Principles of Software Construction:
Objects, Design, and Concurrency
(Part 1: Designing Classes)

Design for Change (class level)

Charlie Garrod Bogdan Vasilescu

L 4
nstitute for
I S SOFTWARE
RESEARCH

17-214 I | S [At

Administrivia

* Homework 1 due on Thursday 11:59pm
— Everyone must read and sign our collaboration
policy
* Reading assignment due today
* (Optional) reading due Thursday

* Next reading due next Tuesday

17-214 > [Hi SOf TwARE

Intro to Java

Git, Cl

UML GUIls
Static Analysis

Performance

More Git

GUIs

Part 1:
Design at a Class Level

Design for Change:

Information Hiding,
ontracts, Unit Testin
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem
Responsibility Assignment,

Design Patterns,
GUI vs Core,

Part 3:

Designhing Concurrent

Systems

Concurrency Pri

mitives,

Synchronization

Designing Abstractions for

Design for Reuse: Design Case Studies Concurrency
Inheritance, Delegation,
Immutability, LSP, Testing Subsystems
Design Patterns
Design for Reuse at Scale:
Frameworks and APIs
17-214 I | S [Ft

Design Goals for Today

* Design for Change (flexibility, extensibility,
modifiability)

also
* Design for Division of Labor

* Design for Understandability

* Design for Reuse (more later)

17-214 + [Hi SOf TwARE

Software Change

e ...accept the fact of change as a way of life, rather than

an untoward and annoying exception.
—Brooks, 1974

e Software that does not change becomes useless over
time.
—Belady and Lehman

* For successful software projects, most of the cost is spent
evolving the system, not in initial development

— Therefore, reducing the cost of change is one of the most
important principles of software design

17-214 5 sormuas

The limits of exponentials

[Computing capability

Human capacity]

capability

time

17-214

Building Complex Systems

simple complex

S S

Buildable by Comprehensible by
a Single Person a Single Person

. Division of Labor
. Division of Knowledge and Design Effort

. Reuse of Existing Implementations

17-214 v | S [RSast

Fundamental Design Principle for Change:
Information Hiding

* Expose as little implementation detail as necessary

* Allows to change hidden details later

Hidden from Hidden from
service* client service* provider

Service¥*
implementation

* service = object,
subsystem, ...

17-214 8 sorTun

Information hiding

 Visibility modifiers in Java ("encapsulation”)
— private
— "package private"
— protected
— public
* Interface types vs. class types

17-214

Information hiding is more general than visibility

» Use interfaces to separate expectations from
implementation
— Create interfaces to define your API

— Declare variables, arguments, and return values as
interface type

* Write APl in terms of other interfaces, not implementations

* Do not publicly document implementation details

17-214 17 sorTuass

Review

A more complex example

Im
A
public class Complex {
private final double re; // Real part 172 DO z=x+1Ij
private final double im; // Imaginary part
public Complex(double re, double im) { o |
this.re = re; A » Re
this.im = im; x
}

public double realPart() { return re; }

public double imaginaryPart() { return im; }

public double r() { return Math.sqrt(re * re + im * im); }
public double theta() { return Math.atan(im / re); }

public Complex plus(Complex c) {

return new Complex(re + c.re, im + c.im);
}
public Complex minus(Complex c) { ... }
public Complex times(Complex c) { ... }
public Complex dividedBy(Complex c) { ...}

17-214 18 sorTuass

Review

Using the Complex class

public class ComplexUser {
public static void main(String args[]) {
Complex ¢ = new Complex(-1, 9);
Complex d = new Complex(0, 1);

Complex e = c.plus(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}

When you run this program, it prints

-1.0 + 1.01
-0.0 + -1.01

17-214 19 sorTuass

Review

Extracting an interface from our class

public interface Complex {
// No constructors, fields, or implementations!

double realPart();
double imaginaryPart();
double r();

double theta();

Complex plus(Complex c);
Complex minus(Complex c);
Complex times(Complex c);
Complex dividedBy(Complex c);

An interface defines but does not implement API

17-214 20 sorTuass

Review

Modifying our earlier class to use the interface

public class OrdinaryComplex implements Complex {
private final double re; // Real part
private final double im; // Imaginary part

public OrdinaryComplex(double re, double im) {
this.re = re;
this.im = im;

}

public double realPart() { return re; }

public double imaginaryPart() { return im; }

public double r() { return Math.sqrt(re * re + im * im); }
public double theta() { return Math.atan(im / re); }

public Complex plus(Complex c) {
return new OrdinaryComplex(re + c.realPart(), im + c.imaginaryPart());
}
public Complex minus(Complex c) { ... }
public Complex times(Complex c) { ... }
public Complex dividedBy(Complex c) { ...}

17-214 21 sorTuass

Review

Modifying our earlier client to use the interface

public class ComplexUser {
public static void main(String args[]) {

Complex ¢ = new OrdinaryComplex(-1, 0);
Complex d = new OrdinaryComplex(Q, 1);
Complex e = c.plus(d);

System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}

When you run this program, it still prints

-1.0 + 1.01
-0.0 + -1.01

17-214 22 sorTuass

Review

Interfaces permit multiple implementations

public class PolarComplex implements Complex {
private final double r; // Radius
private final double theta; // Angle

public PolarComplex(double r, double theta) {
this.r = r;

this.theta = theta;
}
public double realPart() { return r * Math.cos(theta) ; }
public double imaginaryPart() { return r * Math.sin(theta) ; }
public double r() { return r; }
public double theta() { return theta; }
public Complex plus(Complex c) { ... } // Completely new impls
public Complex minus(Complex c) { ...}
public Complex times(Complex c) { ...}
public Complex dividedBy(Complex c) { ... }
}

17-214 23 sorTuass

Review

Interface decouples client from implementation

public class ComplexUser {
public static void main(String args[]) {

Complex ¢ = new PolarComplex(Math.PI, 1); // -1
Complex d = new PolarComplex(Math.PI/2, 1); // 1
Complex e = c.plus(d);

System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}
When you run this program, it STILL prints

-1.0 + 1.01
-0.0 + -1.01

17-214 24 sorTuass

Information hiding facilitates change,
promotes reuse

 Think in term of abstractions, not
implementations

— Abstractions are more likely to be reused
* Can change implementations more easily
— Different performance

— Different behavior

* Prevents bad programmer behavior,
unnecessary dependencies

17-214 25 |[BYN sormn

Other benefits of information hiding

* Decoupled subsystems are easier to understand
in isolation

* Speeds up system development
* Reduces cost of maintenance
* Improves effectiveness of performance tuning

* But:
— Requires anticipation of change (judgment)
— Not all change can be anticipated

17-214 26 [Hi SOFTWARE

Best practices for information hiding

* Carefully design your API

* Provide only functionality required by clients
— All other members should be private

* You can always make a private member public
later without breaking clients

— But not vice-versa!

17-214 27 |BYN s

CONTRACTS
(BEYOND TYPE SIGNATURES)

17-214

28

Contracts and Clients

Hidden from Hidden from
service* client service* provider

Service¥*
implementation

* service = object,
subsystem, ...

17-214 29 sorTunss

Contracts

 Agreement between provider and users of an
object
* |Includes
— Interface specification (types)
— Functionality and correctness expectations
— Performance expectations

e What the method does, not how it does it

— Interface (API), not implementation

17-214 30 |[BYN o

Who's to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

17-214 31 |[BYN sormn

Who's to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

17-214 I | S [By

Who's to blame?

Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

17-214 33 |[BYf o

Who's to blame?

class Algorithms {

/**

*

*

*

*

*

This method finds the
shortest distance between to
verticies. It returns -1 if
the two nodes are not

connected. */

int shortestDistance(..) {..}

17-214

34

-
l S r SOF TWARE
RESEARCH

Who's to blame?

Math.sqgrt(-5);

> 0

17-214

35

Who’s to blame?

/**
* Returns the correctly rounded positive square root of a
* {@code double} value.
* Special cases:
* <1i>If the argument is NaN or less than zero, then the
* result is NaN.
* <1i>If the argument is positive infinity, then the result
* is positive infinity.
* <1i>If the argument is positive zero or negative zero, then
* the result is the same as the argument.
* Otherwise, the result is the {@code double} value closest to
* the true mathematical square root of the argument value.
k
* @param a a value.
* @return the positive square root of {@code a}.
* If the argument is NaN or less than zero, the result is NaN.
*/

public static double sqrt(double a) { ..}

17-214 36 sorTuass

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

= Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

= If len is zero, then no bytes are read and O is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end (t)) file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

= The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equaf to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

= In every case, elements b[0] through b[off] and
elements b[of’f+|en] through b[b.length-1] are unaffected.

e Throws:

= IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

= NullPointerException - If b is null.

= IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

17-214 37 sorTuass

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

. Reads up to len bytes of data {4 Specification of return

IR EL NGt o Timing behavior (blocks)
The number of bytes actually

until input data is available, erftl 8= =8 VAT =K o [=]o

- If len is zero, then no bytes a e len=0= return0
attempt to read at least one b
_er%d g file, the value -1 is ret e len>0 && eof = return -1
into b.

e len>0 && leof D return >0

= The first byte read is stored in .
Exactly where the data is stored

on. The number of bytes read
bytes actually read; these byt
1], leaving elements b[off+k]

= In every case, elements b[0] tArougn D[OTT] and
elements b[off+|en] through b[b.length-1] are unaffected.

e Throws:] :
. TOException - If the first byte (i Multiple error cases, each with a

or if the input stream has beeff e E=Tee 13 1s [[{[6]))

- NullPointerException - If b is ni#s « - . ” .
. IndexOutOfBoundsException - Includes “runtime exceptions” not in

than b.length - off throws clause

What parts of the array are not affected

P ostitute fos

17-214 38

. SOF TWARE
B RESEARCH

Specifications

* Contains
— Functional behavior
— Erroneous behavior
— Quality attributes (performance, scalability, security, ...)

* Desirable attributes
— Complete
* Does not leave out any desired behavior
— Minimal
* Does not require anything that the user does not care about
— Unambiguous
* Fully specifies what the system should do in every case the user cares about
— Consistent
* Does not have internal contradictions
— Testable
* Feasible to objectively evaluate
— Correct
* Represents what the end-user(s) need

17-214 39 sorTuass

Functional Specification

e States method’s and caller’s responsibilities

* Analogy: legal contract
— If you pay me this amount on this schedule...
— | will build a with the following detailed specification
— Some contracts have remedies for nonperformance

 Method contract structure
— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion
— Exceptional behavior: what it does if precondition violated

* Defines what it means for impl to be correct

17-214 s [Hi SOFTWARE

s have remedies for nonperformance

 Method contract structure
— Preconditions: what method requires for correct operation
— Postconditions: what method establishes on completion
— Exceptional behavior: what it does if precondition violated

* Defines what it means for impl to be correct

17-214 41

Formal Specifications

/*@ requires len >= 0 && array != null && array.length == len;

@ ensures \result ==
(\sum int j; @ <= j & j < len; array[j]);

@
@*/
int total(int array[], int len);

17-214 42 -m

Runtime Checking of Specifications with Assertions

/*@ requires len >= 0 && array.length == len

@ ensures \result ==
@ (\sum int j; © <= j & j < len; array[j])
@*/

float sum(int array[], int len) {

17-214

assert len >= 0;

assert array.length == len;
float sum = 0.0;

int 1 = 0;

while (i < len) {

sum = sum + array[i]; i = i + 1;

} Enable assertions
assert sum ..; with -ea flag, e.g.,
return sum; > Java -ea Maln

-
- SOF TWARE
43 I S r RESEARCH

Specifications in the real world
Javadoc

/**

* Returns the element at the specified position of this list. Postcondition
X

*

<p>This method is <i>not</i> guaranteed to run in constant time.

*

In some implementations, it may run in time proportional to the
element position.

*

*

@param index position of element to return; must be non-negative and
* less than the size of this list.

@return the element at the specified position of this list
@throws IndexOutOfBoundsException if the index is out of range
* ({@code index < @ || index >= this.size()})
*/

E get(int index);

*

*

|

17-214 a5 sorTuase

Javadoc contents

* Document
— Every parameter

— Return value
— Every exception (checked and unchecked)

— What the method does, including

* Purpose

 Side effects

* Any thread safety issues
* Any performance issues

* Do not document implementation details

17-214 T | S [Eeas

Write a Specification

* Write
— a type signature,
— a textual (Javadoc) specification, and
— a formal specification

for a function slice(list, from, until) that returns all values of a
list between positions <from> and <until> as a new list

Reminder: Formal specification Reminder: Javadoc specification
k %k
/*@ requires len >= 0 && array != null && /*
@ array.length == len; Returns ..
@ * @param index position of element ..
@ ensures \result ==)) * @return the element at the specified posi
2 (\sum 1?t 5 WSe g &&. * @throws IndexOutOfBoundsException if the
@ j < len; array[j]); . . :
@*/ * ({@code index < @ || index >= thi
int total(int array[], int len); i

E get(int index);
17-214 a7 [E

Contracts and Interfaces

* All objects implementing an interface must
adhere to the interface’s contracts

— Objects may provide different implementations
for the same specification

— Subtype polymorphism: Client only cares about
interface, not about the implementation

p.getX() s.read()

=> Design for Change

17-214 s [SOFTWARE

FUNCTIONAL CORRECTNESS
(UNIT TESTING AGAINST INTERFACES)

17-214 62 |BYN sormn

Context

* Design for Change as goal

* Encapsulation provides technical means

* Information Hiding as design strategy

* Contracts describe behavior of hidden details

e Testing helps gaining confidence in functional
correctness (w.r.t. contracts)

17-214 (S (SOFTWARE

Functional correctness

* Compiler ensures types are correct (type-checking)

— Prevents many runtime errors, such as “Method
Not Found” and “Cannot add boolean to int”

17-214 64 |BYN sormn

Functional correctness

* Compiler ensures types are correct (type-checking)

— Prevents many runtime errors, such as “Method
Not Found” and “Cannot add boolean to int”

 Static analysis tools (e.g., FindBugs) recognize many
common problems (bug patterns)

— Warns on possible NullPointerExceptions or
forgetting to close files

17-214 65 |BYN sormn

FindBugs

17-214

| ~

® - 0 Jiva EHWSGFBRe FRebnoe/srgliests /Nokinl oelojava REclipSelow Help

v) E = 2 (: = 2| U 5y ‘ ® i U U B
- =R AR gl il 5l v o O vy (2
Q | B | &’Java ¥=Plug-in Development %5 Debug
] HelloTest.java J1 ProgramPoint.ja &) NoUnlock.java 8 s = 3 IEl
43 +
44 El
5 @Override e
6 public void run() { I =
7 Lock localLock = new ReentrantLock();
8 1.lock(); o=
9 int a = 1;
0 locallLock.lock();
1
2 if (a ==2) { |
3 1.unlock();
4 } else {
5 // do nothing
6 }
7 return;
lis8 }
59 }
®! Proble &2 ‘ @ Javad [Declar 4 Search B Consol 3 CallHi [Analysi ¥ Debug = O
A

0 errors, 12 warnings, 0 others

Description

A Iterator is a raw type. References to generic type Iterator<E> should be parameterized

.1 Iterator is a raw type. References to generic type Iterator<E> should be parameterized

4 No required execution environment has been set

& plugin.ProgramPoint defines equals and uses Object.hashCode() [Troubling(14), High confidence]

& tests.NoUnlock$T3.run() does not release lock on all paths [Troubling(12), High confidence]
& tests.NoUnlock$T4.run() might ignore java.lang.Exception [Troubling(14), High confidence]
4 Type safety: Unchecked cast from Object to Map.Entry<String,ProgramPoint.LockState>

L0 £k 0 1L

| S Pl

F Fram Nhiark Fn Man EnbrusCFrina PranramPaink | ackCrakas

tests.NoUnlock$T3.run() does not release...| paths [Troubling(12), High confidence]

g

CheckStyle

17-214

i) CartesianPoint.java &3
public final class CartesianPoint {

») private int X,Y;
B e CartesianPoint(int x, int y) {
. this.X=x;
| this.Y = y;
_ H
Jo e public int GetY() {
return Y;
}
- public int getX() {
return X;
}
& Pro 8 @ Jav [Dec #"Sea B Co &5 Pr

0 errors, 9 warnings, 0 others
Description
v & Checkstyle Problem (9 items)
& ""is not fFollowed by whitespace.
& '="is not fFollowed by whitespace.
'='is not preceded with whitespace.

E-:

= 2 2 T = 1

wrikabhla Cmark Incark

File contains tab characters (this is the first instance).
Name 'GetY' must match pattern '*[a-z][a-zA-Z0-9]*S".
& Name 'X' must match pattern '~ [a-z][a-zA-Z0-9]*S".
Name 'Y' must match pattern '~[a-z][a-zA-Z0-9]*$".

[+ 3

ElTaskL 8 = B

® Connect Mylyn

Connect to your task
and ALM tools or cre

S outlin 2 = B
Blal| ¥ e
~

v QF CartesianPoint
i@ X:int
@ Y-int

RESOJ

Carte
Carte
Cartel
Carte
Carte
Carte
Carte!

ek

Functional correctness

* Compiler ensures types are correct (type-checking)

— Prevents many runtime errors, such as “Method
Not Found” and “Cannot add boolean to int”

 Static analysis tools (e.g., FindBugs) recognize many
common problems (bug patterns)

— Warns on possible NullPointerExceptions or
forgetting to close files

e How to ensure functional correctness of contracts
beyond type correctness and bug patterns?

17-214 es [Hi SOf TwARE

Formal verification

* Use mathematical methods to prove correctness
with respect to the formal specification

 Formally prove that all possible executions of
an implementation fulfill the specification

 Manual effort; partial automation; not
automatically decidable

17-214 69 |BYN sormn

Testing

e Executing the program with selected inputs in a
controlled environment
* Goals

— Reveal bugs, so they can be fixed (main goal)
— Assess quality
— Clarify the specification, documentation

17-214 70 |[BYN sormas

Re: Formal verification, Testing

“Beware of bugs in the above code; |
have only proved it correct, not tried it.”
Donald Knuth, 1977

"Testing shows the presence, not the
absence of bugs.”
Edsger W. Dijkstra, 1969

17-214 [0 SOFTWARE

Q: Who's right, Dijkstra or Knuth?

W 00 N O U1 A W N B

R R R R R R R R
N OO L1 D W N R ® -

17-214

public static int binarySearch(int[] a, int key) {

int low = ©;
int high = a.length - 1;

while (low <= high) {
int mid = (low + high) / 2;
int midval = a[mid];

if (midval < key)
low = mid + 1
else if (midVal > key)
high = mid - 1;
else
return mid; // key found

}
return -(low + 1); // key not found.

Binary search from java.util.Arrays 2 [o

£
RESEARCH

Q: Who's right, Dijkstra or Knuth?

public static int binarySearch(int[] a, int key) {

W 00 N O VT A W N B

R R R R R R R R
N OO LD W N R ® e

17-214

int low = ©;
int high = a.length - 1;

while (low <= high) {

Spec: sets mid to the average of
low and high, truncated down
to the nearest integer.

int mid = (low + high) / 2;

int midval = a[mid];

if (midval < key)
low = mid + 1
else if (midVal > key)
high = mid - 1;
else

Fails if
low + high> MAXINT (23! -1)
Sum overflows to negative value

return mid; // key found

}

return -(low + 1); // key not found.

Binary search from java.util.Arrays 7z [

RESEARCH

A: They’re both right

e There is no silver bullet!

* Use all the tools at your disposal
— Careful design
— Testing
— Formal methods (where appropriate)

— Code reviews

* You'll still have bugs, but hopefully fewer.

17-214 74

What to test?

e Functional correctness of a method (e.g.,
computations, contracts)

* Functional correctness of a class (e.g., class invariants)

» Behavior of a class in a subsystem/multiple
subsystems/the entire system

* Behavior when interacting with the world
— Interacting with files, networks, sensors, ...
— Erroneous states
— Nondeterminism, Parallelism
— Interaction with users

e Other qualities (performance, robustness, usability,
security, ...)

17-214 75 sormuas

Manual testing

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Mam Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
° Live System‘p 7 Select “Send Message” Message 1s correctly sent

* Extra Testing System?

* Check output / assertions?
e Effort, Costs?

* Reproducible?

I

17-214 76 sorTunst

Automated testing

* Execute a program with specific inputs,
check output for expected values

e Easier to test small pieces than testing user
Interactions

e Set up testing infrastructure
* Execute tests regularly

— After every change

17-214 M | S SOFTWARE

Example

/>I<>I<
* computes the sum of the first len values of the array
k
* @param array array of integers of at least length Llen
* @param Len number of elements to sum up
* @return sum of the array values
*/

int total(int array[], int 1len);

ke fos

17-214 ST

‘ RESEARCH

Example

/**
* computes the sum of the first lLen values of the array
k

* @param array array of integers of at least length Llen
* @param Len number of elements to sum up
* @return sum of the array values

i:é total(int array[], int len);

* Test empty array

* Test array of length 1 and 2

* Test negative numbers

e Test invalid length (negative / longer than array.length)
e Test null as array

* Test with a very long array

17-214 79 S sorTunse

Unit Tests

e Tests for small units: functions, classes, subsystems
— Smallest testable part of a system
— Test parts before assembling them
— Intended to catch local bugs

* Typically written by developers
 Many small, fast-running, independent tests

 Little dependencies on other system parts or
environment

* |nsufficient but a good starting point,
extra benefits:

— Documentation (executable specification)
— Design mechanism (design for testability)

17-214 VI | S [A

JUunit

* Popular unit-testing framework for Java
* Easy to use

* Tool support available

* Can be used as desigh mechanism

Ju JUnit 52 4 ¢ e BE @ B H v Y = B

Finished after 0.012 seconds

Runs: 4/4 B Errors: 0 B Failures: 1 0]

> Fi edu.cmu.cs.cs214.hwi.tests.AlgorithmTest [Runner: JUnit 4] (0.000s) = Failure Trace e
v @i edu.cmu.cs.cs214.hwi.tests.AdjacencyMatrixTest [Runner: JUnit 4] (0.000 s)
gl
el basicNullTest2 (0.000 s)
> Ei edu.cmu.cs.cs214.hwi.tests.AdjacencyListTest [Runner: JUnit 4] (0.000s)

70 java.lang.AssertionError: Expected exception: java.lang.NullPointerException

17-214 81 sor T

JUnit

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencylListTest {
@Test
public void testSanityTest () {
Graph gl = new AdjacencyListGraph (10)8gyss up
Vertex sl = new Vertex ("A"); t tS
Vertex sZ2 = new Vertex ("B"); €S
assertEquals (true, gl.addVertex(sl));
assertEquals (true, gl.addVertex(s2)):;
assertEquals(true, gl.addEdge (sl, s2));
(s 1)

14

assertEquals (s gl.getNeighbors (sl) [0]);
}
@Test expected
public void test... results

private int helperMethod..

oeditute fose

17-214 82 sorTeas

JUnit conventions

e TestCase collects multiple tests (in one class)

* TestSuite collects test cases (typically package)
e Tests should run fast

e Tests should be independent

e Tests are methods without parameter and return value
* AssertError signals failed test (unchecked exception)

e Test Runner knows how to run JUnit tests
— (uses reflection to find all methods with @Test annotat.)

17-214 sa [Hi SOFTWARE

Test organization

* Conventions (not
requirements)

e Have a test class FooTest for
each public class Foo

* Have a source directory and a

test directory

— Store FooTest and Foo in the

same package

— Tests can access members with
default (package) visibility

17-214

v 1= hwi
v iBsrc
v # edu.cmu.cs.cs214.hw1.graph
> [J) AdjacencyListGraph.java
> [J) AdjacencyMatrixGraph.java
> [J] Algorithm.java
2 edu.cmu.cs.cs214.hwi.sols
> # edu.cmu.cs.cs214.hw1.staff
> 8 edu.cmu.cs.cs214.hw1.staff.tests
v i3 tests
v i edu.cmu.cs.cs214.hw1.graph
> 1) AdjacencyListTest.java
> 1)) AdjacencyMatrixTest.java
> 1)) AlgorithmTest.java
> [J) GraphBuilder.java
> B edu.cmu.cs.cs214.hw1.staff.tests
> = JRE System Library [jdk1.7.0]
> =i JUnit 4
> = docs
> = theory

85 sorTuass

Selecting test cases: common strategies

* Read specification

* Write tests for
— Representative case
— Invalid cases
— Boundary conditions
e Are there difficult cases? (error guessing)
— Stress tests?
— Complex algorithms?
* Think like an attacker
— The tester’s goal is to find bugs!
 How many test should you write?
— Aim to cover the specification
— Work within time/money constraints

17-214 86 L1l o

Testable code

* Think about testing when writing code

Unit testing encourages you to write testable code

Separate parts of the code to make them
independently testable

Abstract functionality behind interface, make it
replaceable

Test-Driven Development

— A design and development method in which you write
tests before you write the code

17-214 s7 [Hi SOFTWARE

Write testable code

//700LOC
public boolean foo() {
try {
synchronized () {
if () { . .
) else { Unit testing
for () { 1
0L as deS|gn
[.
0L, mechanism
' (12 : 01
or .
. * Code with low
, .
et complexity
if () {
for () {
if)< * .
ae ¢ Clear interfaces
f L] L] L]
) Sl ¢ and specifications
if () {
b
b
if () {
if () {
if ()£
for () {
b
y by Source: . _) _
)y olse ¢ http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

17-214 - 88 il

When should you stop writing tests?

* When you run out of money...
* When your homework is due...

* When you can't think of any new test cases...
* The coverage of a test suite

— Trying to test all parts of the implementation

— Statement coverage
* Execute every statement, ideally

 Compare to: method coverage, branch coverage, path
coverage

17-214 LI | S [A

When to stop writing tests?

e Outlook: statement coverage

— Trying to test all parts of the implementation
— Execute every statement, ideally

Does 100% coverage

guarantee correctn

ess?

17-214 oo [H &k

A: No

1: public static int binarySearch(int[] a, int key) {
2: int low = ©;

3: int high = a.length - 1;

4:

5. while (low <= high) {

6: int mid = (low + high) / 2;

7: int midval = a[mid];

8:

9: if (midval < key)

10: low = mid + 1

11: else if (midval > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.
17: }

17-214 91 sorTuass

When to stop writing tests?

e Outlook: statement coverage

— Trying to test all parts of the implementation
— Execute every statement, ideally

17-214 o2 [Hl i

_ M coverage-test/pom.xml | @ coverage-test0.0.1-... I [J] SampleTest.java

[]
public int subtract(int a, int b) { l \. N O

121 int x = a - b;
133
14 return x; |
15/ }
16
1718~ public boolean conditional(int a, int b) {
181 return a == b;
191 }
20
2109 public void uncoveredMethod() {
w22 0 String line = "not covered”;
230 }
24
251 public String coveredMethod() {
261 String a = "hello"; String b = "world"; return a.concat (b):;
271 }
28 }
29

<

KEQ Problems l @ Javadoc |E% Declaration |E Console |49 Search IB Coverage (P Coverage Sessi 52 {+3 Clover Dashboal {+3 Coverage Expl] &3 Te

Name Lines Total % Branches
= All Packages (2010-10-21 21:38:34) 38 46 8261 % 1
3 com.copperykeenclaws 38 46 8261 % 1

© Sample 11 14 78.57 % 1

® SampleS_CLR3_0_100gfkflng8 1 1 100.00 % 0

©® SampleTest 25 30 8333 % 0

M -~ LT uf ~iRm A e . “ - 4nAn AR Ar n

17-214 93

Packages Coverage Report - All Packages
Al

net.sourceforge.cobertura.ant . EClassta
All Packages 55 64%
net.sourceforge.cobertura.check
ot sourcelone.coberkura,covaraoedel net.sourceforge.cobertura.ant 11 43%
net.sourceforge.cobertura.instrument fetscuicefoioecobenuiachedh 3 o
net sourceforge cobertura.merge net.sourceforge.cobertura.coveragedata 13 N/A | N/A | N/A | N/A |
net sourceforge.cobertura.reporting net.sourceforge.cobertura.instrument 10 ooe | aeaisi0 7550 [azaes
net. sourceforge.cobertura.reporting.h net.sourceforge.cobertura.merge 1 sex [ssv [aae
net.souroeforqe.oobertura.reDorﬁnq.hlLJj e = 3 ar [eos IS
et sourcelore coberiura reporting ! net.sourceforge.cobertura.reporting html 4 o [EEESE oy |
net.sourceforge.cobertura.util o || ‘net.sourceforge.cobertura.reporting htmifiles 1 sm (S 2% [
" . | net.sourceforge.cobertura.reporting.xml 1 1000 [o5 [
i — net sourceforge.cobertura.uti 9 | sove [7o
All Packages | 1 s (IS NA | N/A I
Report generated by Cobertura 1.9 on 6/9/07 12:37 AM.
Classes
AntUtil (88%)
Archive (100%)
ArchiveUtil (80%)
BranchCoverageData (N/A)
CheckTask (0%)
ClassData (N/A)
ClassInstrumenter (949%)
ClassPattern (100%)
CoberturaFile (73%)
CommandLineBuilder (96%)

CommonMatchingTask (88%)
ComplexityCalculator (100%)
ConfigurationUtil (50%)
CopyFiles (87%)

CoverageData (N/A)
CoverageDataContainer (N/A)
CoverageDataFileHandler (N/A)
CoverageRate (0%)
ExcludeClasses (100%)
FileFinder (96%)

FileLocker (0%)
FirstPassMethodInstrumenter (100%)
HTMLReport (94%)
HasBeenlInstrumented (N/A)
Header (80%)

Run tests frequently

* You should only commit code that is passing all tests

* Run tests before every commit
* |f entire test suite becomes too large and slow for rapid
feedback:

— Run local tests ("smoke tests", e.g. all tests in package)
frequently

— Run all tests nightly

— Medium sized projects easily have 1000s of test cases and
run for minutes

e Continuous integration servers help to scale testing

17-214 os [Hi SOFTWARE

Continuous integration - Travis ClI

r

5 Build #17 - wyvernla: x \
€« C A 8 https://travis-ci.org/wyvernlang

Blog

Automatically
builds, tests, and
displays the
result

17-214

i) o | |

erting false (works on Linux, so its C 17

(B SimpleWyvern-devel A

X= Remove Log J= Download Log

Using worker: worker-1linux-827f@49@-1.bb.travis-ci.org:travis-linux-2 []

Build system information system_info

$ git clone --depth=5@ --branch=SimplelWyvern-devel git.checkout

$ jdk_switcher use oraclejdk8

Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to /usr/lib/jvm/java-8-oracle
$ java -Xmx32m -version

java version "1.8.0_31"

Java(TM) SE Runtime Environment (build 1.8.0_31-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b@7, mixed mode)
$ javac -J-Xmx32m -version

javac 1.8.0_31

$ cd tools

The command "cd tools" exited with ©.
$ ant test
Buildfile: /home/travis/build/wyvernlang/wyvern/tools/build.xml

IARE
RCH

copper-compose-compile:

Continuous integration - Travis ClI

7

& Builds - wyvernlang, x \7

."g

IEEQ

Tra\/iS C| Blog Status

My Repositories

Duration: 1
Finished: 3

You can see the
results of builds
over time

17-214

A=
_ -k —

€« C' A | & https://travis-ci.org/wyvernlang/wyvern/builds

Help

wyvernlang / wyvern ©

Current Branches Build History Pull Requests

SimpleWyvern-devel Asserting false (works or 17 passed

potanin committed fd7belc

SimpleWyvern-devel Debugging mac bug. 16 passed

potanin committed Oe2afif

SimpleWyvern-devel Zoomingin on Mac's IRE 14 passed

potanin committed 8b3606f

SimpleWyvern-devel Zoomingin on Mac LLV! 13 passed

potanin committed 727fc84
SimpleWyvern-devel Removed outdated tests 7 passed
e Jonathan Aldrich committed 4684fb5
newlexer Merge branch 'master’ of https://gitt 6 passed

e Jonathan Aldrich committed 876a074

master Build with JDK 8

5 passed
e Jonathan Aldrich committed b15273c
master fixed Travis build script syntax error 4 failed
e Jonathan Aldrich committed 737a89f

A X Xl X1 X] (0 K

mactor _mavad the VMI filo inta tha right nlacs

w =

Jonathan Aldrich

16 sec

3 days ago

22 sec |
3 days ago |
15 sec ‘

4 days ago

16 sec

4 days ago

15 sec »1

11 days ago

14 sec

11 days ago

13 sec

11 days ago

5 sec

11 days ago

Testing, Static Analysis, and Proofs

* Testing

Observable properties
Verify program for one execution

Manual development with automated
regression

Most practical approach now
Does not find all problems (unsound)

e Static Analysis

17-214

Analysis of all possible executions

Specific issues only with conservative
approx. and bug patterns

Tools available, useful for bug finding

Automated, but unsound and/or
incomplete

* Proofs (Formal
Verification)

Any program property

Verify program for all
executions

Manual development with
automated proof checkers

Practical for small programs,
may scale up in the future

Sound and complete, but not
automatically decidable

What strategy to
use in your project?

-
98 lsr SOF TWARE
RESEARCH

SUMMARY: DESIGN FOR CHANGE/
DIVISION OF LABOR

17-214 CEI | S [A

Design Goals

e Design for Change such that

— Classes are open for extension and modification
without invasive changes

— Classes encapsulate details likely to change behind
(small) stable interfaces

* Design for Division of Labor such that
— Internal parts can be developed independently

— Internal details of other classes do not need to be
understood, contract is sufficient

— Test classes and their contracts separately (unit
testing)

17-214 100 |1 o

