
117-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 1: Designing Classes)

Design for Change (class level)

Charlie Garrod Bogdan Vasilescu

217-214

Administrivia

• Homework 1 due on Thursday 11:59pm
– Everyone must read and sign our collaboration

policy

• Reading assignment due today
• (Optional) reading due Thursday
• Next reading due next Tuesday

317-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML More Git

GUIs
Performance

Design

417-214

Design Goals for Today

• Design for Change (flexibility, extensibility,
modifiability)

also
• Design for Division of Labor
• Design for Understandability
• Design for Reuse (more later)

517-214

Software Change
• …accept the fact of change as a way of life, rather than

an untoward and annoying exception.
—Brooks, 1974

• Software that does not change becomes useless over
time.
—Belady and Lehman

• For successful software projects, most of the cost is spent
evolving the system, not in initial development
– Therefore, reducing the cost of change is one of the most

important principles of software design

617-214

The limits of exponentials

time

ca
p
ab
ili
ty

Computing capability

Human capacity

717-214

Building Complex Systems

● Division of Labor
● Division of Knowledge and Design Effort
● Reuse of Existing Implementations

simple complex

Comprehensible by
a Single Person

Buildable by
a Single Person

817-214

Fundamental Design Principle for Change:
Information Hiding
• Expose as little implementation detail as necessary
• Allows to change hidden details later

Service*
implementation

Service* interface

Client
environment

Hidden from
service* provider

Hidden from
service* client

* service = object,
subsystem, …

917-214

Information hiding
• Visibility modifiers in Java ("encapsulation")
– private
– "package private"
– protected
– public

• Interface types vs. class types

1717-214

Information hiding is more general than visibility

• Use interfaces to separate expectations from
implementation
– Create interfaces to define your API
– Declare variables, arguments, and return values as

interface type
• Write API in terms of other interfaces, not implementations

• Do not publicly document implementation details

1817-214

A more complex example
public class Complex {
private final double re; // Real part
private final double im; // Imaginary part

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

public double realPart() { return re; }
public double imaginaryPart() { return im; }
public double r() { return Math.sqrt(re * re + im * im); }
public double theta() { return Math.atan(im / re); }

public Complex plus(Complex c) {
return new Complex(re + c.re, im + c.im);

}
public Complex minus(Complex c) { ... }
public Complex times(Complex c) { ... }
public Complex dividedBy(Complex c) { ... }

}

Re
vi

ew

1917-214

Using the Complex class
public class ComplexUser {

public static void main(String args[]) {
Complex c = new Complex(-1, 0);
Complex d = new Complex(0, 1);

Complex e = c.plus(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
}

}

When you run this program, it prints
-1.0 + 1.0i
-0.0 + -1.0i

Re
vi

ew

2017-214

Extracting an interface from our class
public interface Complex {

// No constructors, fields, or implementations!

double realPart();
double imaginaryPart();
double r();
double theta();

Complex plus(Complex c);
Complex minus(Complex c);
Complex times(Complex c);
Complex dividedBy(Complex c);

}

An interface defines but does not implement API

Re
vi

ew

2117-214

Modifying our earlier class to use the interface
public class OrdinaryComplex implements Complex {
private final double re; // Real part
private final double im; // Imaginary part

public OrdinaryComplex(double re, double im) {
this.re = re;
this.im = im;

}

public double realPart() { return re; }
public double imaginaryPart() { return im; }
public double r() { return Math.sqrt(re * re + im * im); }
public double theta() { return Math.atan(im / re); }

public Complex plus(Complex c) {
return new OrdinaryComplex(re + c.realPart(), im + c.imaginaryPart());

}
public Complex minus(Complex c) { ... }
public Complex times(Complex c) { ... }
public Complex dividedBy(Complex c) { ... }

}

Re
vi

ew

2217-214

Modifying our earlier client to use the interface

public class ComplexUser {

public static void main(String args[]) {

Complex c = new OrdinaryComplex(-1, 0);

Complex d = new OrdinaryComplex(0, 1);

Complex e = c.plus(d);

System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

e = c.times(d);

System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");

}

}

When you run this program, it still prints
-1.0 + 1.0i

-0.0 + -1.0i

Re
vi

ew

2317-214

Interfaces permit multiple implementations
public class PolarComplex implements Complex {
private final double r; // Radius
private final double theta; // Angle

public PolarComplex(double r, double theta) {
this.r = r;
this.theta = theta;

}

public double realPart() { return r * Math.cos(theta) ; }
public double imaginaryPart() { return r * Math.sin(theta) ; }
public double r() { return r; }
public double theta() { return theta; }

public Complex plus(Complex c) { ... } // Completely new impls
public Complex minus(Complex c) { ... }
public Complex times(Complex c) { ... }
public Complex dividedBy(Complex c) { ... }

}

Re
vi

ew

2417-214

Interface decouples client from implementation

public class ComplexUser {
public static void main(String args[]) {

Complex c = new PolarComplex(Math.PI, 1); // -1
Complex d = new PolarComplex(Math.PI/2, 1); // i

Complex e = c.plus(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
e = c.times(d);
System.out.println(e.realPart() + " + "

+ e.imaginaryPart() + "i");
}

}

When you run this program, it STILL prints
-1.0 + 1.0i
-0.0 + -1.0i

Re
vi

ew

2517-214

Information hiding facilitates change,
promotes reuse
• Think in term of abstractions, not

implementations
– Abstractions are more likely to be reused

• Can change implementations more easily
– Different performance
– Different behavior

• Prevents bad programmer behavior,
unnecessary dependencies

2617-214

Other benefits of information hiding

• Decoupled subsystems are easier to understand
in isolation

• Speeds up system development
• Reduces cost of maintenance
• Improves effectiveness of performance tuning

• But:
– Requires anticipation of change (judgment)
– Not all change can be anticipated

2717-214

Best practices for information hiding

• Carefully design your API
• Provide only functionality required by clients
– All other members should be private

• You can always make a private member public
later without breaking clients
– But not vice-versa!

2817-214

CONTRACTS
(BEYOND TYPE SIGNATURES)

2917-214

Contracts and Clients

Service*
implementation

Service* interface

Client
environment

Hidden from
service* provider

Hidden from
service* client

* service = object,
subsystem, …

3017-214

Contracts

• Agreement between provider and users of an
object

• Includes
– Interface specification (types)
– Functionality and correctness expectations
– Performance expectations

• What the method does, not how it does it
– Interface (API), not implementation

3117-214

Who’s to blame?
Algorithms.shortestDistance(g, “Tom”, “Anne”);

> ArrayOutOfBoundsException

3217-214

Who’s to blame?
Algorithms.shortestDistance(g, “Tom”, “Anne”);

> -1

3317-214

Who’s to blame?
Algorithms.shortestDistance(g, “Tom”, “Anne”);

> 0

3417-214

Who’s to blame?
class Algorithms {

/**

* This method finds the

* shortest distance between to

* verticies. It returns -1 if

* the two nodes are not

* connected. */

int shortestDistance(…) {…}

}

3517-214

Who’s to blame?

Math.sqrt(-5);

> 0

3617-214

Who’s to blame?
/**
* Returns the correctly rounded positive square root of a
* {@code double} value.
* Special cases:
* If the argument is NaN or less than zero, then the
* result is NaN.
* If the argument is positive infinity, then the result
* is positive infinity.
* If the argument is positive zero or negative zero, then
* the result is the same as the argument.
* Otherwise, the result is the {@code double} value closest to
* the true mathematical square root of the argument value.
*
* @param a a value.
* @return the positive square root of {@code a}.
* If the argument is NaN or less than zero, the result is NaN.
*/

public static double sqrt(double a) { …}

3717-214

Textual Specification
public int read(byte[] b, int off, int len) throws IOException

§ Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

§ If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

§ The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

§ In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:
§ IOException - If the first byte cannot be read for any reason other than end of file,

or if the input stream has been closed, or if some other I/O error occurs.
§ NullPointerException - If b is null.
§ IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

3817-214

Textual Specification
public int read(byte[] b, int off, int len) throws IOException

§ Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

§ If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

§ The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

§ In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

• Throws:
§ IOException - If the first byte cannot be read for any reason other than end of file,

or if the input stream has been closed, or if some other I/O error occurs.
§ NullPointerException - If b is null.
§ IndexOutOfBoundsException - If off is negative, len is negative, or len is greater

than b.length - off

• Multiple error cases, each with a
precondition

• Includes “runtime exceptions” not in
throws clause

• Specification of return
• Timing behavior (blocks)
• Case-by-case spec

• len=0 è return 0
• len>0 && eof è return -1
• len>0 && !eof èreturn >0

• Exactly where the data is stored
• What parts of the array are not affected

3917-214

Specifications
• Contains

– Functional behavior
– Erroneous behavior
– Quality attributes (performance, scalability, security, …)

• Desirable attributes
– Complete

• Does not leave out any desired behavior
– Minimal

• Does not require anything that the user does not care about
– Unambiguous

• Fully specifies what the system should do in every case the user cares about
– Consistent

• Does not have internal contradictions
– Testable

• Feasible to objectively evaluate
– Correct

• Represents what the end-user(s) need

4017-214

Functional Specification

• States method’s and caller’s responsibilities
• Analogy: legal contract
– If you pay me this amount on this schedule…
– I will build a with the following detailed specification
– Some contracts have remedies for nonperformance

• Method contract structure
– Preconditions: what method requires for correct operation
– Postconditions: what method establishes on completion
– Exceptional behavior: what it does if precondition violated

• Defines what it means for impl to be correct

4117-214

Functional Specification

• States method’s and caller’s responsibilities
• Analogy: legal contract
– If you pay me this amount on this schedule…
– I will build a with the following detailed specification
– Some contracts have remedies for nonperformance

• Method contract structure
– Preconditions: what method requires for correct operation
– Postconditions: what method establishes on completion
– Exceptional behavior: what it does if precondition violated

• Defines what it means for impl to be correct

What does the implementation

have to fulfill if the client

violates the precondition?

4217-214

Formal Specifications
/*@ requires len >= 0 && array != null && array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j && j < len; array[j]);
@*/

int total(int array[], int len);

Advantage of formal specifications:

* runtime checks (almost) for free

* basis for formal verification

* assisting automatic analysis tools
JML (Java Modelling Language) as
specifications language in Java
(inside comments)

Disadvantages?

4317-214

/*@ requires len >= 0 && array.length == len

@ ensures \result ==

@ (\sum int j; 0 <= j && j < len; array[j])

@*/

float sum(int array[], int len) {

assert len >= 0;
assert array.length == len;
float sum = 0.0;

int i = 0;

while (i < len) {

sum = sum + array[i]; i = i + 1;

}

assert sum …;
return sum;

}

Runtime Checking of Specifications with Assertions

Enable assertions
with -ea flag, e.g.,
> java -ea Main

4517-214

Specifications in the real world
Javadoc
/**

* Returns the element at the specified position of this list.

*

* <p>This method is <i>not</i> guaranteed to run in constant time.

* In some implementations, it may run in time proportional to the

* element position.

*

* @param index position of element to return; must be non-negative and

* less than the size of this list.

* @return the element at the specified position of this list

* @throws IndexOutOfBoundsException if the index is out of range

* ({@code index < 0 || index >= this.size()})

*/

E get(int index);

Postcondition

Precondition

Exceptional behavior

4617-214

Javadoc contents
• Document
– Every parameter
– Return value
– Every exception (checked and unchecked)
– What the method does, including

• Purpose
• Side effects
• Any thread safety issues
• Any performance issues

• Do not document implementation details

4717-214

Write a Specification
• Write
– a type signature,
– a textual (Javadoc) specification, and
– a formal specification

for a function slice(list, from, until) that returns all values of a
list between positions <from> and <until> as a new list

Reminder: Formal specification

/*@ requires len >= 0 && array != null &&
@ array.length == len;
@
@ ensures \result ==
@ (\sum int j; 0 <= j &&
@ j < len; array[j]);
@*/

int total(int array[], int len);

Reminder: Javadoc specification
/**

* Returns …

* @param index position of element …

* @return the element at the specified position of this list

* @throws IndexOutOfBoundsException if the index is out of range

* ({@code index < 0 || index >= this.size

*/

E get(int index);

4817-214

Contracts and Interfaces

• All objects implementing an interface must
adhere to the interface’s contracts
– Objects may provide different implementations

for the same specification
– Subtype polymorphism: Client only cares about

interface, not about the implementation
p.getX() s.read()

=> Design for Change

6217-214

FUNCTIONAL CORRECTNESS
(UNIT TESTING AGAINST INTERFACES)

6317-214

Context

• Design for Change as goal
• Encapsulation provides technical means
• Information Hiding as design strategy
• Contracts describe behavior of hidden details
• Testing helps gaining confidence in functional

correctness (w.r.t. contracts)

6417-214

Functional correctness
• Compiler ensures types are correct (type-checking)
– Prevents many runtime errors, such as “Method

Not Found” and “Cannot add boolean to int”

6517-214

Functional correctness
• Compiler ensures types are correct (type-checking)
– Prevents many runtime errors, such as “Method

Not Found” and “Cannot add boolean to int”

• Static analysis tools (e.g., FindBugs) recognize many
common problems (bug patterns)
– Warns on possible NullPointerExceptions or

forgetting to close files

6617-214

Fi
n
d
B
u
g
s

6717-214

C
h
ec
kS
ty
le

6817-214

Functional correctness
• Compiler ensures types are correct (type-checking)

– Prevents many runtime errors, such as “Method
Not Found” and “Cannot add boolean to int”

• Static analysis tools (e.g., FindBugs) recognize many
common problems (bug patterns)

– Warns on possible NullPointerExceptions or
forgetting to close files

• How to ensure functional correctness of contracts
beyond type correctness and bug patterns?

6917-214

Formal verification

• Use mathematical methods to prove correctness
with respect to the formal specification

• Formally prove that all possible executions of
an implementation fulfill the specification

• Manual effort; partial automation; not
automatically decidable

7017-214

Testing

• Executing the program with selected inputs in a
controlled environment

• Goals
– Reveal bugs, so they can be fixed (main goal)
– Assess quality
– Clarify the specification, documentation

7117-214

Re: Formal verification, Testing

"Testing shows the presence, not the
absence of bugs.”

Edsger W. Dijkstra, 1969

“Beware of bugs in the above code; I
have only proved it correct, not tried it.”

Donald Knuth, 1977

7217-214 Binary search from java.util.Arrays

1: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;

7: int midVal = a[mid];

8:
9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }

Q: Who’s right, Dijkstra or Knuth?

7317-214 Binary search from java.util.Arrays

1: public static int binarySearch(int[] a, int key) {

2: int low = 0;

3: int high = a.length - 1;

4:

5: while (low <= high) {

6: int mid = (low + high) / 2;
7: int midVal = a[mid];

8:

9: if (midVal < key)

10: low = mid + 1

11: else if (midVal > key)

12: high = mid - 1;

13: else

14: return mid; // key found

15: }

16: return -(low + 1); // key not found.

17: }

Q: Who’s right, Dijkstra or Knuth?

Fails if
low + high > MAXINT (231 - 1)
Sum overflows to negative value

Spec: sets mid to the average of
low and high, truncated down
to the nearest integer.

7417-214

A: They’re both right

• There is no silver bullet!

• Use all the tools at your disposal

– Careful design

– Testing

– Formal methods (where appropriate)

– Code reviews

– …

• You’ll still have bugs, but hopefully fewer.

7517-214

What to test?
• Functional correctness of a method (e.g.,

computations, contracts)
• Functional correctness of a class (e.g., class invariants)
• Behavior of a class in a subsystem/multiple

subsystems/the entire system
• Behavior when interacting with the world
– Interacting with files, networks, sensors, …
– Erroneous states
– Nondeterminism, Parallelism
– Interaction with users

• Other qualities (performance, robustness, usability,
security, …)

Ou
r f

oc
us

 n
ow

7617-214

Manual testing

• Live System?
• Extra Testing System?
• Check output / assertions?
• Effort, Costs?
• Reproducible?

7717-214

Automated testing

• Execute a program with specific inputs,
check output for expected values

• Easier to test small pieces than testing user
interactions

• Set up testing infrastructure
• Execute tests regularly
– After every change

7817-214

/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the array values
*/

int total(int array[], int len);

Black box testingExample

7917-214

Example

• Test empty array
• Test array of length 1 and 2
• Test negative numbers
• Test invalid length (negative / longer than array.length)
• Test null as array
• Test with a very long array

/**
* computes the sum of the first len values of the array
*
* @param array array of integers of at least length len
* @param len number of elements to sum up
* @return sum of the array values
*/

int total(int array[], int len);

Black box testing

8017-214

Unit Tests
• Tests for small units: functions, classes, subsystems
– Smallest testable part of a system
– Test parts before assembling them
– Intended to catch local bugs

• Typically written by developers
• Many small, fast-running, independent tests
• Little dependencies on other system parts or

environment
• Insufficient but a good starting point,

extra benefits:
– Documentation (executable specification)
– Design mechanism (design for testability)

8117-214

• Popular unit-testing framework for Java
• Easy to use
• Tool support available
• Can be used as design mechanism

JUnit

8217-214

JUnit
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
@Test
public void testSanityTest(){

Graph g1 = new AdjacencyListGraph(10);
Vertex s1 = new Vertex("A");
Vertex s2 = new Vertex("B");
assertEquals(true, g1.addVertex(s1));
assertEquals(true, g1.addVertex(s2));
assertEquals(true, g1.addEdge(s1, s2));
assertEquals(s2, g1.getNeighbors(s1)[0]);

}

@Test
public void test….

private int helperMethod…
}

Set up
tests

Check
expected
results

8417-214

JUnit conventions
• TestCase collects multiple tests (in one class)
• TestSuite collects test cases (typically package)
• Tests should run fast
• Tests should be independent

• Tests are methods without parameter and return value
• AssertError signals failed test (unchecked exception)

• Test Runner knows how to run JUnit tests
– (uses reflection to find all methods with @Test annotat.)

8517-214

Test organization
• Conventions (not

requirements)
• Have a test class FooTest for

each public class Foo
• Have a source directory and a

test directory
– Store FooTest and Foo in the

same package
– Tests can access members with

default (package) visibility

8617-214

Selecting test cases: common strategies

• Read specification
• Write tests for
– Representative case
– Invalid cases
– Boundary conditions

• Are there difficult cases? (error guessing)
– Stress tests?
– Complex algorithms?

• Think like an attacker
– The tester’s goal is to find bugs!

• How many test should you write?
– Aim to cover the specification
– Work within time/money constraints

8717-214

Testable code
• Think about testing when writing code
• Unit testing encourages you to write testable code
• Separate parts of the code to make them

independently testable
• Abstract functionality behind interface, make it

replaceable

• Test-Driven Development
– A design and development method in which you write

tests before you write the code

8817-214

Write testable code
//700LOC
public boolean foo() {

try {
synchronized () {

if () {
} else {
}
for () {

if () {
if () {

if () {
if ()?
{

if () {
for () {
}

}
}

} else {
if () {

for () {
if () {
} else {
}
if () {
} else {

if () {
}

}
if () {

if () {
if () {

for () {
}

}
}

} else {
}

}
} else {

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

Unit testing
as design
mechanism

* Code with low
complexity

* Clear interfaces
and specifications

8917-214

When should you stop writing tests?

• When you run out of money…
• When your homework is due…
• When you can't think of any new test cases...
• The coverage of a test suite
– Trying to test all parts of the implementation
– Statement coverage
• Execute every statement, ideally
• Compare to: method coverage, branch coverage, path

coverage

9017-214

When to stop writing tests?

• Outlook: statement coverage
– Trying to test all parts of the implementation
– Execute every statement, ideally

Does 100% coverage

guarantee correctness?

9117-214

1: public static int binarySearch(int[] a, int key) {
2: int low = 0;
3: int high = a.length - 1;
4:
5: while (low <= high) {
6: int mid = (low + high) / 2;
7: int midVal = a[mid];
8:
9: if (midVal < key)
10: low = mid + 1
11: else if (midVal > key)
12: high = mid - 1;
13: else
14: return mid; // key found
15: }
16: return -(low + 1); // key not found.
17: }

A: No

9217-214

When to stop writing tests?

• Outlook: statement coverage
– Trying to test all parts of the implementation
– Execute every statement, ideally

Does less than 100%

coverage guarantee

incorrectness?

9317-214

A: No

9417-214

9517-214

Run tests frequently
• You should only commit code that is passing all tests
• Run tests before every commit
• If entire test suite becomes too large and slow for rapid

feedback:
– Run local tests ("smoke tests", e.g. all tests in package)

frequently
– Run all tests nightly
– Medium sized projects easily have 1000s of test cases and

run for minutes
• Continuous integration servers help to scale testing

9617-214

Continuous integration - Travis CI

Automatically
builds, tests, and
displays the
result

9717-214

Continuous integration - Travis CI

You can see the
results of builds
over time

9817-214

Testing, Static Analysis, and Proofs

• Testing
– Observable properties

– Verify program for one execution

– Manual development with automated

regression

– Most practical approach now

– Does not find all problems (unsound)

• Static Analysis
– Analysis of all possible executions

– Specific issues only with conservative

approx. and bug patterns

– Tools available, useful for bug finding

– Automated, but unsound and/or

incomplete

• Proofs (Formal

Verification)
– Any program property

– Verify program for all

executions

– Manual development with

automated proof checkers

– Practical for small programs,

may scale up in the future

– Sound and complete, but not

automatically decidable

What strategy to
use in your project?

9917-214

SUMMARY: DESIGN FOR CHANGE/
DIVISION OF LABOR

10017-214

Design Goals
• Design for Change such that
– Classes are open for extension and modification

without invasive changes
– Classes encapsulate details likely to change behind

(small) stable interfaces
• Design for Division of Labor such that
– Internal parts can be developed independently
– Internal details of other classes do not need to be

understood, contract is sufficient
– Test classes and their contracts separately (unit

testing)

