Principles of Software Construction:
Objects, Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
te‘f

- institute for
- SOFTWARE
17-214 I | S [Rsayass

Software is everywhere

Search

Unlimited Instant Videcs.
MP3e & Cloud Prayer

Amazon Cloud Drive

Kindle
Appstore for Android

Digitsl Games & Software
Audible Audiotooks

Books
Moves, Music & Games.
Electronics & Computers
Home, Garden & Toois
Grocery, Heslth & Beauty
Toys. Kids & Baby
Clothing. Shoes & Jewelry
Sports & Outdoors

Automotive & Industrial

Ful Store Directory.

amazon ...

nest

oWy

IN20 MIN

=

¢!

Todsy's Desis G Cards Help

Wen
\~fcan~ Listi~

FREE TWO-DAY SHIPPIN
FOR COLLEGE STUDENTS
>Leammare

Ogits Games _ Audble

Aopatore
we3store tor Androia & Softwar

kindle fire Ho

The ultimate HD experience

Cloud Player Clowd Drive Kincie

hite, from $119 > Shop now

ool Wooden Sleds Shoe Trends Amazon Prime

THE AMAZON SHOE STORE

STAYING POWVER

e o The Nike+ 7

poe . > Snon A
om Now Balonce, Resbok, ond more » Sl oom SportWatch GPS fi}
Put it on, go outside
and get running /

»lesnmore

17-214

-
= institute for
i S SOFTWARE

RESEARCH

2

Growth of code and complexity over time

% of Functions

n System Year Performed in
Software
F-4 1960 8
A-7 1964 10
F-111 1970 20
F-15 1975 35 e .
=T T T Millions of Lines of Code (MLOC)
B-2 1990 03
F-22 2000 80 Vista
XP
Win 2000
NT 4
NT3.5
NT3.1

0 5 10 15 20 25 30 35 40 45 50 55

(informal reports)
Institute for
17-214 3 sors

A Chris Murphy

Editor, InformationWeek

See more from this author

&

W Tweet ¢164| Edlke ¢548| [fJ) share| @ +1| 21| @ & Permalink

Why Ford Just Became A Software
Company

Ford is upgrading its in-vehicle software on a huge scale, embracing all the customer expectations
and headaches that come with the development lifecycle.

@B Comments | Chris Murphy | November 14,2011 09:31 AM

Sometime early next year, Ford will mail USB sticks to about 250,000 owners of vehicles with its advanced
touchscreen control panel. The stick will contain a major upgrade to the software for that screen. With it,
Ford is breaking from a history as old as the auto industry, one in which the technology in a car essentially
stayed unchanged from assembly line to junk yard.

Ford is significantly changing what a driver or passenger experiences in its cars years after they're built. And
with it, Ford becomes a software company--with all the associated high customer expectations and
headaches.

Normal night-time image Blackout of 2003

_ S A
17 214 5 RESEARCH

@es of Software Cons@

Objects, Design, and Concurrency

Part 1: Introduction

Course overview and introduction to software design

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

site for
- ‘A
17 214 6 S RESEARCH

prime
binary tree
GCD

sorting

17-214

S graph search

amazon ...

IN20 MIN

¢!

Todsy's Desis G Cards Help

loud Player Clowd Drive Kindle (APPStEre Ol
Cloud Player Cloud D for kndroid 5

kindle fire Ho

The ultimate HD experience

FREE TWO-DAY SHIPPIN
FOR COLLEGE STUDENTS
>Leammare

from $119>Shop now

ool Wooden Sleds Shoe Trends Amazon Prime

<)

THE AMAZON SHOE STORE

STAYING POWER

Flexible cro
oppr d

oo B | e | Noano | 55

[* -;:[-jyui -ee
- i, T

7

From programs to systems

Writing algorithms, data Reuse of libraries,
structures from scratch frameworks

Functions with inputs Asynchronous and
and outputs reactive designs

Sequential and local jl> Parallel and distributed
computation computation

Full functional jl> Partial, composable,
specifications targeted models

Our goal: understanding both the building blocks and the
design principles for construction of software systems

ite f

-
InstitL or
17-214 8 ol

Principles of Software Construction:
esign, and Concurrency
Part 1: Introduction

Course overview and introduction to software design

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
Me‘F

siute for
- ‘A
17 214 9 S RESEARCH

Objects in the real world

-
=gy institute for
17-214 10 soriss

Object-oriented programming

 Programming based on structures
that contain both data and methods

public class Bicycle {
private final Wheel frontWheel, rearWheel;
private final Seat seat;
private int speed;

public Bicycle(..) { .. }

public void accelerate() {
speed++;

¥

public int speed() { return speed; }
}

-||$%ﬁ
17-214 11 |SYJ o

Principles of Software Construction:
Object nd Concurrency
Part 1: Introduction

Course overview and introduction to software design

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
Me‘F

17-214 12

Semester overview

* Introduction to Java and O-O
* Introduction to design

— Design goals, principles, patterns
* Designing classes

— Design for change

— Design for reuse
e Designing (sub)systems

— Design for robustness

— Design for change (cont.)
* Design case studies
* Design for large-scale reuse

e Explicit concurrency

17-214

Crosscutting topics:

— Modern development tools:
IDEs, version control, build
automation, continuous
integration, static analysis

— Modeling and specification,
formal and informal

— Functional correctness: Testing,
static analysis, verification

-
institute for

SOFTWARE
13 I S r RESEARCH

Sorting with a configurable order, version A

static void sort(int[] list, boolean ascending) {

boolean mustSwap;
if (ascending) {

mustSwap = list[i] < list[j];
} else {

mustSwap = list[i] > list[j];
}

17-214 e [H0 e

Sorting with a configurable order, version B

interface Comparator {
boolean compare(int i, int j);

}

class AscendingComparator implements Comparator {
public boolean compare(int i, int j) { return i < j; }

¥

class DescendingComparator implements Comparator {
public boolean compare(int i, int j) { return i > j; }

¥

static void sort(int[] list, Comparator cmp) {

boolean mustSwap =
cmp.compare(list[i], list[j]);

e Institute For
17-214 15 SO

Sorting with a configurable order, version B’

interface Comparator {
boolean compare(int i, int j);

¥

final Comparator ASCENDING
final Comparator DESCENDING

(i, 3) -> i < 3;
(i, 3) -> i > 3;

static void sort(int[] list, Comparator cmp) {

boolean mustSwap =
cmp.compare(list[i], list[j]);

rrrrrrrrrr
SSSSSSSS

17-214 16 ISIN o ;

Which version is better?

Version A:

static void sort(int[] 1list, boolean ascending) {

boolean mustSwap;
if (ascending) {

mustSwap = list[i] < list[j];
} else {

mustSwap = list[i] > list[j];

} interface Comparator {
) "~ boolean compare(int i, int j);
}

final Comparator ASCENDING = (i, j) -> i < j;
final Comparator DESCENDING = (i, j) -> i > j;

Version B':
static void sort(int[] 1list, Comparator cmp) {
boolean mustSwap =
cmp.compare(list[i], 1list[j]);

17-214 YA | O | s

It depends?

u institute for
17-214 18 ol

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information

processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

ite f

17-214 19 ol

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software engineering entails making decisions under
constraints of limited time, knowledge, and resources...

Engineering quality resides in engineering judgment...

Quality of the software product depends on the engineer’s
faithfulness to the engineered artifact...

Engineering requires reconciling conflicting constraints...

Engineering skills improve as a result of careful systematic
reflection on experience...

Costs and time constraints matter, not just capability...

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

ite f

17-214 20 ol

Goal of software design

* For each desired program behavior there are infinitely many
programs
— What are the differences between the variants?
— Which variant should we choose?
— How can we synthesize a variant with desired properties?

ite f

17-214 21 ol

A typical Intro CS design process

Discuss software that needs to be written
Write some code

Test the code to identify the defects
Debug to find causes of defects

Fix the defects

If not done, return to step 1

o Uk w e

e institute for
17-214 22 ol

Source: Braude, Bernstein,

Metrics of software quality Software Engineering. Wiley 2011

e Sufficiency / functional correctness
= Fails to implement the specifications ... Satisfies all of the specifications

* Robustness
= Will crash on any anomalous event ... Recovers from all anomalous events

udisa(

* Flexibility

= Must be replaced entirely if spec changes ... Easily adaptable to changes

(@)
>
Q
()
>
(0] o]
M
wn
S~
oQ
(@)
Q
wn

* Reusability

= Cannot be used in another application ... Usable without modification

* Efficiency

= Fails to satisfy speed or storage requirement ... satisfies requirements

* Scalability

= Cannot be used as the basis of a larger version ... is basis for much larger version...

* Security
= Security not accounted for at all ... No manner of breaching security is known

institute for
17-214 23 sorrs

Better software design

* Think before coding
* Consider non-functional quality attributes

— Maintainability, extensibility, performance, ...

* Propose, consider design alternatives
— Make explicit design decisions

ite f

17-214 24 ol

Using a design process

* A design process organizes your work
* A design process structures your understanding
* A design process facilitates communication

e Institute for
17-214 25 SOt

Preview: Design goals, principles, and patterns

* Design goals enable evaluation of designs
— e.g. maintainability, reusability, scalability

* Design principles are heuristics that describe best practices
— e.g. high correspondence to real-world concepts

* Design patterns codify repeated experiences, common solutions
— e.g. template method pattern

ite f

17-214 26 ol

Principles of Software Cans tion:
Objects, Design, an o@
Part 1: Introduction

Course overview and introduction to software design

Charlie Garrod Bogdan Vasilescu

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
Me‘F

17-214 27

Concurrency

* Roughly: doing more than one thing at a time

te f

17-214 28 ol

Summary: Course themes

* Object-oriented programming
* Code-level design

* Analysis and modeling

* Concurrency

ite f

17-214 29 ol

Software Engineering (SE) at CMU

17-214: Code-level design

— Extensibility, reuse, concurrency, functional correctness

 17-313: Human aspects of software development

— Requirements, teamwork, scalability, security, scheduling, costs, risks,
business models

e 17-413 Practicum, 17-415 Seminar, Internship

e Various courses on requirements, architecture, software
analysis, SE for startups, etc.

e SE Minor: http://isri.cmu.edu/education/undergrad

ite f

17-214 30 . [Eiz

COURSE ORGANIZATION

u institute for
17-214 SO | S [Feas

Preconditions

e 15-122 or equivalent
— Two semesters of programming
— Knowledge of C-like languages

e 21-127 or equivalent
— Familiarity with basic discrete math concepts
* Specifically:
— Basic programming skills
— Basic (formal) reasoning about programs
* Pre/post conditions, invariants, formal verification
— Basic algorithms and data structures
 Lists, graphs, sorting, binary search, etc.

17-214 32

institute for
SOFTWARE
RESEARCH

Learning goals

* Ability to design medium-scale programs
* Understanding OO programming concepts & design decisions

* Proficiency with basic quality assurance techniques for
functional correctness

* Fundamentals of concurrency
* Practical skills

ite f

17-214 33 ol

Course staff

 Bogdan Vasilescu
vasilescu@cmu.edu
Wean 5115

e Charlie Garrod
charlie@cs.cmu.edu
Wean 5101

 Teaching assistants: Adithya, Arihant, Bujji, David, Megan, Nick, Tian

e Institute For
17-214 34 SO

Course meetings Smoking
Section

* Lectures: Tuesday and Thursday 3:00 — 4:20pm DH A302

— Electronic devices discouraged

* Recitations: Wednesdays 9:30 - ... - 2:20pm

Recitation
— Supplementary material, hands-on practice, feedback attendance
— Bring your laptop is required

» Office hours: see course web page
— https://www.cs.cmu.edu/~charlie/courses/17-214/

ite f

17-214 35 ol

Infrastructure

Course website: http://www.cs.cmu.edu/~charlie/courses/17-214
— Schedule, office hours calendar, lecture slides, policy documents

Tools
— Git, Github: Assignment distribution, hand-in, and grades
— Piazza: Discussion board
— Eclipse or IntelliJ: Recommended for code development (other IDEs are fine)
— Gradle, Travis-Cl, Checkstyle, Findbugs: Practical development tools

Assignments

— Homework 1 available tomorrow

First recitation is tomorrow
— Introduction to Java and the tools in the course
— Install Git, Java, some IDE, Gradle beforehand

= Institute fur
17-214 36 SOt

Textbooks

* Required course textbooks (electronically Effective Java
available through CMU library): Third Edition

— Joshua Bloch. Effective Java, Third Edition.
Addison-Wesley, ISBN 978-0-13-468599-1.

— Craig Larman. Applying UML and Patterns. 3

Edition. Prentice Hall, ISBN 978-0321356680. ©
* Additional readings on design, Java, and
concurrency on the course web page APPLYING UMIL.
AND PATTERNS

An Introduction to Object-Oriented Analysis and Design
and Iterative Development

e 1 came acros R, Applying UML o 5 been oy unveserved dhoce.
CRAIG LARMAN

- institute for
17-214 37 sorrs

Approximate grading policy

* 50% assignments

 20% midterms (2 x 10% each)
e 20% final exam

* 10% quizzes and participation

This course does not have a fixed letter grade policy; i.e., the final
letter grades will not be A=90-100%, B=80-90%, etc.

e institute for
17-214 38 ol

Collaboration policy (also see the course syllabus)

* We expect your work to be your own

— You must clearly cite external resources so that we can evaluate your own
personal contributions.

* Do not release your solutions (not even after end of semester)

* Ask if you have any questions

* |f you are feeling desperate, please mail/call/talk to us
— Always turn in any work you've completed before the deadline

* We use cheating detection tools

ite f

17-214 39 ol

Late day policy

You may turn in each™ homework up to 2 days late

* You have five free late days per semester
— 10% penalty per day after free late days are used

« We don't accept work 3 days late
* See the syllabus for additional details
 Got extreme circumstances? Talk to us

ite f

17-214 a0 ol

10% quizzes and participation

* Recitation participation counts toward your participation grade
e Lecture has in-class quizzes

ite f

17-214 a1 ol

Summary

* Software engineering requires decisions, judgment
* Good design follows a process
* You will get lots of practice in 17-214!

ite f

17-214 a2 ol

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to course
infrastructure

Charlie Garrod Bogdan Vasilescu

Computer Science

L
institute for
I S SOFTWARE
RESEARCH e institute for
IS [Espsss

Remember: class website

charlie garrod cmu 214

Google Search I'm Feeling Lucky

o= institute for
17-214 2 | sormware

DevOps

institute for
17-214 3 s

A DevOps Definition

* “DevOps is a set of practices
intended to reduce the time
between committing a
change to a system and the
change being placed into
normal production, while
ensuring high quality.”

A [fIngo Weber

Liming Zhu

-
Institut
17-214 a |B)) sorrvare

DevOps Toolchain

; N L
sasana @PivotalTracker @ TeamCity “Z% shippable [@Hashicorp ¥25-amazon
<, Lucidchart
o DOX ‘ +planio ‘ @ Jenkins 3 @?m Travis Cl '-) g \icosoft
. Ml Azure
Flowdock L CODESHIP bu dd circlecl Google Cloud Platform
@RELEASE Y

Google Drive

Wrike & split
. S I heroku
/ |:I Office GoogleDocs P XL) DEPLOY \

ey

smartsheet @ghffg puppet crre
P Basacamp 33 S & (Q rackspace
K~ = <
mm Dropbox QT ;\ _
» 5 %\ f)} OpsGenie *
|; Microsoft Teams s g - VictorOps
matters’ 5 g __ pagerduty
o .
i~ zoominfo. w8 § Blugjeans 3 slack
= 0 .
AN CODECLIMATE 2 O NewRelic g snyk
O . .
< Nagios

w bugsnag
splunk> L@GGLY

4>g1t ‘v

. GitLab

(\/ ZABBIX

]Frog A P @SAUCELABS TestF T RAYGUN u

_—— B)FitNesse o estFairy m @
= dynat
é*k GItHUb ' n dc . endesk % Jasmine & SENTRY DATAT)‘oG bigpanda ynatrace
kubernetes ocCKer INTERCOM ERloXE}
CRM cucumberQ riRollbar APPDYNAMICS

Visual Studio
Team Foundation Server

= Z=ZPHYR
= Sonatype @ BrowserStack buc . .
.) . [:]SoucceClear Logichonitor

@freshdesk QOMETRY "JQASymphony P35 OMNI

https://marketplace-cdn.atlassian.com/s/f01dfe0a9e6d2f8aldlbada432a8914f126aea8b/public/devops-hero.png
- institute for
5 s

17-214

You will need for homework 1

* Java (+Eclipse/Intelli)): more on Thursday

e Version control: Git
* Hosting: GitHub
e Build manager: Gradle

o’ gradle

* Continuous integration service: Travis-Cl

(W)

Travis Ci

S

-
institute for
17-214 6 NN o

What is version control?

e System that records changes to a set of files over
time
— Revert files back to a previous state
— Revert entire project back to a previous state
— Compare changes over time

— See who last modified something that might be
causing a problem

* As opposed to:

hwl.java hwl v2.java hwl v3.java
hwl final.java hwl final _new.java

u institute for
17-214 7 ol

Brief timeline of VCS

1982: RCS (Revision Control System), still maintained
1990: CVS (Concurrent Versions System)

2000: SVN (Subversion)

2005: Bazaar, Git, Mercurial

Git
* Developed by Linus Torvalds, the creator of Linux

* Designed to handle large projects like the Linux kernel
efficiently
— Speed
— Thousands of parallel branches

-
Institute ror
17-214 I | S [ESaa:

Centralized version control

e Single server that
contains all the

versioned files Comuter A Central VCS Server
* Clients check out/in «a»- e
files from that central Version 3
place o
Computer B ‘

 E.g., CVS, SVN
(Subversion), and
Perforce

a7

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

ite f

[oo
‘A
17_214 9 ISr RESEARCH

SVN

i Server (truth)

svn checkout

Network

Clients

cr institute for
17-214 10 sormase

SVN

i Server (truth)

svn commit

Network

Clients

institute for

17-214 11 sorTiage

SVN

i Server (truth)

svn update

Network

Clients

institute for

17-214 12 sorTiage

SVN

i Server (truth)

Network

svn commit: FAIL

Clients

- - cr institute for
17-214 13 [

SVN

i Server (truth)

Network
svn update
Clients

institute for

17-214 14 sorTiage

SVN

i Server (truth)

Network

svn update: CONFLICT

Clients

= cr institute for
17-214 LI | S [gty

Centralized version control

* Advantages:

— Everyone knows what everyone else is doing
(mostly)

— Administrators have more fine-grained control

* Disadvantages:

: : : * Easier to lose data
— Single point of failure

* |ncentive to use version

— Cannot work offline control sparingly
 Tangled instead of

— Slow , _
atomic commits

— Does not scale

e Institute for
17-214 16 NI o

Every time there is a commit on the
SVN system there is a chance of creating
a conflict with someone else

i Server (truth)

svn commi svn update: CONFLICT

Network

Clients

1 [P
17-214 17 RESEARCH

SVN

i Server (truth)

svn commi svn update: CONFLICT

Network

Conflicts: sometimes 3 developers

. institute for
17-214 LI | S [ety

SVN

Server (truth)

svn commi svn update: CONFLICT
Network

17-214 10 [i

Conflicts: often 30 developers

SVN

i Server (truth)

svn commi vn update: CONFLICT
Network

Conflicts: all the time 300

to everybody developers
17-214 20 [Hl e

Git is distributed. There is not one server ...

i Server (truth)

Git

PPy institute for
B Y B SOFTWARE
RESEARCH

17-214 21

... but many

Git

W institute for
RESEARCH

17-214 22

Actually there is one server per computer

cr isnst;t_;ne Fog
17'214 23 REQSEX!&%‘

Every computer is a server and version
Glt control happens locally.

=] institute for
S [sorrware
RESEARCH

17-214 24

Distributed version control

* Clients fully mirror the S (T
repository r—3
— Every clone is a full Version 2
backup of all the data
* Advantages: : ‘
— Fast, works offline, y \
scales Computer A I
— Better suited for
collaborative workflows e e e g -
* E.g., Git, Mercurial,
Bazaar Version 1 p—

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

= institute for
17-214 25 et

SVN (left) vs. Git (right)

Checkins Over Time

File A A1

File B

File C A1 02

Checkins Over Time

File A Al Al A2 A2

02 File B B B Bl B2

A3 File C (1 2 2 (&

 SVN stores changes to a base * Git stores each version as a

version of each file

snapshot
* |If files have not changed, only a

* Version numbers (1, 2, 3, ...) link to the previous file is
are increased by one after stored

each commit

17-214

 Each version is referred by the
SHA-1 hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

ite f

-
Institute for
26 I S r SOFTWARE
RESEARCH

How do you share code with collaborators
G |t if commits are local?

git commit

™ institute for

17-214 YR | S [[Hps

You push your commits into their
G |t repositories / They pull your commits into
their repositories

... But requires host names / IP addresses

- = institute for
17-214 28 soriss

GitHub typical workflow

Public repository where you make your changes public

GitHub

17-214 20 [H] o

GitHub typical workflow

GitHub

git commit

== institute tor
17-214 30 [N o

GitHub typical workflow

GitHub

git commit

== institute tor
17-214 31 [NY s

GitHub typical workflow

GitHub

git push

push your local changes into a remote repository.

17-214 32 [Hi s

GitHub typical workflow GitHub

Collaborators can push too if they have access rights.

17-214 33 [H] s

GitHub typical workflow

N
~
~
~
~
\
A
\

GitHub

gytpuH

Without access rights, “don’t call us, we’ll call you” (pull from
trusted sources) ... But again requires host names / IP addresses.

nstitute for
17-214 34 SOttt

GitHub typical workflow GitHub

“Forks”

“Main”

git push

Instead, people maintain public remote “forks” of *main”
repository on GitHub and push local changes.

Pp—— il FOT
17-214 35 SOttt

“Main”

Pull
Request

Availability of new changes is signaled via “Pull Request”.

institute for

17-214 36 SO

Changes are pulled into main if PR accepted.

17-214 37 [l s

214 workflow

I\\

Your local “clone” TA's “clone”
You push homework solutions; pull recitations, homework
assignments, grades. TAs vice versa

institute for
17-214 38 sorrs

You will need for homework 1

* Java (+Eclipse/Intelli)): more on Thursday

* Mersioncontrol Git

e Build manager: Gradle

o’ gradle

* Continuous integration service: Travis-Cl

(W)

Travis Ci

S

= institute for
17-214 I S [Feapiss

Build Manager

* Tool for scripting the automated steps
required to produce a software artifact, e.g.:

— Compile Java files in src/main/java, place results in
target/classes

— Compile Java files in src/test/java, place results in
target/test-classes

— Run JUnit tests in target/test-classes

— If all tests pass, package compiled classes in
target/classes into .jar file.

17-214 so [

Build Manager

* Tool for scripting the automated steps
required to produce a software artifact, e.g.:

— Compile Java source files into class files

— Compile Java test files
— Run JUnit tests

— If all tests pass, package compiled classes into .jar
file.

17-214 s [Has

Aside: Java virtual machine

ac

S . 4 Unix
N\

Windows

Source Java Byte JVM
Code Compiler Code (interpreter)
(.java file) (.class file)

http://images.slideplayer.com/21/6322821/slides/slide_9.jpg

17-214 a2 [Hl o

Types of Build Managers

* |DE project managers (limited functionality)

 Dependency-Based Managers
— Make (1977)

* Task-Based Managers
— Ant (2000)
— Maven (2002)
— vy (2004)
— Gradle (2012)

17-214

Dependency-Based Managers
* Dependency graph:

jar

— Boxes: files P !
""""" 1
— Arrows: dependencies; |
“A depends on B”: if Bis code2HTML.class
chan ged A must be CppJavaScanner.class
)

I
regenerated | lavac y
javac
I
I

 Build manager (e.g., '
Make) determines min SLIEELEELL
|
number of steps e |
required to rebuild after |

 change
ite f

17-214 o [E

Task-Based Managers: Ant

* Disadvantages of Make: - - =

— Not portable (system- :
dependent commands, @ """ """ 'Ir ----------

paths, path lists)
— Low level (focus on individual files)

T ANt
generate PDFs

— Focus on task dependencies |

— Targets (dependencies) described

in build.xml

17-214 s [Has

Task-Based Managers: Maven

* Maven:
— build management (like Ant),
— and dependency management (unlike Ant)

e Can express standard project layouts and
build conventions (project archetypes)

e Still uses XML (pom.xml)

17-214 s [s

Organizing a Java Project

README.md, LICENSE.md,
version control, configuration

management \\,U (Project root) ’
, |

Optional: Sub-
Project

Optional: Sub-
Everything Project
below src/main | . :

ts depl d,
gets deploye u o ’t

i.e., no tests target | Derived (does not go
~__ | . : into version control),
1 L e.g., compiled Java
u main ’ test
] |
[| | I | 1 |
u java ’ u resources ’ u java ’ u resources
Actual

source code
e Institute for
17-214 47 sormiase

Task-Based Managers: Gradle

e Combines the best of Ant and Maven
* From Ant keep:

e Portability: Build commands described platform-independently
* Flexibility: Describe almost any sequence of processing steps

e ...butdrop:

e XML as build language, inability to express simple control flow

* From Maven keep:
* Dependency management

e Standard directory layouts & build conventions for common
project types

e ...butdrop:
* XML, inflexibility, inability to express simple control flow
17-214 48

You will need for homework 1

* Java (+Eclipse/Intelli)): more on Thursday

. aoia e o’ gradle

* Continuous integration service: Travis-Cl

(W)

Travis Ci

-

- institute for
17-214 a9 [Nl o

Big Builds

 Must run frequently: ¢ Can run less

- fetchingand setupof ~ frequently:

3rd party libraries « documentation

static analysis * deployment

* compilation * integration testing

unit testing * test coverage

* packaging of artifacts reporting

* system testing
» Keep track of different Ant/Maven targets, or ...

e institute for
17-214 50 ot

Continuous Integration

| o |II

* Version control with central “official” repository. Run:

— automated builds & tests (unit, integration, system,
regression) with every change (commit / pull request)

— Test, ideally, in clone of production environment
— E.g., Jenkins (local), Travis Cl (cloud-based)

* Advantages:
— Immediate testing of all changes
— Integration problems caught early and fixed fast
— Frequent commits encourage modularity
— Visible code quality metrics motivate developers

— (cloud-based) Local computer not busy while waiting for
build

* Disadvantages:
— Initial effort to set up

ite f

17-214 51 ol

Commits on Jan 17, 2017

. ..? missing import
Tra VI S C I v 2 bvasiles committed 7 hours ago X

..? testing Travis
bvasiles committed 7 hours ago X

A

* Cloud-based Cl service; GitHub integration

— Listens to push events and pull request events and
starts “build” automatically

— Runs in virtual machine / Docker container

— Notifies submitter of outcome; sets GitHub flag

e Setup: project top-level folder .travis.yml

— Specifies which environments to test in (e.g., jdk
versions)

= Institute for
17-214 52 SOt

You will need for homework 1

* Java (+Eclipse/Intelli)): more on Thursday

- institute for
17-214 I S [Feadss

	01-introduction
	01-infrastructure

