
1 17-214 

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
So3ware	engineering	in	prac9ce	
	
Configura9on	management	and	version	control	systems	
	
Josh	Bloch									Charlie	Garrod									Darya	Melicher	



2 17-214 

Administrivia	

•  Homework	6	due	next	Wednesday	
–  Checkpoint	deadline	Monday	night	



3 17-214 

Key	concepts	from	Thanksgiving	



4 17-214 

Key	concepts	from	last	Tuesday	



5 17-214 

Streams	design	discussion	

•  Recall	the	fundamental	API	design	principles…	



6 17-214 

Major	topics	in	17-313	(Founda9ons	of	SE)	

•  Process	considera9ons	for	so3ware	development	
•  Requirements	elicita9on,	documenta9on,	and	evalua9on	
•  Design	for	quality	a[ributes	
•  Strategies	for	quality	assurance	
•  Empirical	methods	in	so3ware	engineering	
•  Time	and	team	management	
•  Economics	of	so3ware	development	



7 17-214 

Test-driven	development	(TDD),	informally	



8 17-214 

Empirical	methods	in	so3ware	engineering	

•  How	do	we	study	the	effec9veness	of	test-driven	development	
compared	to	other	methodologies?	



9 17-214 

This	week:		DevOps	(Development	opera9ons)	

•  Introduc9on	to	devops	
•  Configura9on	management	and	version	control	



10 17-214 

Consider:		9melines	of	tradi9onal	so3ware	development	

Source:		By	Paulire	-	Own	work,	CC	BY-SA	4.0,	h[ps://commons.wikimedia.org/w/index.php?curid=46634740	

e.g.,	the	Microso3*	OS	development	history	



11 17-214 

Compare	to	the	Ubuntu	release	cycle	



12 17-214 

Compare	to	the	Facebook	release	cycle	



13 17-214 

DevOps:		Development	/	Opera9ons	



14 17-214 

DevOps	toolchain	

•  Code:		code	development	and	review,	source	code	
management	tools	

•  Build:		con9nuous	integra9on	tools,	build	status	
•  Test:		con9nuous	tes9ng	tools	provide	feedback	
•  Package:		ar9fact	repository,	applica9on	pre-deployment	staging	



15 17-214 

DevOps	ecosystems…	



16 17-214 

Consider:		Con9nuous	integra9on	(CI)	

•  Advantages	and	disadvantages	of	CI?	



17 17-214 

Real-world	so3ware	development	challenges	

•  Imagine:		You	discover	a	bug	in	version	8.2.4	of	your	so3ware	
–  You	want	to	discover,	fix,	and	deploy	updates	to	old	versions	
–  You	want	to	fix	the	bug	for	new	versions	in	ongoing	development	



18 17-214 

Configura9on	management	(CM)	

•  Defini9on	(Pressman):			Configura*on	management	“is	a	set	of	
tracking	and	control	ac*vi*es	that	are	ini*ated	when	a	so9ware	
engineering	projects	begins	and	terminates	when	so9ware	is	
taken	out	of	opera*on.”	



19 17-214 

Reasons	for	configura9on	management	

•  So3ware	evolu9on	
•  Separate	development	
•  Audits	(legal,	regulatory)	
•  Product	lines	
•  Market	varia9on	(e.g.,	U.S.,	Europe,	Asia)	
•  Plaform	varia9on	(e.g.,	Android,	iOS)	



20 17-214 

Configura9on	management	in	the	modern	world	

Version 
control 

+ 
workflows 

Build 
managers 

 
 

Package 
managers 

 
App markets 

+ 
update 

managers 
 

Deployment 
managers 

+ 
VMs/ 

containers 
 
 
 



21 17-214 

Aside:		Seman9c	versioning	for	releases	

•  Given	a	version	number	MAJOR.MINOR.PATCH,	increment	the:	
–  MAJOR	version	when	you	make	incompa9ble	API	changes,	
–  MINOR	version	when	you	add	func9onality	in	a	backwards-compa9ble	

manner,	and	
–  PATCH	version	when	you	make	backwards-compa9ble	bug	fixes.	

•  Addi9onal	labels	for	pre-release	and	build	metadata	are	
available	as	extensions	to	the	MAJOR.MINOR.PATCH	format.	

h[p://semver.org/	



22 17-214 

Branches	within	so3ware	repositories	



23 17-214 

Centralized	version	control	

•  Single	server	contains	all	
the	versioned	files	

•  Clients	check	out/in	files	
from	that	central	place	

•  E.g.,	CVS,	SVN	(Subversion),	
and	Perforce	

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control 



24 17-214 

Distributed	version	control	

•  Clients	fully	mirror	the	
repository	
–  Every	clone	is	a	full	backup	of	

all	the	data	

•  E.g.,	Git,	Mercurial,	Bazaar	

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control 



25 17-214 

SVN	(le3)	vs.	Git	(right)	

•  SVN	stores	changes	to	a	base	
version	of	each	file	

•  Version	numbers	(1,	2,	3,	…)	
are	increased	by	one	a3er	
each	commit		

•  Git	stores	each	version	as	a	
snapshot	

•  If	files	have	not	changed,	only	a	
link	to	the	previous	file	is	
stored	

•  Each	version	is	referred	by	the	
SHA-1	hash	of	the	contents	

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control 



26 17-214 

Aside:		Git	file	status	

© Scott Chacon “Pro Git” 



27 17-214 

Aside:		Git	internals	

© Scott Chacon “Pro Git” 



28 17-214 

Aside:		Git	object	graph	

© Scott Chacon “Pro Git” 



29 17-214 

Aside:		Which	files	to	manage?	

•  All	code	and	noncode	files	
–  Java	code	
–  Build	scripts	
–  Documenta9on	

•  Exclude:		generated	files	(.class,	…)	
–  Most	version	control	systems	have	a	mechanism	to	exclude	files	

(e.g.,	.gi9gnore)	



30 17-214 

Next	9me…	

•  Prac9cal	Git	


