
1 17-214 

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
So3ware	engineering	in	prac9ce	
	
Git,	so3ware	development	workflows,	and	monorepos	
	
Josh	Bloch									Charlie	Garrod									Darya	Melicher	



2 17-214 

Administrivia	

•  Homework	6	due	next	Wednesday	
–  Checkpoint	deadline	Monday	night	



3 17-214 

Key	concepts	from	Tuesday	



4 17-214 

Compare	to	the	Facebook	release	cycle	



5 17-214 

DevOps:		Development	/	Opera9ons	



6 17-214 

Configura9on	management	(CM)	

•  Defini9on	(Pressman):			Configura*on	management	“is	a	set	of	
tracking	and	control	ac*vi*es	that	are	ini*ated	when	a	so9ware	
engineering	projects	begins	and	terminates	when	so9ware	is	
taken	out	of	opera*on.”	



7 17-214 

SVN	(le3)	vs.	Git	(right)	

•  SVN	stores	changes	to	a	base	
version	of	each	file	

•  Version	numbers	(1,	2,	3,	…)	
are	increased	by	one	a3er	
each	commit		

•  Git	stores	each	version	as	a	
snapshot	

•  If	files	have	not	changed,	only	a	
link	to	the	previous	file	is	
stored	

•  Each	version	is	referred	by	the	
SHA-1	hash	of	the	contents	

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control 



8 17-214 

A	brief	Git	history…	

…	



9 17-214 

Today	

•  Prac9cal	Git	
•  Common	workflows	using	Git	
•  Developing	at	scale	



10 17-214 

git	commit	

Graphics	by	h_ps://learngitbranching.js.org	



11 17-214 

git	branch	newImage	



12 17-214 

git	commit	



13 17-214 

git	checkout	newImage;	git	commit	



14 17-214 

Ac9vity:	Make	a	new	branch	named	bugFix	and	switch	
to	that	branch	



15 17-214 

1)	git	merge	bugFix	(into	master)	
Three	ways	to	move	work	around	between	branches	



16 17-214 

git	checkout	bugfix;	git	merge	master	(into	bugFix)	



17 17-214 

2)	git	rebase	master	
Move	work	from	bugFix	directly	onto	master	



18 17-214 

git	checkout	master;	git	rebase	bugFix	
But	master	hasn't	been	updated,	so:		



19 17-214 

3)	git	cherry-pick	C2	C4	
Copy	a	series	of	commits	below	current	loca9on	



20 17-214 

Ac9vity:	



21 17-214 

git	reset	HEAD~1	
HEAD	is	the	symbolic	
name	for	the	currently	
checked	out	commit	

Ways	to	undo	work	(1)	



22 17-214 

git	revert	HEAD	
git	reset	does	not	work	
for	remote	branches	

Ways	to	undo	work	(2)	



23 17-214 

Ac9vity:	



24 17-214 

Highly	recommended	

https://git-scm.com/book/en/v2 



25 17-214 

Today	

•  Prac9cal	Git	
•  Common	workflows	using	Git	
•  Developing	at	scale	



26 17-214 

1.	Centralized	workflow	

•  Central	repository	to	serve	as	
the	single	point-of-entry	for	all	
changes	to	the	project	

•  Default	development	branch	is	
called	master	
–  all	changes	are	commi_ed	into	

master	
–  doesn’t	require	any	other	

branches	



27 17-214 

2.	Git	feature	branch	workflow	
	

•  All	feature	development	should	take	place	in	a	dedicated	
branch	instead	of	the	master	branch	

•  Mul9ple	developers	can	work	on	a	par9cular	feature	without	
disturbing	the	main	codebase	
–  master	branch	will	never	contain	broken	code	(enables	CI)	
–  Enables	pull	requests	(code	review)	



28 17-214 

3.	GitFlow	workflow	
	

•  Strict	branching	model	designed	around	the	project	release	
•  Uses	two+	branches	

–  master	stores	the	official	release	history;	tag	all	commits	in	
the	master	branch	with	a	version	number	

–  develop	serves	as	an	integra9on	branch	for	features	



29 17-214 

GitFlow	feature	branches	(from	develop)	
	



30 17-214 

GitFlow	release	branches	(eventually	into	master)	
	



31 17-214 

GitFlow	hohix	branches	
	



32 17-214 

Today	

•  Prac9cal	Git	
•  Common	workflows	using	Git	
•  Developing	at	scale	



33 17-214 

Pre-2017	release	management	model	at	Facebook	



34 17-214 

Diff	lifecycle:	local	tes9ng	



35 17-214 

Diff	lifecycle:	CI	tes9ng	(data	center)	



36 17-214 

Diff	lifecycle:	diff	ends	up	on	master	



37 17-214 

Release	every	two	weeks	



38 17-214 

Post-2017	release	management	model	at	Facebook	



39 17-214 

Quasi-con9nuous	push	from	master	(1,000+	devs,	1,000	diffs/day);	
10	pushes/day	



40 17-214 

Google:		similar	story,	huge	code	base	



41 17-214 

Exponen9al	growth?	



42 17-214 
Google Confidential and Proprietary

● >30,000 developers in 40+ offices

● 13,000+ projects under active development

● 30k submissions per day (1 every 3 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 30+ sustained code changes per minute with 90+ peaks

● 50% of code changes monthly

● 150+ million test cases / day, > 150 years of test / day

● Supports continuous deployment for all Google teams!

Speed and Scale
2016 numbers




43 17-214 

Google	code	base	vs.	Linux	kernel	code	base	



44 17-214 

Managing	a	huge	monorepo	

•  Automated	tes9ng…	
•  Lots	of	automa9on…	
•  Smart	tooling...	



45 17-214 

Version	control	for	a	monorepo	

•  Problem:	even	git	is	slow	at	Facebook	scale	
–  1M+	source	control	commands	run	per	day	
–  100K+	commits	per	week	



46 17-214 

Version	control	for	a	monorepo	

•  Use	build	system's	file	monitor,	Watchman,	to	see	which	files	
have	changed	à	5x	faster	“status”	command	



47 17-214 

Version	control	for	a	monorepo	

•  Sparse	checkouts	à	10x	faster	clones	and	pulls	
–  clone	and	pull	download	only	the	commit	metadata,	omit	the	files	
–  When	a	user	performs	an	opera9on	that	needs	the	contents	of	files	(such	

as	checkout),	download	the	file	contents	on	demand	


