Principles of Software Construction: Objects, Design, and Concurrency

Software engineering in practice

Git, software development workflows, and monorepos

Josh Bloch Charlie Garrod Darya Melicher

Administrivia

- Homework 6 due next Wednesday
 - Checkpoint deadline Monday night

Key concepts from Tuesday

Compare to the Facebook release cycle

DevOps: Development / Operations

Configuration management (CM)

• Definition (Pressman): Configuration management "is a set of tracking and control activities that are initiated when a software engineering projects begins and terminates when software is taken out of operation."

institute for SOFTWARE RESEARCH

SVN (left) vs. Git (right)

- SVN stores changes to a base version of each file
- Version numbers (1, 2, 3, ...) are increased by one after each commit

- Git stores each version as a snapshot
- If files have not changed, only a link to the previous file is stored
- Each version is referred by the SHA-1 hash of the contents

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

A brief Git history...

institute for SOFTWARE RESEARCH

17-214

Today

- Practical Git
- Common workflows using Git
- Developing at scale

git commit

Graphics by https://learngitbranching.js.org

git branch newImage

git commit

17-214

git checkout newImage; git commit

Activity: Make a new branch named bugFix and switch to that branch

17-214 **14**

Three ways to move work around between branches 1) git merge bugFix (into master)

institute for SOFTWARE RESEARCH

git checkout bugfix; git merge master (into bugFix)

17-214

Move work from bugFix directly onto master

2) git rebase master

institute for SOFTWARE RESEARCH

But master hasn't been updated, so:

git checkout master; git rebase bugFix

17-214

Copy a series of commits below current location

3) git cherry-pick C2 C4

institute for SOFTWARE RESEARCH

Activity:

Ways to undo work (1)

git reset HEAD~1

master*

HEAD is the symbolic name for the currently checked out commit

Ways to undo work (2)

git revert HEAD

git reset does not work for remote branches

Activity:

Highly recommended

https://git-scm.com/book/en/v2

institute for SOFTWARE RESEARCH

Today

- Practical Git
- Common workflows using Git
- Developing at scale

1. Centralized workflow

- Central repository to serve as the single point-of-entry for all changes to the project
- Default development branch is called master
 - all changes are committed into master
 - doesn't require any other branches

2. Git feature branch workflow

- All feature development should take place in a dedicated branch instead of the master branch
- Multiple developers can work on a particular feature without disturbing the main codebase
 - master branch will never contain broken code (enables CI)
 - Enables pull requests (code review)

- Strict branching model designed around the project release
- Uses two+ branches
 - master stores the official release history; tag all commits in the master branch with a version number
 - develop serves as an integration branch for features

17-214

GitFlow feature branches (from develop)

GitFlow release branches (eventually into master)

GitFlow hotfix branches

Today

- Practical Git
- Common workflows using Git
- Developing at scale

Pre-2017 release management model at Facebook

Diff lifecycle: local testing

institute for SOFTWARE RESEARCH

Diff lifecycle: CI testing (data center)

17-214

Diff lifecycle: diff ends up on master

Release every two weeks

institute for SOFTWARE RESEARCH

17-214

Post-2017 release management model at Facebook

Quasi-continuous web release

Quasi-continuous push from master (1,000+ devs, 1,000 diffs/day); 10 pushes/day

institute for SOFTWARE RESEARCH

39

Google: similar story, huge code base

Google repository statistics as of Jan 2015	
Number of source files	9 million
Lines of code	2 billion
Depth of history	35 million commits
Size of content	86 terabytes
Commits per workday	45 thousand

institute for SOFTWARE

Exponential growth?

17-214

Google Speed and Scale

- >30,000 developers in 40+ offices
- 13,000+ projects under active development
- 30k submissions per day (1 every 3 seconds)

- All builds from source
- 30+ sustained code changes per minute with 90+ peaks
- 50% of code changes monthly
- 150+ million test cases / day, > 150 years of test / day
- Supports continuous deployment for all Google teams!

Google code base vs. Linux kernel code base

Some perspective

Linux kernel

15 million lines of code in 40 thousand files (total)

Google repository

- 15 million lines of code in 250 thousand files changed per week, by humans
- 2 billion lines of code, in 9 million source files (total)

institute for SOFTWARE RESEARCH

17-214

Managing a huge monorepo

- Automated testing...
- Lots of automation...
- Smart tooling...

Version control for a monorepo

- Problem: even git is slow at Facebook scale
 - 1M+ source control commands run per day
 - 100K+ commits per week

Version control for a monorepo

 Use build system's file monitor, Watchman, to see which files have changed → 5x faster "status" command

Version control for a monorepo

- Sparse checkouts → 10x faster clones and pulls
 - clone and pull download only the commit metadata, omit the files
 - When a user performs an operation that needs the contents of files (such as checkout), download the file contents on demand

