Principles of Software Construction:
Objects, Design, and Concurrency

Concurrency — part 3

Concurrent classes and libraries

Josh Bloch Charlie Garrod Darya Melicher

&:Iunmgiv Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

[]
institute f
17-214 : mbel
RESEARCH

Administrivia

* Homework 5b due 11:59 p.m. Tuesday

— Turn in by Wednesday 9 a.m. to be considered as a Best Framework

 Optional reading due today:

— Java Concurrency in Practice, Chapter 10

[
17-214 2 SOFTWARE
RESEARCH

Key concepts from Tuesday

Ideally, avoid shared mutable state

* If you can’t avoid it, synchronize properly
— If you don’t synchronize properly, your program won’t work

Even atomic operations require synchronization

If you use locks, watch out for deadlock!

[
17-214 3 SOFTWARE
RESEARCH

Unfinished business

°
institute ror

- SOFTWAR
17 214 4 RESEAI;\CI:-

Encapsulating synchronization
From last lecture

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();
private final Object lock = new Object();

public BankAccount(long balance) {
this.balance = balance;
}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {

BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first.lock) {
synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;

institute f
17-214 5 mbel
RESEARCH

Java Concurrency in Practice annotations (1/2)

@ThreadSafe public class BankAccount {
@guardedBy("lock") private long balance;
private final long id = SerialNumber.generateSerialNumber();
private final Object lock = new Object();

public BankAccount(long balance) {
this.balance = balance;
}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {

BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first.lock) {
synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;

17-214 6 SOFTWARE
RESEARCH

Java Concurrency in Practice annotations (2/2)

e Class level, publicly visible
— @Immutable
— @ThreadSafe
— @NotThreadSafe

* Field level, internal
— @GuardedBy (Many variants, see JCiP, page 334)

[
17-214 7 SOFTWARE
RESEARCH

Outline

|. Strategies for safety
Il. Building thread-safe data structures
Ill. Java libraries for concurrency (java.util.concurrent)

[]
institute f
17-214 g mbel
RESEARCH

Strategies for thread safety

* Thread-confined state — mutate but don’t share
e Shared read-only state — share but don’t mutate
* Shared thread-safe — object synchronizes itself internally
e Shared guarded — client synchronizes object(s) externally

[
.
17-214 o [Hf e
RESEARCH

Three kinds of thread-confined data

e Stack-confined

— Primitive local variables are never shared between threads

* Unshared object references

— The thread that creates an object must take action to share (“publish”)

— e.g., putitin ashared collection, store it in a static variable

* Thread-local variables

— Maintain a separate value for each thread

class ThreadLocal<T> {

17-214

ThreadLocal() ; // Initial value for each thread is null
static <S> ThreadLocal<S> withInitial (Supplier<S> supplier);

void set(T value); // Sets value for current thread
T get(); // Gets value for current thread

- S institute for
SOFTWARE
1 o RESEARCH

Shared read-only

* Immutable data is always safe to share
* So is mutable data that isn’t mutated

[J
institute for
17-214 11 SO

Shared thread-safe

* Thread-safe objects that perform internal synchronization

* You can build your own, but...
* You're better off using ones from java.util.concurrent

°
institute for
17-214 12 SO

Outline

|. Strategies for safety
Il. Building thread-safe data structures
Ill. Java libraries for concurrency (java.util.concurrent)

[J
institute for
17-214 13 SO

wait/notify — a primitive for cooperation
The basic idea is simple...

 State (fields) are guarded by a lock
* Sometimes, a thread can’t proceed till state is right

— So it waits with wait
— Automatically drops lock while waiting

* Thread that makes state right wakes waiting thread(s) with notify
— Waking thread must hold lock when it calls notify

— Waiting thread automatically gets lock when woken

°
institute for
17-214 14 SO

But the devil is in the details

Never invoke wait outside a loop!

* Loop tests condition before and after waiting
* Test before skips wait if condition already holds

— Necessary to ensure liveness
— Without it, thread can wait forever!
» Testing after waiting ensure safety
— Condition may not be true when thread wakes up
— If thread proceeds with action, it can destroy invariants!

[J
institute for
17-214 15 SO

All of your waits should look like this

synchronized (obj) {
while (<condition does not hold>) {
obj.wait();
}

. // Perform action appropriate to condition

[J
institute for
17-214 16 SO

Why can a thread wake from a wait when condition
does not hold?

* Another thread can slip in between notify & wake

* Another thread can invoke notify accidentally or maliciously
when condition does not hold
— This is a flaw in java locking design!
— Can work around flaw by using private lock object

* Notifier can be liberal in waking threads
— Using notifyAll is good practice, but causes this

* Waiting thread can wake up without a notify(!)

— Known as a spurious wakeup

°
institute for
17-214 17 SO

Defining your own thread-safe objects
* |dentify variables that represent the object's state

e Identify invariants that constrain the state variables
* Establish a policy for maintaining invariants

°
institute for
17-214 18 SO

A toy example: Read-write locks (a.k.a. shared/exclusive locks)

Sample client code:
private final RwLock lock = new RwLock();

lock.readLock();
try {

// Do stuff that requires read (shared) lock
} finally {

lock.unlock();

}

lock.writelLock();

try {
// Do stuff that requires write (exclusive) lock

} finally {
lock.unlock();

}

institute for
17-214 19 SO

A toy example: Read-write locks (implementation 1/2)

@ThreadSafe public class RwLock {
/** Num threads holding lock for read. */
@GuardedBy("this") // Intrinsic lock on RwLock object
private int numReaders = 0;

/** Whether lock is held for write. */
@GuardedBy("this")
private boolean writelLocked = false;

public synchronized void readLock() throws InterruptedException {
while (writelLocked) {
wait();
}

numReaders++;

institute for
17-214 20 SO

A toy example: Read-write locks (implementation 2/2)

public synchronized void writelLock() throws InterruptedException {
while (numReaders != @ || writeLocked) {
wait();
}

writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {
numReaders--;
} else if (writelLocked) {
writeLocked = false;
} else {
throw new IllegalStateException("Lock not held");

}
notifyAll(); // Wake any waiters

institute for
17-214 21 SO

Advice for building thread-safe objects

* Do as little as possible in synchronized region: getin, get out
— Obtain lock
— Examine shared data
— Transform as necessary
— Drop the lock

* If you must do something slow, move it outside the synchronized region

°
institute for
17-214 22 SO

Documentation

 Document a class’s thread safety guarantees for its clients
 Document a class’s synchronization policy for its maintainers
 Use @ThreadSafe, @GuardedBy annotations

— And any prose that is required

°
institute for
17-214 23 SO

Summary of our RwLock example

* Generally, avoid wait/notify
— Java.util.concurrent provides better alternatives

* Never invoke wait outside a loop
— Must check coordination condition after waking

* Generally use notifyAll, not notify
Do not use our RwLock —it's just a toy

[J
institute for
17-214 24 SO

Outline

|. Strategies for safety
Il. Building thread-safe data structures
Ill. Java libraries for concurrency (java.util.concurrent)

[J
institute for
17-214 25 SO

java.util.concurrent is BIG (1)

1. Atomic variables: java.util.concurrent.atomic

— Support various atomic read-modify-write ops

2. Executor framework
— Tasks, futures, thread pools, completion service, etc.
3. Locks: java.util.concurrent.locks

— Read-write locks, conditions, etc.

4. Synchronizers
— Semaphores, cyclic barriers, countdown latches, etc.

5. Concurrent collections
— Shared maps, sets, lists

°
institute for
17-214 26 SO

java.util.concurrent is BIG (2)

6. Data exchange collections

— Blocking queues, deques, etc.

7. Pre-packaged functionality: java.util.Arrays
— Parallel sort, parallel prefix

 Completable futures!

— Multistage asynchronous concurrent computations

* Flows
— Publish/subscribe service

* And more
— It just keeps growing

°
institute for
17-214 27 SO

1. Overview of java.util.concurrent.atomic

 Atomic{Boolean,Integer,Long}

— Boxed primitives that can be updated atomically
« AtomicReference<T>
— Object reference that can be updated atomically
« Atomic{Integer,Long,Reference}Array
— Array whose elements may be updated atomically
« Atomic{Integer,Long,Reference}FieldUpdater
— Reflection-based utility enabling atomic updates to volatile fields
 LongAdder, DoubleAdder
— Highly concurrent sums
* LongAccumulator, DoubleAccumulator
— Generalization of adder to arbitrary functions (max, min, etc.)

°
institute for
17-214 28 SO

Example: AtomiclLong

Concrete classes supporting atomic operations, such as

class AtomicLong { // We used this in generateSerialNumber()

17-214

long get();

void set(long newValue);

long getAndSet(long newValue);

long getAndAdd(long delta);

long getAndIncrement();

boolean compareAndSet(long expectedValue, long newValue);
long getAndUpdate(LongUnaryOperator updateFunction);

long updateAndGet(LongUnaryOperator updateFunction);

- S institute for
SOFTWARE
29 RESEARCH

AtomiclLong usage example
You’ve seen this before

public class SerialNumber {
private static AtomicLong nextSerialNumber = new AtomiclLong();

public static long generateSerialNumber() {
return nextSerialNumber.getAndIncrement();

}

institute for
17-214 30 SO

2. Executor framework overview

* Flexible interface-based task execution facility

e Key abstractions
— Runnable, Callable<T> - kinds of tasks

« Executor —thing that executes tasks
* Future<T>-—apromisetogiveyoua T
* Executor service — Executor that

— Lets you manage termination
— Can produce Future instances

°
institute for
17-214 31 SO

Executors — your one-stop shop for executor services

 Executors.newSingleThreadExecutor()
— A ssingle background thread

 newFixedThreadPool(int nThreads)
— A fixed number of background threads
 Executors.newCachedThreadPool()

— Grows in response to demand

°
institute for
17-214 32 SO

A very simple (but useful) executor service example

* Background execution of a long-lived worker thread

— To start the worker thread:

ExecutorService executor =
Executors.newSingleThreadExecutor();

— To submit a task for execution:
executor.execute(runnable);

— To terminate gracefully:
executor.shutdown(); // Allows tasks to finish

[J
institute for
17-214 33 SO

Other things you can do with an executor service

* Wait for a task to complete
Foo foo = executorSvc.submit(callable).get();

* Wait for any or all of a collection of tasks to complete
invoke{Any,All}(Collection<Callable<T>> tasks)

* Retrieve results as tasks complete
ExecutorCompletionService

e Schedule tasks for execution a time in the future
ScheduledThreadPoolExecutor

e etc., ad infinitum

[]
institut
17-214 34 SOFTOARE
RESEARCH

ForkJoinPool: executor service for ForkJoinTask
Dynamic, fine-grained parallelism with recursive task splitting

class SumOfSquaresTask extends RecursiveAction {
final long[] a; final int lo, hi; long sum;
SumOfSquaresTask(long[] array, int low, int high) {
a = array; lo = low; hi = high;

}

protected void compute() {

if (h - 1 < THRESHOLD) {

for (int i = 1; i < h; ++1)
sum += a[i] * a[i];

} else {
int mid = (lo + hi) >>> 1;
SumOfSquaresTask left = new SumOfSquaresTask(a, lo, mid);
left.fork(); // pushes task
SumOfSquaresTask right = new SumOfSquaresTask(a, mid, hi);
right.compute();
right.join(); // pops/runs or helps or waits
sum = left.sum + right.sum;

institute for
17-214 35 SO

3. Overview of java.util.concurrency.locks (1/2)

e ReentrantReadWritelLock

— Shared/Exclusive mode locks with tons of options

Fairness policy

Lock downgrading
Interruption of lock acquisition
Condition support
Instrumentation

e ReentrantLock
— Like Java's intrinsic locks

— But with more bells and whistles

17-214

36

institute for
SOFTWARE
RESEARCH

Overview of java.util.concurrency.locks (2/2)

« Condition

— wait/notify/notifyAll with multiple wait sets per object
 AbstractQueuedSynchronizer

— Skeletal implementation of locks relying on FIFO wait queue

 AbstractOwnableSynchronizer,
AbstractQueuedLongSynchronizer

— Fancier skeletal implementations

°
institute for
17-214 37 SO

ReentrantReadWritelLock example
Does this look vaguely familiar?

private final ReentrantReadWritelLock rwl =
new ReentrantReadWritelock();

rwl.readlLock().lock();

try {
// Do stuff that requires read (shared) lock

} finally {
rwl.readlLock().unlock();

}

rwl.writelLock().lock();

try {
// Do stuff that requires write (exclusive) lock

} finally {
rwl.writelLock().unlock();

}

[J
institute for
17-214 38 SO

4. Overview of synchronizers

* CountDownLatch

— One or more threads to wait for others to count down
e CyclicBarrier

— a set of threads wait for each other to be ready
 Semaphore

— Like a lock with a maximum number of holders (“permits”)

— Phaser — Cyclic barrier on steroids
— AbstractQueuedSynchronizer — roll your own!

°
institute for
17-214 39 SO

V. Concurrent collections

* Provide high performance and scalability

17-214

HashMap
HashSet
TreeMap
TreeSet

ConcurrentHashMap
ConcurrentHashSet
ConcurrentSkipListMap
ConcurrentSkipListSet

[J
institute for
SOFTWARE
40 RESEARCH

You can’t prevent concurrent use of a concurrent collection

* This works for synchronized collections...
Map<String, String> syncMap =
Collections.synchronizedMap(new HashMap<>());
synchronized(syncMap) {
if (!syncMap.containsKey("foo"))
syncMap.put("foo", "bar");
}
* But not for concurrent collections
— They do their own internal synchronization
— Never synchronize on a concurrent collection!

[J
institute for
17-214 a1 SO

Instead, use atomic read-modify-write methods

V putIfAbsent(K key, V value);

 boolean remove(Object key, Object value);

 V replace(K key, V value);

 boolean replace(K key, V oldValue, V newValue);
* V compute(K key, BiFunction<...> remappingFn);

* V computeIfAbsent(K key, Function<...> mappingFn);

* V computeIfPresent (K key, BiFunction<...> remapFn);
 V merge(K key, V value, BiFunction<...> remapFn);

°
institute for
17-214 a2 SO

Concurrent collection example: canonicalizing map

private final ConcurrentMap<T,T> map = new ConcurrentHashMap<>();

public T intern(T t) {
String previousValue = map.putIfAbsent(t, t);
return previousValue == null ? t : previousValue;

institute for
17-214 a3 SO

java.util.concurrent.ConcurrentHashMap

* Uses many techniques used to achieve high concurrency
— Over 6,000 lines of code

* The simplest of these is lock striping

— Multiple locks, each dedicated to a region of hash table

MALALA
L

Locks

Hash table
2 institute for
17-214 a4 SO

6. Data exchange collections summary
Hold elements for processing by another thread (producer/consumer)

 BlockingQueue — Supports blocking ops
— ArrayBlockingQueue, LinkedBlockingQueue
— PriorityBlockingQueue, DelayQueue
— SynchronousQueue
 BlockingDeque — Supports blocking ops
— LinkedBlockingDeque
* TransferQueue —BlockingQueue in which producers may
wait for consumers to receive elements
— LinkedTransferQueue

[J
institute for
17-214 a5 SO

Summary of BlockingQueue methods

Insert add(e) offer(e) put(e) offer(e, time, unit)
Remove remove() poll() take() poll(time, unit)
Examine element() peek() n/a n/a

institute for
17-214 a6 SO

Summary of BlockingDeque methods

First element (head) methods

: : . offerFirst(e
Insert addFirst(e offerFirst(e) putFirst(e , '
$L (e) p (e) time, unit)

Remove removeFirst() pollFirst() takeFirst() pollFirst(time,unit)
Examine getFirst() peekFirst() n/a n/a

Last element (tail) methods

offerLast(e,
time, unit)
Remove removelast() pollLast() takelLast() pollLast(time,unit)

Examine getlast() peekLast() n/a n/a

Insert addLast(e) offerLast(e) putLast(e)

17-214 - i

RESEARCH

Summary

* java.util.concurrent is big and complex

e Butit’s well designed and engineered
— Easy to do simple things
— Possible to do complex things

* Executor framework does for execution what collections did for
aggregation
* This talk just scratched the surface
— But you know the lay of the land and the javadoc is good

* Always better to use j.u.c than to roll your own!

°
institute for
17-214 a8 SO

