Principles of Software Construction:
Objects, Design, and Concurrency

Software engineering in practice
Toward people and process

Josh Bloch Charlie Garrod Darya Melicher

&:Iunmgiv Mellon University
School of Computer Science
[J
institute for
I S SOFTWARE
RESEARCH

°

institute for

- SOFTWARE
17 214 1 RESEAI;\CH

Administrivia

* Homework 5c due last night!

* Homework 6 coming soon
— Checkpoint deadline

* Happy Thanksgiving break!

°

institute for

- SOFTWARE
17 214 2 RESEAI;\CH

Key concepts from last Thursday

°
institute for

- SOFTWARE
17 214 3 RESEAI;\CH

Lambda syntax

Syntax Example
parameter -> expression X->X* X
parameter -> block s->{ System.out.printin(s); }
(parameters) -> expression (x, y) > Math.sqrt(x*x + y*y)
(parameters) -> block (s1,s2)->

{ System.out.printin(s1 +"," +s2); }
(parameter decls) -> expression (double x, double y) -> Math.sqrt(x*x + y*y)
(parameters decls) -> block (List<?> list) ->

{ Arrays.shuffle(list); Arrays.sort(list); }

institute for
- SOFTWARE
17-214 a

Method references — a more succinct alternative to lambdas

* Lambdas are succinct
map.merge(key, 1, (count, incr) -> count + incr);

* But method references can be more so
map.merge(key, 1, Integer::sum);
* The more parameters, the bigger the win

— But parameter names may provide documentation
— If you use a lambda, choose parameter names carefully!

°
institute for

- SOFTWARE
17 214 5 RESEAI;\CH

Simple stream examples — mapping, filtering, sorting, etc.

List<String> longStrings = stringlist.stream()
.filter(s -> s.length() > 3)
.collect(Collectors.toList());

List<String> firstLetters = stringlList.stream()
.map(s -> s.substring(0,1))
.collect(Collectors.tolList());

List<String> firstLettersOfLongStrings = stringlist.stream()
.filter(s -> s.length() > 3)
.map(s -> s.substring(0,1))
.collect(Collectors.tolList());

List<String> sortedFirstLettersWithoutDups = stringlList.stream()
.map(s -> s.substring(0,1))
.distinct()
.sorted()
.collect(Collectors.toList());

institute for
- SOFTWARE
17-214 6

What Josh didn't show you...

°
institute for

- SOFTWARE
17 214 7 RESEAI;\CH

Streaminterface is a monster (1/3)

public interface Stream<T> extends BaseStream<T, Stream<T>> {
// Intermediate Operations

Stream<T> filter(Predicate<T>);

<R> Stream<R> map(Function<T, R>);

IntStream mapToInt(ToIntFunction<T>);

LongStream mapToLong(ToLongFunction<T>);

DoubleStream mapToDouble(ToDoubleFunction<T>);

<R> Stream<R> flatMap(Function<T, Stream<R>>);

IntStream flatMapToInt(Function<T, IntStream>);
LongStream flatMapToLong(Function<T, LongStream>);
DoubleStream flatMapToDouble(Function<T, DoubleStream>);
Stream<T> distinct();

Stream<T> sorted();

Stream<T> sorted(Comparator<T>);

Stream<T> peek(Consumer<T>);

Stream<T> limit(long);

Stream<T> skip(long);

institute for
- SOFTWARE
17 2 14 8 RESEAI;\CH

Streaminterface is a monster (2/3)

// Terminal Operations

void forEach(Consumer<T>); // Ordered only for sequential streams
void forEachOrdered(Consumer<T>); // Ordered if encounter order exists
Object[] toArray();

<A> A[] toArray(IntFunction<A[]> arrayAllocator);

T reduce(T, BinaryOperator<T>);

Optional<T> reduce(BinaryOperator<T>);

<U> U reduce(U, BiFunction<U, T, U>, BinaryOperator<U>);

<R, A> R collect(Collector<T, A, R>); // Mutable Reduction Operation
<R> R collect(Supplier<R>, BiConsumer<R, T>, BiConsumer<R, R>);
Optional<T> min(Comparator<T>);

Optional<T> max(Comparator<T>);

long count();

boolean anyMatch(Predicate<T>);

boolean allMatch(Predicate<T>);

boolean noneMatch(Predicate<T>);

Optional<T> findFirst();

Optional<T> findAny();

institute for
- SOFTWARE
17 2 14 9 RESEAI;\CH

Streaminterface is a monster (3/3)

// Static methods: stream sources
Stream.Builder<T> builder();

public
public
public
public
public
public
public

17-214

static
static
static
static
static
static
static

<T>
<T>
<T>
<T>
<T>
<T>
<T>

Stream<T>
Stream<T>
Stream<T>
Stream<T>
Stream<T>
Stream<T>

empty();

of(T);

of(T...);

iterate(T, UnaryOperator<T>);
generate(Supplier<T>);
concat(Stream<T>, Stream<T>);

°
- S institute for
SOFTWARE

10 RESEARCH

In case your eyes aren’t glazed yet

public interface BaseStream<T, S extends BaseStream<T, S>>
extends AutoCloseable {

Iterator<T> iterator();

Spliterator<T> spliterator();

boolean isParallel();

S sequential(); // May have little or no effect

S parallel(); // May have little or no effect

S unordered(); // Note asymmetry wrt sequential/parallel
S onClose(Runnable);

void close();

[J
institute for
17-214 11 SO

It keeps going: java.util.stream.Collectors

. tolist()

. toMap(...)

. toSet(...)

. reducingBy(...)

. groupingBy(...)

. partitioningBy(...)

[J
institute for
17-214 12 SO

It keeps going: java.util.stream.Collectors

. tolist()

. toMap(...)

. toSet(...)
reducingBy(...)

. groupingBy(...)
partitioningBy(...)

static <T,K,D,A,M extends Map<K,D>> Collector<T,?,M> groupingBy/(
Function<? super T,? extends K> classifier,
Supplier<M> mapFactory,
Collector<? super T,A,D> downstream)

[J
institute for
17-214 13 SO

Optional<T> —a third way to indicate the absence of a result

public final class Optional<T> {
boolean isPresent();

T get();

void ifPresent(Consumer<T>);

Optional<T> filter(Predicate<T>);

<U> Optional<U> map(Function<T, U>);

<U> Optional<U> flatMap(Function<T, Optional<U>>);

T orElse(T);

T orElseGet(Supplier<T>);

<X extends Throwable> T orElseThrow(Supplier<X>) throws X;

institute for
17-214 14 SO

Changes to existing libraries... e.g.,

public interface Collection<E> {
default Stream<E> stream();

default Stream<E> parallelStream();
default Spliterator<E> spliterator();

17-214

15

institute for
SOFTWARE
RESEARCH

Overall: Streams design discussion

* Recall the fundamental API design principles...

[J
institute for
17-214 16 SO

Today: Software engineering in practice

* Anintroduction to software engineering
 Methodologies discussion: Test-driven development

[J
institute for
17-214 17 SO

What is software engineering?

[J
institute for
17-214 18 SO

1968 NATO Conference on Software Engineering

—'-n_-"-‘-

institute for
17-214 19 SO

Compare to other forms of engineering

e.g., Producing a car or bridge
— Estimable costs and risks
— Well-defined expected results
— High quality
* Separation between plan
and production
* Simulation before construction

* Quality assurance through
measurement

e Potential for automation

institute for
17-214 20 SO

Software engineering is “the establishment and use of sound
engineering principles in order to obtain, economically, software
that is reliable and works efficiently on real machines.”
[Bauer 1975, S. 524]

[J
institute for
17-214 21 SO

Software engineering in the real world

ESPANOL

e.g., HealthCare.gov HealthCare.gov
— Estimable costs and risks
— Well-defined expected results
— High quality

First time applying on HealthCare.gov? Have a 2018 Marketplace plan? ¥

* Separation between plan
and production

TAKE THE FIRST STEP TO LOG IN TO RENEW/CHANGE
APPLY PLANS

* Simulation before construction

* Quality assurance through
measurement

e Potential for automation

institute for
17-214 22 SO

Major topics in 17-313 (Foundations of SE)

* Process considerations for software development
 Requirements elicitation, documentation, and evaluation
e Design for quality attributes

e Strategies for quality assurance

* Empirical methods in software engineering

* Time and team management

* Economics of software development

[J
institute for
17-214 23 SO

The foundations of our Software Engineering program

Core computer science fundamentals
* Building good software, organizing software projects

— Development teams, customers, and users
— Process, requirements, estimation, management, and methods

* The larger context of software

— Business, society, policy
* Engineering experience
e Communication skills

— Written and oral

[J
institute for
17-214 24 SO

Today: Software engineering in practice

* Anintroduction to software engineering
 Methodologies discussion: Test-driven development

[J
institute for
17-214 25 SO

Test-driven development (TDD), informally

R

Uff\LF a Make the
f':e;"s Fest [osS

RLelackoc

From Growing Object-Oriented Software by Nat Pryce and Steve Freeman
http:/www.growing-object-oriented-software.com/figures.html

@sebrose http:/cucumber.io

institute for
17-214 26 SO

Test-driven development rules
1. You may only write production code to make a failing test pass

2. You may only write a minimally failing unit test
3. You may only write minimal code to pass the failing test

[J
institute for
17-214 27 SO

Test-driven development as a design process

"The act of writing a unit test is more an act of design and
documentation than of verification. It closes a remarkable number
of feedback loops, the least of which pertains to verification."

[J
institute for
17-214 28 SO

Advantages of test-driven development

e Clear place to start

* Iterative, agile design process

* Less wasted effort?

* Robust test suite, including regression tests

[J
institute for
17-214 29 SO

A test-driven development demo: Diamond Kata

* Given a letter, generate a diamond starting at ‘A’, with the given
letter at the widest point.
— e.g.,diamond('C") would generate:
A
B B

C C
B B
A

[J
institute for
17-214 30 SO

Test-driven development: Your impressions?

[J
institute for
17-214 31 SO

Empirical methods in software engineering

* How do we study the effectiveness of test-driven development
compared to other methodologies?

[J
institute for
17-214 32 SO

Research on test-driven development (1/2)

WebIDE vs Traditional Labs

 Hilton et al.: Students learn better when
forced to write tests first

 Bhat et al.: At Microsoft, projects using TDD
had greater than two times code quality,
but 15% more upfront setup time

 George et al.: TDD passed 18% more test cases, but took 16%
more time

e Scanniello et al.: Perceptions of TDD include: novices believe
TDD improves productivity at the expense of internal quality

[J
institute for
17-214 33 SO

Research on test-driven development (2/2)

* Fucci et al.: Results: The Kruskal-Wallis tests did not show any
significant difference between TDD and TLD in terms of testing
effort (p-value = .27), external code quality (p-value = .82), and
developers' productivity (p-value = .83).

* Fucci et al.: Conclusion: The claimed benefits of TDD may not be
due to its distinctive test-first dynamic, but rather due to the fact
that TDD-like processes encourage fine-grained, steady steps
that improve focus and flow.

[J
institute for
17-214 34 SO

Summary

* Software engineering requires consideration of many issues,
social and technical, above code-level considerations

* |nterested? Take 17-313

institute for
17-214 35 SO

