Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Object-oriented analysis and design
Object-oriented design: Responsibility assignment

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
1[&‘F

-
InstitL or
17-214 1 SOt

Administrivia

 Reading due today: UML & Patterns Ch. 14, 15, and 16

* Midterm exam Thursday in class
— Review session Wednesday 5—-7 pm, MM A14

e Homework 4a due next Thursday
— Mandatory design review meeting before the homework deadline

ite f

-
InstitL or
17-214 2 ol

Key concepts from last Thursday

ite f

siute for
- ‘A
17 214 3 S RESEARCH

Design principles

* Low coupling
* Low representational gap
* High cohesion

ite f

-
INstitL or
17-214 4 sors

Our path toward a more formal design process

Problem
Space

Domain Model

* Real-world concepts

* Requirements, concepts

* Relationships among concepts
* Solving a problem

* Building a vocabulary

17-214

Solution

Space

Object Model

System implementation
Classes, objects

References among objects and
inheritance hierarchies

Computing a result
Finding a solution

Artifacts of this design process

 Model / diagram the problem, define objects —
— Domain model (a.k.a. conceptual model)

e Define system behaviors

— System sequence diagram
— System behavioral contracts

* Assign object responsibilities, define interactions —
— Object interaction diagrams

* Model / diagram a potential solution
— Object model

Understanding
—the problem

_ Defining a
solution

17-214

-
institute for
6 I S SOFTWARE
RESEARCH

Building a domain model

A public library typically stores a collection of books, movies, or other library
items available to be borrowed by people living in a community. Each library
member typically has a library account and a library card with the account’s ID
number, which she can use to identify herself to the library.

A member’s library account records which items the member has borrowed and
the due date for each borrowed item. Each type of item has a default rental
period, which determines the item’s due date when the item is borrowed. If a
member returns an item after the item’s due date, the member owes a late fee
specific for that item, an amount of money recorded in the member’s library
account.

Lok
- A
17 214 7 S RESEARCH

An example domain model for a library system

Them |

re(\‘\‘ﬁl peﬁba(J
la'\L{ Fee
e
)

y —
L/_J_J_ \ L(]arar Acéonf\l*’

Or L,_,,“M’ZEF'
! i
i

B J,L_,____P -

i

- , \
s Jorac O |
"‘;L_,,j——f/"—\" staciaM V/AA\

Vi Neohe |

[oo
17_214 8 I S RESEA’{\CH

Notes on the library domain model

All concepts are accessible to a non-programmer
* The UML is somewhat informal

— Relationships are often described with words
* Real-world "is-a" relationships are appropriate for a domain model
 Real-word abstractions are appropriate for a domain model
* [teration is important

— This example is a first draft. Some terms (e.g. Item vs. Libraryltem, Account
vs. LibraryAccount) would likely be revised in a real design.

 Aggregate types are usually modeled as classes
* Primitive types (numbers, strings) are usually modeled as attributes

ite f

17-214 o ol

Artifacts of this design process

* Model / diagram the problem, define objects
— Domain model (a.k.a. conceptual model)

e Define system behaviors -
— System sequence diagram
— System behavioral contracts

* Assign object responsibilities, define interactions

— Object interaction diagrams

— Today

* Model / diagram a potential solution
— Object model

siute for
- ‘A
17 214 10 S RESEARCH

Understanding system behavior with sequence diagrams

* A system sequence diagram is a model that shows, for one

scenario of use, the sequence of events that occur on the
system’s boundary

* Design goal: Identify and define the interface of the system
— Often two components: A user and the overall system

e institute for
17-214 11 ol

Understanding system behavior with sequence diagrams

* A system sequence diagram is a model that shows, for one
scenario of use, the sequence of events that occur on the
system’s boundary

* Design goal: Identify and define the interface of the system
— Often two components: A user and the overall system

* Input: Domain description and one use case

 Qutput: A sequence diagram of system-level operations
— Include only domain-level concepts and operations

ite f

17-214 12 ol

One sequence diagram for the library system

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the book’s
due date by adding its loan period to the current day, and record the book and
its due date as a borrowed item in the member’s library account.

ite f

17-214 13 ol

One sequence diagram for the library system

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and borrow a book. After confirming that the
member has no unpaid late fees, the library system should determine the book’s
due date by adding its loan period to the current day, and record the book and
its due date as a borrowed item in the member’s library account.

/ Cl> K . L{bmff\/
Uge Case: /—Z\—' L Syﬁlff"\
|odm‘r\ 2

barow a boeok

JognMembe(Lbracy an/)?

- = =

bsrow (‘Ew%n*evx\\

AN
7
e e e e T T

S \'(ceSS’.’) 01uqu~’-c

e Institute for
17-214 14 SOt

Build one system sequence diagram for Monopoly

Use case scenario: When a player lands on an unowned property and has
enough money to buy the property, she should be able to buy the property for
the property’s price. The property should no longer be purchasable from the
bank by other players, and money should be moved from the player to the bank.

e institute for
17-214 15 ol

Formalize system behavior with behavioral contracts

* A system behavioral contract describes the pre-conditions and
post-conditions for some operation identified in the system
sequence diagrams

— System-level textual specifications, like software specifications

ite f

17-214 16 ol

A system behavioral contract for the library system

Operation: borrow(item)

Pre-conditions: Library member has already logged in to the system.
ltem is not currently borrowed by another member.

Post-conditions: Logged-in member's account records the newly-borrowed
item, or the member is warned she has an outstanding late fee.

The newly-borrowed item contains a future due date,
computed as the item's rental period plus the current date.

ite f

17-214 17 sorTa

Distinguishing domain vs. implementation concepts

ite f

17-214 18 ol

Distinguishing domain vs. implementation concepts

 Domain-level concepts:
— Almost anything with a real-world analogue

* Implementation-level concepts:
— Implementation-like method names
— Programming types
— Visibility modifiers
— Helper methods or classes
— Artifacts of design patterns

ite f

17-214 19 ol

Draw a domain model for cryptarithm solving

te f

17-214 20 ol

Summary: Understanding the problem domain

* Know your tools to build domain-level representations
— Domain models
— System sequence diagrams
— System behavioral contracts

* Be fast and (sometimes) loose
— Elide obvious(?) details
— |terate, iterate, iterate, ...

* Get feedback from domain experts
— Use only domain-level concepts

ite f

17-214 21 ol

Artifacts of our design process

 Model / diagram the problem, define objects —
— Domain model (a.k.a. conceptual model)

e Define system behaviors

— System sequence diagram
— System behavioral contracts

* Assign object responsibilities, define interactions —
— Object interaction diagrams

* Model / diagram a potential solution
— Object model

Understanding
" the problem

_ Defining a
solution

17-214

-
institute for
22 I S SOFTWARE
RESEARCH

Object-oriented programming

 Programming based on structures
that contain both data and methods

public class Bicycle {
private int speed;
private final Wheel frontWheel, rearWheel;
private final Seat seat;

public Bicycle(..) { .. }

public void accelerate() {
speed++;

¥

public int speed() { return speed; }
}

-||$%ﬁ
17-214 23 [S)f o

Responsibility in object-oriented programming

* Data:
— Private or otherwise encapsulated data
— Datain closely related objects

* Methods:
— Private or otherwise encapsulated operations
— Object creation, of itself or other objects
— Initiating actions in other objects
— Coordinating activities among objects

ite f

17-214 24 ol

Using interaction diagrams to assign object responsibility

* For a given system-level operation, create an object interaction
diagram at the implementation-level of abstraction
— Implementation-level concepts:
* Implementation-like method names
* Programming types
* Helper methods or classes
 Artifacts of design patterns

ite f

17-214 25 ol

Example interaction diagram #1

Use case scenario: A library member should be able to use her library card to log
in at a library system kiosk and ...

1L{brar7 ‘Sycvtem L b essi M nay,zf}

(U‘\“M‘ m\’((l,'b(«ry (-rd\ . { bl

e

7
Q (‘Qj\'r;eveA(‘com* (“br‘;ﬁy ngyl‘ ;‘d N\M\L{(\‘\ ’

QCCM‘\' |

[

Se'}‘ Chf‘fm‘\' gass l};ﬂ(Gc (ow!\“\‘s

“— - - i} _ _ 1

& - = = ,j” &

= ute for
17-214 26 sormings

Example interaction diagram #2

Use case scenario: ...and borrow a book. After confirming that the member has
no unpaid late fees, the library system should determine the book’s due date by
adding its loan period to the current day, and record the book and its due date as

a borrowed item in the member’s library account.

;’77 / “ 7 i'] el & 7 x ‘,: 3 TM
(‘:Lw}bm‘v Srv/;’R-"\ N Seseoq}v'[cm 178 i f/*rf(ouﬁf } chC}(,}
| ST U S : j‘a—4~.%4 i
i { 3
l ;
\
DorCow { boe ' | C N h .
‘—”————_—_)/ 3?_{&;\(?@\“36 s510 “t(; % ’—'_’; 1
,i l ,
< Gt f : (
! { {
() ,
|]
, : ;: ——-7
’ 1 — —— o~ I {
ir L | cbeFeec "JJ L !
A
{

N ‘\
toan Pec M:t s %&Lcc\ﬂ P{r‘w/f _. u
l
i

{ o P .

gl b
- ‘A
17 214 27 S RESEARCH

Interaction diagrams help evaluate design alternatives

Create two possible interaction diagrams:

1. Solving a cryptarithm, assuming that the cryptarithm class has
responsibility for solving itself

2. Solving a cryptarithm, assuming that a main method (or another
delegated method or class) has responsibility for solving the cryptarithm

ite f

17-214 28 ol

Heuristics for responsibility assignment
Goals

A

 Controller heuristic .
Principles

* Information expert heuristic /]\

Creator heuristic .
Heuristics Patterns

e Institute For
17-214 29 SO

The controller heuristic

* Assign responsibility for all system-level behaviors to a single

system-level object that coordinates and delegates work to other
objects

— Also consider specific sub-controllers for complex use-case scenarios

* Design process: Extract interface from system sequence diagrams
— Key principles: Low representational gap and high cohesion

e institute for
17-214 30 ol

Information expert heuristic

* Assign responsibility to the class that has the information
needed to fulfill the responsibility
— Initialization, transformation, and views of private data
— Creation of closely related or derived objects

ite f

17-214 31 ol

Responsibility in object-oriented programming

* Data:
— Private or otherwise encapsulated data
— Datain closely related objects

* Methods:
— Private or otherwise encapsulated operations
— Object creation, of itself or other objects
— Initiating actions in other objects
— Coordinating activities among objects

- site for
17-214 32 |[B)) sova

Information expert heuristic

* Assign responsibility to the class that has the information
needed to fulfill the responsibility

— Initialization, transformation, and views of private data
— Creation of closely related or derived objects

e Design process: Assignment from domain model
— Key principles: Low representational gap and low coupling

ite f

17-214 33 ol

Use the information expert heuristic

* In Homework 3, what object should have the responsibility to
solve a cryptarithm?

e What is the relevant information?

= Institute fur
17-214 34 SOt

Use the information expert heuristic

* In Homework 3, what object should have the responsibility to
solve a cryptarithm?

e What s the relevant information?

— Who knows the # of digits (e.g. base 10) in the cryptarithm?
— Who knows the letters of the cryptarithm?
— Who can evaluate the cryptarithm expressions to check for equality?

ite f

17-214 35 ol

Another design principle: Minimize conceptual weight

* Label the concepts for a proposed object
— Related to representational gap and cohesion

ite f

17-214 36 ol

Creator heuristic: Who creates an object Foo?

e Assign responsibility of creating an object Foo to a class that:
— Has the data necessary for initializing instances of Foo
— Contains, aggregates, or records instances of Foo
— Closely uses or manipulates instances of Foo

* Design process: Extract from domain model, interaction diagrams
— Key principles: Low coupling and low representational gap

ite f

17-214 37 ol

Use the creator heuristic

* In Homework 3, what object should have the responsibility for
creating the permutation generator?

e Institute for
17-214 38 SOt

Object-level artifacts of this design process

* Object interaction diagrams add methods to objects
— Can infer additional data responsibilities
— Can infer additional data types and architectural patterns

* Object model aggregates important design decisions
— Is an implementation guide

ite f

17-214 39

Creating an object model

e Extract data, method names, and types from interaction diagrams
— Include implementation details such as visibilities

ite f

17-214 o [E i

Ly Gebn

-C'»\(‘f‘eﬁ\)(Se(gl\ohi LfL(«‘y A(co\-m‘\' |

-+)lzj\\ﬂ mem)'e((’i‘bﬁryam/ﬂunld‘:l‘n*)

¢ baoslChon: LTl
+)ogow\' Memlzef‘() /

& P“%Lk Fee (cef\,%'\ l\‘\{“) g

,_',/_ﬁs

—e M

3 Libeay %i&f/lm&)

s=bo (‘@W\T:‘\'ﬂ’\g

~ i beacy (eed Number: 4
= 7@04‘9 ate . 9.(\‘,.6/

~ '9:‘}'NG°€.'~ S‘("rs\m
~ lade Fees Owal i o

L 902,“" F)\r A‘N«‘ C) 4 S‘}Y.py.

17-214

0.k

— loan Period

~lade Fee

Bl __[M X;H—a-\
- — due D«"“(. Dc‘)-(3
~ (ehuned + Dale

+ byas Besa Petwned(): oy

boOé M

+ ?\S Ovefal,ue C(‘m‘(‘eﬂ‘“D‘k: D k)

institute for
SOF TWARE
41 RESEARCH

Create an object model for your cryptarithm solver

ite f

17-214 a2 ol

Summary:

 Domain-level models help you understand the problem domain

* Object-level interaction diagrams and object model
systematically guide the design process

— Convert domain model, system sequence diagram, and contracts to
object-level responsibilities

* Use heuristics to guide, but not define, design decisions
* |terate, iterate, iterate...

ite f

17-214 a3 ol

