- |
|
: addCaxds :
. |
| getAction N: 7
| | > blocking
I | | :
| action | execution
| |
- """ " """ ""”- ""-”- "-"”¥ /”¥"¥‘¥°”"¥7 ¥"¥‘7/7¥¥7/ - ¥—7—"——= 7
[action==hit] addCard |

- __ v

I/ S r institute for
SOFTWARE
31 LEC AN RESEARCH

17-214

Interactions with users through events

* Do not block waiting for user response
* Instead, react to user events

Game Dealer Player
newGame : : :
> | |
: addCards : :
| > |
| addCards |
| | |
| | >
| | |
| | |
| | |
O | | |
| | |
| | |
hit | | |
| | |
Pi | |
: addCard :
| |

A

institute for
32 SOFTWARE
RESEARCH

An event-based GUI with a GUI framework

* Setup phase
— Describe how the GUI window should look
— Register observers to handle events

* Execution

— Framework gets events from OS, processes events
* Your code is mostly just event handlers

Application

event—
mouse, key,
redraw, ...

drawing
commands

GUI
Framework

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow...

17-214

institute for
SOFTWARE
33 RESEARCH

GUI PROGRAMMING

= |rv.l|1ulx‘(|
17-214 PR | S [Rt

GUI frameworks in Java

* AWT — obsolete except as a part of Swing
 Swing —the most widely used, by far
 SWT — Little used outside of Eclipse

* JavaFX - Billed as a replacement for Swing
— Released 2008 — has yet to gain traction

* A bunch of modern (web & mobile) frameworks
— e.g., Android

M institute for
17-214 35 ol

GUI programming is inherently multi-threaded

* Event-driven programming

* Swing Event dispatch thread (EDT) handles all GUI events

— Mouse events, keyboard events, timer events, etc.

* Program registers observers (“listeners”)

No other time-consuming activity allowed on the EDT

— Violating this rule can cause liveness failures

= sl
17-214 36 SOtk

Ensuring all GUI activity is on the EDT

* Violating this rule can cause safety failures
— Never make a Swing call from any other thread
e "Swing calls" include Swing constructors

* If not on EDT, make Swing calls with invokelLater ()

= |“‘-|H[‘[|
17-214 37 SOtk

Aside: invokelLater

public void actionPerformed(ActionEvent e)

{

new Thread(new Runnable()

{
final String text = readHugeFile();
SwingUtilities.invokelLater(new Runnable()
{
public void run()
{
textArea.setText(text);
+
});
}).start();

}

https://alvinalexander.com/java/java-swingutilities-invoke-later-example-edt

institute for

17-214 38 sormase

Ensuring all GUI activity is on the EDT

* Violating this rule can cause safety failures
— Never make a Swing call from any other thread
e "Swing calls" include Swing constructors

* If not on EDT, make Swing calls with invokelLater ()

 The code that initialises our GUI must also take place in an
invokelLater()

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> new Test().setVisible(true));

}

= |“‘-|H[‘[|
17-214 39 SOtk

Callbacks execute on the EDT

* You are a guest on the Event Dispatch Thread!

— Don’t abuse the privilege

* If>afew ms of work to do, do it off the EDT
— Jjavax.swing.SwingWorker designed for this purpose

* Typical scenario:
— long running task in a background thread
— provide updates to the Ul either when done, or while processing.

- institute for
17-214 40 sormst

SwingWorker sample usage

final JLabel label;

class MeaningOfLifeFinder extends SwingWorker<String, Object> {
@Override

public String doInBackground() {
return findTheMeaningOfLife();

}

@0verride
protected void done() {
try {
label.setText(get());
} catch (Exception ignore) {

}
}

(new MeaningOfLifeFinder()).execute();

https://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html

. institute for
17-214 a1 ek

Components of a Swing application

JFrame
MenuWidgetl MenuWidget2
ToolbarButton [v] ToolbarCheckBox
PanelCaption
JPanel
Panel [SelectedTab | OtherTab
Item 1 ® RadioButtonl [] UncheckedCheckBox
Item 2 0 RadioButton2 CheckedCheckBox
Item 3 .
) RadioButton3 o
Item 4 . — [] InactiveCheckBox
Item 5 .} InactiveRadio
JButton Button :)
N
JTextField | fresio | romarea
|............. |
Item 1 v
17-214 42

institute for
SOFTWARE
RESEARCH

Swing has many widgets

 JlLabel e JTextField
« JButton * JTextArea
 JCheckBox e JList

« JChoice e JScrollBar

e JRadioButton ... and more

e JFrame is the Swing Window

e JPanel (a.k.a. a pane) is the container to which you add your components
(or other containers)

. institute for
17-214 43 sormst

To create a simple Swing application

 Make a window (a JFrame)
 Make a container (a JPanel)

— Putitin the window

 Add components (buttons, boxes, etc.) to the container
— Use layouts to control positioning
— Set up observers (a.k.a. listeners) to respond to events
— Optionally, write custom widgets with application-specific display logic

 Set up the window to display the container

e Then wait for events to arrive...

= sl
17-214 a4 SOtk

E.g., creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.out.println(“Button clicked”);

¥
1)
panel.add(button);

window.setVisible(true);

-
institute for
i S SOFTWARE
RESEARCH

17-214 45

E.g., creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener((e) -> {
System.out.println(“Button clicked");

O
panel.add(button);

window.setVisible(true);

- institute for
17-214 a6 ot

The javax.swing.ActionListener

* Listeners are objects with callback functions
— Can be registered to handle events on widgets
— All registered widgets are called if event occurs

interface ActionlListener {
void actionPerformed(ActionEvent e);

¥

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

. institute for
17-214 a7 sof st

Button design discussion

* Button implementation should be reusable but
customizable

— Different button label, different event-handling
* Must decouple button's action from the button itself
* Listeners are separate independent objects

— A single button can have multiple listeners
— Multiple buttons can share the same listener

L J
Institute tor
17-214 a8 SOt

Swing has many event listener interfaces

e ActionlListener * MouselListener

* AdjustmentListener * TreeExpansionlListener
* FocuslListener * TextListener

e ItemListener e WindowListener

« KeyListener .

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

interface ActionListener {

void actionPerformed(ActionEvent e);

¥

-
institute for
17-214 a9 sof st

Summary: Swing constraints

* Time-consuming tasks should not be run on the Event Dispatch
Thread. Otherwise the application becomes unresponsive.

* Swing components should be accessed on the Event Dispatch
Thread only.

* Helpers: invokelLater, SwinghWorker

= |“‘-|H[‘[|
17-214 50 SOtk

SUMMARY DESIGN DISCUSSION:
DECOUPLING YOUR GAME FROM YOUR GUI

17-214 s [F s

A GUI design challenge

* Consider a blackjack game, implemented by a Game class:
— Player clicks “hit” and expects a new card
— When should the GUIl update the screen?

hit()

getData

e e

GUI
|
|
|
|
|
|
|
D update
|

= |“‘-|H[‘[|
17-214 52 SOtk

A GUI design challenge, extended

 What if we want to show the points won?

Game GUI PointsPanel
| | |
y hit : |
S | |
| getData | |
< | |
| ;;:::::Z> update |
| | update |
| .
| !
P gFtData |
N | |
|
i P
|

|
| update
|

M institute for
17-214 53 ol

Game updates GUI?

* What if points change for reasons not started by the GUI?
(or computations take a long time and should not block)

|
update

Game GUI PointsPanel
| | :
y hit : |
S | |
! getData | !
< i |
| E> update |
| | update |
| .
| | >:
| |
P gletData |
N | |
|
i P
|

- Institute [:]
17-214 54 sormat

Game updates GUI?

* Let the Game tell the GUI that something happened

PointsPanel

)
L
3
D

hit

update(data)

VX/ E
V\é

update
update(data)

update

i el Rk’

A institute for
17-214 55 sormst

Game updates GUI?

* Let the Game tell the GUI that something happened

PointsPanel

)
L
3
D

hit

update(data)

—)

update

US/ E
V\é

update(data)

update

i el niat? et

Problem: This couples the World to the GUI implementation.

. institute for
17-214 56 sof st

Core implementation vs. GUI

* Core implementation: Application logic
— Computing some result, updating data

* GUI

— Graphical representation of data
— Source of user interactions

* Design guideline: Avoid coupling GUI with core application
— Multiple Uls with single core implementation

— Test core without Ul

— Design for change, design for reuse, design for division of labor;
low coupling, high cohesion

L J
Institute tor
17-214 57 SOt

Decoupling with the Observer pattern

 Letthe Game tell all interested components about updates

Game GUI PointsPanel
|
register :
|
register
hit
notify

o
:

update
notify

T NN AN T

update

= ”W‘-l“(‘[l)
17-214 58 SOtk

Separating application core and GUI, a summary

* Reduce coupling: do not allow core to depend on Ul

 (Create and test the core without a GUI

— Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

- institute for
17-214 59 SOt

For help writing Swing code

* Sun wrote a good tutorial

— http://docs.oracle.com/javase/tutorial/uiswing/

 The many components shown with examples

— http://docs.oracle.com/javase/tutorial/uiswing /components/componentlist.html

* Listeners supported by each component

— http://docs.oracle.com/javase/tutorial/uiswing/events/eventsandcomponents.html

-
institute for
17-214 62 sof st

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/components/componentlist.html
http://docs.oracle.com/javase/tutorial/uiswing/events/eventsandcomponents.html

Summary

Multithreaded programming is genuinely hard

— But it’s a fact of life in Java

* Neither under- nor over-synchronize
— Immutable types are your best friend
— java.util.concurrent is your next-best friend

GUI programming is limited form of multithreading
— Swing calls must be made on event dispatch thread
— No other significant work should be done on EDT

GUIs are full of design patterns

= |“‘-|H[‘[|
17-214 63 SOtk

