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Administrivia

e Homework 5 team sign-up deadline tonight
« Team sizes, presentation slots, ...
— Midterm exam in class Thursday (November 15)
* Review session today 7-9 p.m. Porter Hall 100
— Next required reading due Tuesday
e Java Concurrency in Practice, Sections 11.3 and 11.4

— Homework 5 frameworks discussion
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Today

* Some puzzlers
* API design conclusions
* Introduction to concurrency
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1. “Time for a Change” (2002)

If you pay $2.00 for a gasket that costs
$1.10, how much change do you get?

public class Change {
public static void main(String args[]) {
System.out.println(2.00 - 1.10);

}
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What does it print?

(@)0.9
(b) 0.90

(c) It varies
(d) None of the above

public class Change {
public static void main(String args[]) {
System.out.println(2.00 - 1.10);

}



What does it print?

(a) 0.9

(b) ©.90

(c) It varies

(d) None of the above: ©.8999999999999999

Decimal values can't be represented exactly
by float or double
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Another look

public class Change {
public static void main(String args[]) {
System.out.println(2.00 - 1.10);

}
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How do you fix it?

// You could fix it this way... -
import java.math.BigDecimal);/ Prints 0.90
public class Change {
public static void main(String args[]) {
System.out.println(
new BigDecimal("2.00").subtract(

new BigDecimal("1.10")));

// ...or you could fix it this way Prints 90

public class Change {
public static void main(String args[]) {
System.out.println(200 - 110);

}
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The moral

 Avoid float and double where exact answers are required
— For example, when dealing with money

 UseBigDecimal, int, or long instead
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2. “A Change is Gonna Come”

If you pay $2.00 for a gasket that costs
$1.10, how much change do you get?

import java.math.BigDecimal;

public class Change {
public static void main(String args[]) {
BigDecimal payment = new BigDecimal(2.00);
BigDecimal cost = new BigDecimal(1.10);
System.out.println(payment.subtract(cost));
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What does it print?

) O. 8999999999999999
) None of the above

(a) ©
(b
(c
(d

import java.math.BigDecimal;

public class Change {
public static void main(String args[]) {
BigDecimal payment = new BigDecimal(2.00);
BigDecimal cost = new BigDecimal(1.10);
System.out.println(payment.subtract(cost));
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What does it print?

(a)©.9

(b) ©.960

(c) ©.8999999999999999
(d) None of the above:

0.89999999999999991118215802998747
6/66109466552/734375

We used the wrong BigDecimal constructor
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Another look

The spec says:
public BigDecimal(double val)

Translates a double into a BigDecimal which is the
exact decimal representation of the double's binary
floating-point value.

import java.math.BigDecimal;

public class Change {
public static void main(String args[]) {
BigDecimal payment = new BigDecimal(2.00);
BigDecimal cost = new BigDecimal(1.10);
System.out.println(payment.subtract(cost));

17-214 13
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How do you fix it?

import java.math.BigDecimal; :
Prints ©.960

public class Change {
public static void main(String args[]) {
BigDecimal payment = new BigDecimal("2.00");
BigDecimal cost = new BigDecimal("1.10");
System.out.println(payment.subtract(cost));
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The moral

 Use new BigDecimal(String),
not new BigDecimal(double)
« BigDecimal.valueOf(double) is better, but not
perfect
— Use it for non-constant values.
* For API designers
— Make it easy to do the commonly correct thing

— Make it hard to misuse
— Make it possible to do exotic things
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Key concepts from last Thursday
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Key design principle: Information hiding

e "When in doubt, leave it out."
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Minimize mutability

* C(Classes should be immutable unless there's a good reason to do
otherwise
— Advantages: simple, thread-safe, reusable
e See java.lang.String
— Disadvantage: separate object for each value

 Mutable objects require careful management of visibility and
side effects
— e.g. Component.getSize() returns a mutable Dimension

* Document mutability
— Carefully describe state space
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Fail fast

* Report errors as soon as they are detectable
— Check preconditions at the beginning of each method
— Avoid dynamic type casts, run-time type-checking

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {
public Object put(Object key, Object value);

// Throws ClassCastException if this instance

// contains any keys or values that are not Strings
public void save(OutputStream out, String comments);
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Subtleties of information hiding

* Prevent subtle leaks of implementation details

17-214

Documentation

Lack of documentation
Implementation-specific return types
Implementation-specific exceptions
Output formats

implements Serializable
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Avoid behavior that demands special processing

Do notreturn null to indicate an empty value
— e.g., Use an empty Collection or array instead

e Do notreturn null to indicate an error

— Use an exception instead
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Throw exceptions only for exceptional behavior

* Do not force client to use exceptions for control flow:
private byte[] a = new byte[CHUNK SIZE];

void processBuffer (ByteBuffer buffer) {

try {
while (true) {

buffer.get(a);

}
} catch (BufferUnderflowException e) {

int remaining = buffer.remaining();
buffer.get(a, 9, remaining);

-
}

e Conversely, don’t fail silently:
ThreadGroup.enumerate(Thread[] list)
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Context: The exception hierarchy in Java

Object

e

Throwable

unchecked . R /

‘. 1 Exception checked

NullPointerExcepti * EOFException

FileNotFoundException

IndexOutOfBoundsException
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Avoid checked exceptions, if possible

* Overuse of checked exceptions causes boilerplate code:

try
Foo ¥ = (Foo) g.clone();

} catch (CloneNotSupportedException e) {
// This exception can't happen if Foo is Cloneable
throw new AssertionError(e);
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Don't let your output become your de facto API

 Document the fact that output formats may evolve in the future

* Provide programmatic access to all data available in string form

org.omg.CORBA.MARSHAL:
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
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at
at
at
at
at
at
at
at
at
at
at
at

ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
.ejs.oa.pool.ThreadPool$PooledWorker. run (ThreadPool.java:104)
ibm.

ibm

rmi.
rmi.
rmi.
rmi.
rmi.
rmi.
ejs.

io.ValueHandlerImpl

iiop.CDRInputStream.

io.ValueHandlerImpl
io.ValueHandlerImpl
io.ValueHandlerImpl

iiop.CDRInputStream.

com.ibm.ws.pmi.server.DataDescriptor; IllegalAccessException minor code: 4942F23E comg

.readValue (ValueHandlerImpl.java:199)
read value (CDRInputStream.java:1429)
.read Array (ValueHandlerImpl.java:625)
.readValueInternal (ValueHandlerImpl.java:273)
.readValue (ValueHandlerImpl.java:189)
read value (CDRInputStream.java:1429)

sm.beans. EJSRemoteStatelessPmiService Tie. invoke( EJSRemoteStatelessPmiService Tie. j:
CORBA.iiop.ExtendedServerDelegate.dispatch (ExtendedServerDelegate.java:515)
CORBA.iiop.ORB.process (ORB.java:2377)

CORBA.iiop.OrbWorker.run (OrbWorker.java:186)

ws.util.CachedThread.run (ThreadPool.java:137)
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Don't let your output become your de facto API

 Document the fact that output formats may evolve in the future

* Provide programmatic access to all data available in string form
public class Throwable {
public void printStackTrace(PrintStream s);
public StackTraceElement[] getStackTrace(); // since 1.4

public final class StackTraceElement {
public String getFileName();
public int getLineNumber();
public String getClassName();
public String getMethodName();
public boolean isNativeMethod();
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APl design summary

e Accept the fact that you, and others, will make mistakes
— Use your API as you design it
— Get feedback from others
— Hide information to give yourself maximum flexibility later
— Design for inattentive, hurried users
— Document religiously

* |t takes a lot of work to make something that appears obvious
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Semester overview

* Introduction to Java and O-O
* Introduction to design

— Design goals, principles, patterns
* Designing classes

— Design for change

— Design for reuse
e Designing (sub)systems

— Design for robustness

— Design for change (cont.)
* Design case studies
* Design for large-scale reuse

e Explicit concurrency

17-214

Crosscutting topics:

— Modern development tools:
IDEs, version control, build

automation, continuous
integration, static analysis

— Modeling and specification,
formal and informal

— Functional correctness: Testing,
static analysis, verification
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Concurrency, motivation and primitives

* The backstory

— Motivation, goals, problems, ...
* Concurrency primitives in Java

 Coming soon (not today):
— Higher-level abstractions for concurrency
— Program structure for concurrency
— Frameworks for concurrent computation
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Power requirements of a CPU

 Approx.: Capacitance * Voltage? * Frequency
* Toincrease performance:

— More transistors, thinner wires

* More power leakage: increase V
— Increase clock frequency F

e Change electrical state faster: increase V

* Dennard scaling: As transistors get smaller, power density is
approximately constant...
— ...until early 2000s

* Heat output is proportional to power input
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One option: fix the symptom

* Dissipate the heat
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One option: fix the symptom

e Better: Dissipate the heat with liquid nitrogen
— Overclocking by Tom's Hardware's 5 GHz project

i,
http://www.tomshardware.com/reviews/5-ghz-project,731-8.html
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Processor characteristics over time

Dotted line extrapolations by C. Moore

Transistors
(thousands)

Single-thread
Performance
(SpecINT)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and piotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
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Concurrency then and now

* |n the past, multi-threading just a convenient abstraction
— GUI design: event dispatch thread
— Server design: isolate each client's work
— Workflow design: isolate producers and consumers

 Now: required for scalability and performance
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We are all concurrent programmers

* Javaisinherently multithreaded
* To utilize modern processors, we must write multithreaded code

 Good news: a lot of it is written for you
— Excellent libraries exist (java.util.concurrent)

* Bad news: you still must understand fundamentals
— ...to use libraries effectively
— ...to debug programs that make use of them
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Aside: Concurrency vs. parallelism, visualized

* Concurrency without parallelism:

e Concurrency with parallelism:
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Basic concurrency in Java

* Aninterface representing a task
public interface Runnable {
void run();

¥

* Aclass to execute a task in a thread
public class Thread {
public Thread(Runnable task);
public void start();
public void join();

17-214
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Example: Money-grab (1)

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public long balance() {
return balance;

¥
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Example: Money-grab (2)

public static void main(String[] args) throws InterruptedException

{
BankAccount bugs = new BankAccount(100);

BankAccount daffy = new BankAccount(100);

Thread bugsThread = new Thread(()-> {
for (int i = 0; 1 < 1 000 _000; i++)
transferFrom(daffy, bugs, 100);
})s

Thread daffyThread = new Thread(()-> {
for (int 1 = 0; 1 < 1 000 _000; i++)
transferFrom(bugs, daffy, 100);

})s

bugsThread.start(); daffyThread.start();
bugsThread.join(); daffyThread.join();
System.out.println(bugs.balance() + daffy.balance());
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What went wrong?

* Daffy & Bugs threads had a race condition for shared data
— Transfers did not happen in sequence

* Reads and writes interleaved randomly

— Random results ensued
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The challenge of concurrency control

* Not enough concurrency control: safety failure
— Incorrect computation

 Too much concurrency control: liveness failure

— Possibly no computation at all (deadlock or livelock)
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Shared mutable state requires concurrency control

* Three basic choices:
1. Don't mutate: share only immutable state
2. Don't share: isolate mutable state in individual threads
3. If you must share mutable state: limit concurrency to achieve safety

[ J
institute for
17-214 42 SO



An easy fix:

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public synchronized long balance() {
return balance;

¥
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Concurrency control with Java's intrinsic locks

 synchronized (foo) { .. }
— Synchronizes entire block on object f00; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock
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Concurrency control with Java's intrinsic locks

 synchronized (foo) { .. }
— Synchronizes entire block on object f00; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock

 synchronized on aninstance method
— Equivalentto synchronized (this) { .. } for entire method

* synchronized on a static method in class Foo
— Equivalentto synchronized (Foo.class) { .. } for entire method
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Summary

* Like it or not, you’'re a concurrent programmer
* |deally, avoid shared mutable state

— If you can’t avoid it, synchronize properly
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