
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Object-oriented analysis and design

Incremental improvements

Charlie Garrod Bogdan Vasilescu

217-214

Administrivia

• Homework 4a due Thursday
– Mandatory design review meeting before the homework deadline

• Midterm back today

317-214

Key concepts from last Tuesday

417-214

Artifacts of this design process

• Model / diagram the problem, define objects
– Domain model (a.k.a. conceptual model)

• Define system behaviors
– System sequence diagram
– System behavioral contracts

• Assign object responsibilities, define interactions
– Object interaction diagrams

• Model / diagram a potential solution
– Object model

Understanding
the problem

Defining a
solution

517-214

An example domain model for a library system

617-214

One sequence diagram for the library system

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the book’s
due date by adding its loan period to the current day, and record the book and its
due date as a borrowed item in the member’s library account.

717-214

A system behavioral contract for the library system

Operation: borrow(item)

Pre-conditions: Library member has already logged in to the system.
Item is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the newly-borrowed
item, or the member is warned she has an outstanding late fee.
The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.

817-214

Example interaction diagram #1

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and …

917-214

Example interaction diagram #2

Use case scenario: …and borrow a book. After confirming that the member has
no unpaid late fees, the library system should determine the book’s due date by
adding its loan period to the current day, and record the book and its due date as
a borrowed item in the member’s library account.

1017-214

An object model for the library

1117-214

Heuristics for responsibility assignment

• Controller heuristic
• Information expert heuristic
• Creator heuristic

Goals

Heuristics Patterns

Principles

1317-214

Correctness?

1417-214

Software Errors

• Functional errors
• Performance errors
• Deadlock
• Race conditions
• Boundary errors
• Buffer overflow
• Integration errors
• Usability errors
• Robustness errors
• Load errors

• Design defects
• Versioning and

configuration errors
• Hardware errors
• State management errors
• Metadata errors
• Error-handling errors
• User interface errors
• API usage errors
• …

1517-214

Software Errors

• Functional errors
• Performance errors
• Deadlock
• Race conditions
• Boundary errors
• Buffer overflow
• Integration errors
• Usability errors
• Robustness errors
• Load errors

• Design defects
• Versioning and

configuration errors
• Hardware errors
• State management errors
• Metadata errors
• Error-handling errors
• User interface errors
• API usage errors
• …

1617-214

CODE SMELLS

1717-214

Bad Smells -> Design Defects

• Bad Smells indicate that
your code is ripe for
refactoring

• Refactoring is about
how to change code by
applying refactorings

• Bad smells are about
when to modify it

1817-214

Bad Smells: Classification

• Top crime: code duplication
• Class / method organization
– Large class, Long Method, Long Parameter List, Lazy Class,

Data Class, ...
• Lack of loose coupling or cohesion
– Inappropriate Intimacy, Feature Envy, Data Clumps, ...

• Too much or too little delegation
– Message Chains, Middle Man, ...

• Non Object-Oriented control or data structures
– Switch Statements, Primitive Obsession, ...

• Other: Comments

1917-214

Code duplication (1)

code

code

code

code

Class

Method 1

Method 2

Method 3

code

Class

Method 1

Method 2

Method X

MethodX();

Method 3
MethodX();

MethodX();
MethodX();

• Extract
method

• Rename
method

2017-214

Code duplication (2)

code

Subclass A

Method codeMethod

Subclass B
Class

Same expression in two sibling classes:

• Same code: Extract method + Pull up field

• Similar code: Extract method + Form Template Method

• Different algorithm: Substitute algorithm

2117-214

Code duplication (3)

code

ClassA

MethodA codeMethodB

ClassB

2217-214

Code duplication (3)
ClassA

MethodA MethodB

ClassB

Same expression in two unrelated classes:

• Extract class

• If the method really belongs in one of the two classes,
keep it there and invoke it from the other class

code

ClassX

MethodX

ClassX.MethodX(); ClassX.MethodX();

2317-214

Long method
//700LOC
public boolean foo() {

try {
synchronized () {

if () {
} else {
}
for () {

if () {
if () {

if () {
if ()?
{

if () {
for () {
}

}
}

} else {
if () {

for () {
if () {
} else {
}
if () {
} else {

if () {
}

}
if () {

if () {
if () {

for () {
}

}
}

} else {
}

}
} else {

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

• Remember this?

2417-214

Solution: Refactoring

• Refactoring is a change to a program that doesn’t change the
behavior, but improves a non-functional attribute of the code
(not reworking).

• Examples:
– Improve readability
– Reduce complexity

• Benefits include increased maintainability, and easier
extensibility

• Fearlessly refactor when you have good unit tests

2517-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;
// Print banner
System.out.println(“******************“);
System.out.println(“***** Customer *****“);
System.out.println(“******************“);
// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
// Print details
System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

2617-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;
// Print banner
System.out.println(“******************“);
System.out.println(“***** Customer *****“);
System.out.println(“******************“);
// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
// Print details
System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

2717-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;

printBanner();

// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
// Print details
System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

void printBanner(){
System.out.println(“******************“);
System.out.println(“***** Customer *****“);
System.out.println(“******************“);

}

Extract method

Compile and test to see whether I've broken anything

2817-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;

printBanner();

// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
// Print details
System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}
void printBanner(){…}

2917-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;

printBanner();

// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
printDetails(outstanding);

}
void printBanner(){…}
void printDetails(outstanding){

System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

Extract method
using local variables

Compile and test to see whether I've broken anything

3017-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = 0.0;

printBanner();

// Calculate outstanding
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
outstanding += each.getAmount();

}
printDetails(outstanding);

}
void printBanner(){…}
void printDetails(outstanding){

System.out.println(“name: “ + _name);
System.out.println(“amount” + outstanding);

}

3117-214

Refactoring a long method

void printOwing() {
Enumeration e = _orders.elements();
double outstanding = getOutstanding();
printBanner();
printDetails(outstanding);

}
void printBanner(){…}
void printDetails(outstanding){…}

double getOutstanding() {
Enumeration e = _orders.elements();
double result = 0.0;
While (e.hasMoreElements()) {

Order each = (Order) e.nextElement();
result += each.getAmount();

}
return result;

}

Extract method
reassigning a local
variable

Compile and test to see whether I've broken anything

3217-214

Many More Bad Smells and Suggested
Refactorings

• Top crime: code duplication
• Class / method organization
– Large class, Long Method, Long Parameter List, Lazy Class,

Data Class, ...
• Lack of loose coupling or cohesion
– Inappropriate Intimacy, Feature Envy, Data Clumps, ...

• Too much or too little delegation
– Message Chains, Middle Man, ...

• Non Object-Oriented control or data structures
– Switch Statements, Primitive Obsession, ...

• Other: Comments

4017-214

BACK TO FUNCTIONAL
CORRECTNESS

4117-214

Reminder: Functional Correctness

• The compiler ensures that the types are correct (type checking)
– Prevents “Method Not Found” and “Cannot add Boolean to Int” errors at

runtime

• Static analysis tools (e.g., FindBugs) recognize certain common
problems
– Warns on possible NullPointerExceptions or forgetting to close files

• How to ensure functional correctness of contracts beyond?

4217-214

Reminder: Formal Verification

• Proving the correctness of an implementation with respect to a
formal specification, using formal methods of mathematics.

• Formally prove that all possible executions of an implementation
fulfill the specification

• Manual effort; partial automation; not automatically decidable

4317-214

Reminder: Testing

• Executing the program with selected inputs in a controlled
environment (dynamic analysis)

• Goals:
– Reveal bugs (main goal)
– Assess quality (hard to quantify)
– Clarify the specification, documentation
– Verify contracts

"Testing shows the presence,
not the absence of bugs

Edsger W. Dijkstra 1969

4417-214

Reminder: Testing Decisions

• Who tests?
– Developers
– Other Developers
– Separate Quality Assurance Team
– Customers

• When to test?
– Before development
– During development
– After milestones
– Before shipping

• When to stop testing?

(More in 17-313)

4517-214

Reminder: Code coverage metrics (useful but dangerous)

• Method coverage – coarse
• Branch coverage – fine
• Path coverage – too fine

– Cost is high, value is low
– (Related to cyclomatic complexity)

4917-214

Blackbox testingBlackbox: Covering Specifications

• Looking at specifications, not code:

• Test representative case
• Test boundary condition
• Test exception conditions
• (Test invalid case)

5117-214

Structural Analysis of
System under Test

– Organized according to program decision structure

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

Whitebox testing

5217-214

Structural Analysis of
System under Test

– Organized according to program decision structure

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

Whitebox testing

Will this statement get executed in a test?

Does it return the correct result?

5317-214

Structural Analysis of
System under Test

– Organized according to program decision structure

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

Whitebox testing

Could this array index be out of bounds?

Will this statement get executed in a test?

Does it return the correct result?

5417-214

Structural Analysis of
System under Test

– Organized according to program decision structure

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (a[mid] < key) low = mid + 1;
else if (a[mid] > key) high = mid - 1;
else return mid;

}
}

Whitebox testing

Could this array index be out of bounds?

Does this return statement ever get reached?

Will this statement get executed in a test?

Does it return the correct result?

5517-214

Test suites – ideal vs. real

• Ideal test suites
– Uncover all errors in code
– Test “non-functional” attributes such as performance and security
– Minimum size and complexity

• Real test Suites
– Uncover some portion of errors in code
– Have errors of their own
– Are nonetheless priceless

5617-214

STATIC ANALYSIS

5717-214

Stupid Bugs

public class CartesianPoint {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }
public boolean equals(CartesianPoint that) {

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

5917-214

Stupid Subtle Bugs

public class Object {
public boolean equals(Object other) { … }

// other methods…
}

public class CartesianPoint extends Object {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }
public boolean equals(CartesianPoint that) {

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

classes with no
explicit superclass
implicitly extend
Object

can’t change
argument type
when overriding

This defines a
different equals
method, rather
than overriding
Object.equals()

6017-214

Fixing the Bug

public class CartesianPoint {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }

@Override
public boolean equals(Object o) {

if (!(o instanceof CartesianPoint)
return false;

CartesianPoint that = (CartesianPoint) o;

return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

}
}

Declare our intent
to override;
Compiler checks
that we did it

Use the same
argument type as
the method we
are overriding

Check if the
argument is a
CartesianPoint.
Correctly returns
false if o is null

Create a variable
of the right type,
initializing it with
a cast

6117-214

Fi
n
d
B
u
g
s

6217-214

Fi
n
d
B
u
g
s

6317-214

C
h
ec
kS
ty
le

6417-214

Static Analysis

• Analyzing code without executing it (automated inspection)
• Looks for bug patterns
• Attempts to formally verify specific aspects
• Point out typical bugs or style violations

– NullPointerExceptions
– Incorrect API use
– Forgetting to close a file/connection
– Concurrency issues
– And many, many more (over 250 in FindBugs)

• Integrated into IDE or build process
• FindBugs and CheckStyle open source, many commercial

products exist

6517-214

Example FindBugs Bug Patterns

• Correct equals()
• Use of ==
• Closing streams
• Illegal casts
• Null pointer dereference
• Infinite loops
• Encapsulation problems
• Inconsistent synchronization
• Inefficient String use
• Dead store to variable

6617-214

Bug finding

6717-214

Can you find the bug?

if (listeners == null)

listeners.remove(listener);

JDK1.6.0, b105, sun.awt.x11.XMSelection

6817-214

Wrong boolean operator

if (listeners != null)

listeners.remove(listener);

JDK1.6.0, b105, sun.awt.x11.XMSelection

6917-214

Can you find the bug?

public String sendMessage (User user, String body, Date time) {

return sendMessage(user, body, null);

}

public String sendMessage (User user, String body, Date time,
List attachments) {

String xml = buildXML (body, attachments);

String response = sendMessage(user, xml);

return response;

}

7017-214

Infinite recursive loop

public String sendMessage (User user, String body, Date time) {

return sendMessage(user, body, null);

}

public String sendMessage (User user, String body, Date time,
List attachments) {

String xml = buildXML (body, attachments);

String response = sendMessage(user, xml);

return response;

}

7117-214

Can you find the bug?

String b = "bob";

b.replace('b', 'p');

if(b.equals("pop")){…}

7217-214

Method ignores return value

String b = "bob";

b = b.replace('b', 'p');

if(b.equals("pop")){…}

7317-214

What does this print?

Integer one = 1;
Long addressTypeCode = 1L;

if (addressTypeCode.equals(one)) {
System.out.println("equals");

} else {
System.out.println("not equals");

}

7417-214

What does this print?

Integer one = 1;
Long addressTypeCode = 1L;

if (addressTypeCode.equals(one)) {
System.out.println("equals");

} else {
System.out.println("not equals");

}

7517-214

ASIDE: FINDBUGS NULL POINTER
ANALYSIS

Detector foo = null;
foo.execute();

7617-214

FindBugs

• Works on “.class” files containing bytecode
– Recall: Java source code compiled to bytecode; JVM executes

bytecode

• Processing using different detectors:

– Independent of each other

– May share some resources (e.g., control flow graph, dataflow
analysis)

– GOAL: Low false positives

– Each detector is driven by a set of heuristics

• Output: bug pattern code, source line number,
descriptive message (severity)

HIGH
SEVERE RISK OF

PROGRAM FAILURE

MEDIUM
ELEVATED RISK OF
PROGRAM FAILURE

LOW
LOW RISK OF

PROGRAM FAILURE

7717-214

Null pointer dereferencing

• Finding some null pointer dereferences require sophisticated
analysis:
– Analyzing across method calls, modeling contents of heap objects

• In practice many examples of obvious null pointer dereferences:
– Values which are always null
– Values which are null on some control path

• How to design an analysis to find obvious null pointer
dereferences?
– Idea: Look for places where values are used in a suspicious way

From: https://www.cs.umd.edu/class/spring2005/cmsc433/lectures/findbugs.pdf

7817-214

Simple Analysis

Detector foo = null;
foo.execute();

Dereferencing
Null

Detector foo = new Detector(…);
foo.execute();

Dereferencing
NonNull

HIGH
SEVERE RISK OF

PROGRAM FAILURE

J

7917-214

If only it were that simple…

• Infeasible paths (false positives)

• Is a method’s parameter null?

boolean b;
if (p != null)

b = true;
else

b = false;
if (b)

p.f();

void foo(Object obj) {
int x = obj.hashcode();
…

}

8017-214

Dataflow analysis

• At each point in a method, keep track of dataflow facts
– E.g., which local variables and stack locations might contain null

• Symbolically execute the method:
– Model instructions
– Model control flow
– Until a fixed point solution is reached

8117-214

Dataflow values

• Model values of local variables
and stack operands using lattice
of symbolic values

• When two control paths merge,
use meet operator to combine
values:

8217-214

Dataflow values

• Model values of local variables
and stack operands using lattice
of symbolic values

• When two control paths merge,
use meet operator to combine
values:

Null ⬦ Null = Null

8317-214

Dataflow values

• Model values of local variables
and stack operands using lattice
of symbolic values

• When two control paths merge,
use meet operator to combine
values:

Null ⬦ Not Null = Maybe Null

8417-214

Null-pointer dataflow example

x = y = z = null

y = new …
z = new ...

y.f()

x.f() z.f()

x = y = z = null;
if (cond) {

y = new …;
z = new …;

}
y.f();
if (cond2)

x.f();
else

z.f();

8517-214

Null-pointer dataflow example

x = y = z = null

y = new …
z = new ...

y.f()

x.f() z.f()

x = y = z = null;
if (cond) {

y = new …;
z = new …;

}
y.f();
if (cond2)

x.f();
else

z.f();

8617-214

Null-pointer dataflow example

x = y = z = null

y = new …
z = new ...

y.f()

x.f() z.f()

x = y = z = null;
if (cond) {

y = new …;
z = new …;

}
y.f();
if (cond2)

x.f();
else

z.f();

x = null
y = not null
z = not null

8717-214

Null-pointer dataflow example

x = y = z = null

y = new …
z = new ...

y.f()

x.f() z.f()

x = y = z = null;
if (cond) {

y = new …;
z = new …;

}
y.f();
if (cond2)

x.f();
else

z.f();

x = null
y = not null
z = not null

8817-214

Null-pointer dataflow example

x = y = z = null

y = new …
z = new ...

y.f()

x.f() z.f()

x = y = z = null;
if (cond) {

y = new …;
z = new …;

}
y.f();
if (cond2)

x.f();
else

z.f();

x = null
y = not null
z = not null

x = null
y = null
z = null

8917-214

Null-pointer dataflow example

x = y = z = null

y = new …
z = new ...

y.f()

x.f() z.f()

x = y = z = null;
if (cond) {

y = new …;
z = new …;

}
y.f();
if (cond2)

x.f();
else

z.f();

x = null
y = maybe
z = maybe

9017-214

Null-pointer dataflow example

x = y = z = null

y = new …
z = new ...

y.f()

x.f() z.f()

x = y = z = null;
if (cond) {

y = new …;
z = new …;

}
y.f();
if (cond2)

x.f();
else

z.f();

x = null

9117-214

Null-pointer dataflow example

x = y = z = null

y = new …
z = new ...

y.f()

x.f() z.f()

x = y = z = null;
if (cond) {

y = new …;
z = new …;

}
y.f();
if (cond2)

x.f();
else

z.f();

z = uncertain

9317-214

COMPARING
QUALITY ASSURANCE STRATEGIES

9417-214

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive
(annoying noise)

No Error Reported False negative
(false confidence)

True negative
(correct analysis result)

Sound Analysis:
reports all defects
à no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
à no false positives
typically underapproximated

9517-214

Check your understanding

• What is a trivial way to implement:
– a sound analysis?
– a complete analysis?

9617-214

Defects reported by
Sound Analysis

All Defects

Defects
reported by
Complete
Analysis

Static Analysis:
Unsound and
Incomplete

9717-214

Error exists No error exists

Error Reported True positive
(correct analysis result)

False positive
(annoying noise)

No Error Reported False negative
(false confidence)

True negative
(correct analysis result)

How does testing relate? And formal verification?

Sound Analysis:
reports all defects
à no false negatives
typically overapproximated

Complete Analysis:
every reported defect is an actual defect
à no false positives
typically underapproximated

9817-214

The Bad News: Rice's Theorem

• Every static analysis is necessarily incomplete or unsound or
undecidable (or multiple of these)

• Each approach has different tradeoffs

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

9917-214

Soundness / Completeness / Performance Tradeoffs

• Type checking does catch a specific class of problems (sound),
but does not find all problems

• Compiler optimizations must err on the safe side (only perform
optimizations when sure it's correct; -> complete)

• Many practical bug-finding tools analyses are unsound and
incomplete
– Catch typical problems
– May report warnings even for correct code
– May not detect all problems

• Overwhelming amounts of false negatives make analysis useless
• Not all "bugs" need to be fixed

10017-214

Testing, Static Analysis, and Proofs

• Testing
– Observable properties
– Verify program for one execution
– Manual development with

automated regression
– Most practical approach now
– Does not find all problems

(unsound)

• Static Analysis
– Analysis of all possible executions
– Specific issues only with

conservative approx. and bug
patterns

– Tools available, useful for bug
finding

– Automated, but unsound and/or
incomplete

• Proofs (Formal Verification)
– Any program property
– Verify program for all executions
– Manual development with

automated proof checkers
– Practical for small programs, may

scale up in the future
– Sound and complete, but not

automatically decidable

What strategy to
use in your project?

10117-214

Take-Home Messages

• There are many forms of quality assurance
• Testing should be integrated into development

– possibly even test first
• Various coverage metrics can more or less approximate test suite

quality
• Static analysis tools can detect certain patterns of problems
• Soundness and completeness to characterize analyses

