
1 17-214

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	42:	Concurrency	
	
Introduc9on	to	concurrency	
	
Josh	Bloch									Charlie	Garrod									Darya	Melicher	

2 17-214

Administrivia	

•  Homework	5	team	sign-up	deadline	tonight	
•  Team	sizes,	presenta9on	slots,	…	

–  Midterm	exam	in	class	Thursday	(November	1st)	
•  Review	session	today	7-9	p.m.	Porter	Hall	100	

–  Next	required	reading	due	Tuesday	
•  Java	Concurrency	in	Prac9ce,	Sec9ons	11.3	and	11.4	

–  Homework	5	frameworks	discussion	

3 17-214

Today	

•  Some	puzzlers	
•  API	design	conclusions	
•  Introduc9on	to	concurrency	

4 17-214

1.	“Time	for	a	Change” (2002)	

If	you	pay	$2.00	for	a	gasket	that	costs	
$1.10,	how	much	change	do	you	get?	

public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

From An Evening Of Puzzlers by Josh Bloch

5 17-214

What	does	it	print?	

(a) 0.9
(b) 0.90
(c) It varies
(d) None of the above

	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

6 17-214

(a)	0.9	
(b)	0.90	
(c)	It	varies	
(d)	None	of	the	above:	0.8999999999999999	

Decimal	values	can't	be	represented	exactly	
by float or double	

What	does	it	print?	

7 17-214

Another	look	

public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

8 17-214

How	do	you	fix	it?	

//	You	could	fix	it	this	way...	
import	java.math.BigDecimal;	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(
												new	BigDecimal("2.00").subtract(
																new	BigDecimal("1.10")));	
				}	
}	

	
//	...or	you	could	fix	it	this	way	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(200	-	110);	
				}	
}	

Prints	0.90	

Prints	90	

9 17-214

The	moral	

•  Avoid float and double	where	exact	answers	are	required	
–  For	example,	when	dealing	with	money	

•  Use	BigDecimal,	int,	or	long	instead	

10 17-214

2.	“A	Change	is	Gonna	Come”	

If	you	pay	$2.00	for	a	gasket	that	costs	
$1.10,	how	much	change	do	you	get?	

	
import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

11 17-214

What	does	it	print?	

import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

(a)	0.9	
(b)	0.90	
(c)	0.8999999999999999	
(d)	None of the above

12 17-214

(a)	0.9	
(b)	0.90	
(c)	0.8999999999999999	
(d)	None	of	the	above:	
0.89999999999999991118215802998747
6766109466552734375	

We	used	the	wrong	BigDecimal	constructor	

What	does	it	print?	

13 17-214

Another	look	

	
import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

The	spec	says:	
 public	BigDecimal(double	val)	
Translates	a	double	into	a	BigDecimal	which	is	the	
exact	decimal	representa9on	of	the	double's	binary	
floa9ng-point	value.		

14 17-214

How	do	you	fix	it?	

import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal("2.00");	
								BigDecimal	cost	=	new	BigDecimal("1.10");	
								System.out.println(payment.subtract(cost));	
				}	
}	

Prints	0.90	

15 17-214

The moral

•  Use new	BigDecimal(String),
not new	BigDecimal(double)	

•  BigDecimal.valueOf(double) is better, but not
perfect
–  Use it for non-constant values.

•  For API designers
–  Make it easy to do the commonly correct thing
–  Make it hard to misuse
–  Make it possible to do exotic things

16 17-214

Key	concepts	from	last	Thursday	

17 17-214

Key	design	principle:		Informa9on	hiding	

•  "When	in	doubt,	leave	it	out."	

18 17-214

Minimize	mutability	

•  Classes	should	be	immutable	unless	there's	a	good	reason	to	do	
otherwise	
–  Advantages:		simple,	thread-safe,	reusable	

•  See	java.lang.String	
–  Disadvantage:		separate	object	for	each	value	

•  Mutable	objects	require	careful	management	of	visibility	and	
side	effects	
–  e.g.	Component.getSize()	returns	a	mutable	Dimension	

•  Document	mutability	
–  Carefully	describe	state	space	

19 17-214

Fail	fast	

•  Report	errors	as	soon	as	they	are	detectable	
–  Check	precondi9ons	at	the	beginning	of	each	method	
–  Avoid	dynamic	type	casts,	run-9me	type-checking	

		//	A	Properties	instance	maps	Strings	to	Strings	
		public	class	Properties	extends	HashTable	{	
				public	Object	put(Object	key,	Object	value);	
	
				//	Throws	ClassCastException	if	this	instance	
				//	contains	any	keys	or	values	that	are	not	Strings	
				public	void	save(OutputStream	out,	String	comments);	
		}	

20 17-214

Subtle9es	of	informa9on	hiding	

•  Prevent	subtle	leaks	of	implementa9on	details	
–  Documenta9on	
–  Lack	of	documenta9on	
–  Implementa9on-specific	return	types	
–  Implementa9on-specific	excep9ons	
–  Output	formats	
–  implements	Serializable	

21 17-214

Avoid	behavior	that	demands	special	processing	

•  Do	not	return	null	to	indicate	an	empty	value	
–  e.g.,	Use	an	empty	Collection	or	array	instead	

•  Do	not	return	null	to	indicate	an	error	
–  Use	an	excep9on	instead	

22 17-214

Throw	excep9ons	only	for	excep9onal	behavior	

•  Do	not	force	client	to	use	excep9ons	for	control	flow:	
				private	byte[]	a	=	new	byte[CHUNK_SIZE];	
	
				void	processBuffer	(ByteBuffer	buffer)	{	
						try	{	
								while	(true)	{	
										buffer.get(a);	
										…	
								}	
						}	catch	(BufferUnderflowException	e)	{	
								int	remaining	=	buffer.remaining();	
								buffer.get(a,	0,	remaining);	
								…	
						}	
				}		

•  Conversely,	don’t	fail	silently:	
					ThreadGroup.enumerate(Thread[]	list)	

23 17-214

Context:		The	excep9on	hierarchy	in	Java	

Throwable	

Exception	

RuntimeException	 IOException	

EOFException	

FileNotFoundException	

NullPointerException	

IndexOutOfBoundsException	

ClassNotFoundException	… …

. . .

Object	

unchecked
checked

24 17-214

Avoid	checked	excep9ons,	if	possible	

•  Overuse	of	checked	excep9ons	causes	boilerplate	code:	
			try	{	

				Foo	f	=	(Foo)	g.clone();	
	}	catch	(CloneNotSupportedException	e)	{	
				//	This	exception	can't	happen	if	Foo	is	Cloneable	
				throw	new	AssertionError(e);	
	}	

25 17-214

Don't	let	your	output	become	your	de	facto	API	

•  Document	the	fact	that	output	formats	may	evolve	in	the	future	
•  Provide	programma9c	access	to	all	data	available	in	string	form	

26 17-214

Don't	let	your	output	become	your	de	facto	API	

•  Document	the	fact	that	output	formats	may	evolve	in	the	future	
•  Provide	programma9c	access	to	all	data	available	in	string	form	

	public	class	Throwable	{	
			public	void	printStackTrace(PrintStream	s);	
			public	StackTraceElement[]	getStackTrace();	//	since	1.4	
	}	
	
	public	final	class	StackTraceElement	{	
			public	String		getFileName();	
			public	int					getLineNumber();	
			public	String		getClassName();	
			public	String		getMethodName();	
			public	boolean	isNativeMethod();	
	}	

27 17-214

API	design	summary	

•  Accept	the	fact	that	you,	and	others,	will	make	mistakes	
–  Use	your	API	as	you	design	it	
–  Get	feedback	from	others	
–  Hide	informa9on	to	give	yourself	maximum	flexibility	later	
–  Design	for	inaien9ve,	hurried	users	
–  Document	religiously	

•  It	takes	a	lot	of	work	to	make	something	that	appears	obvious	

28 17-214

Semester	overview	

•  Introduc9on	to	Java	and	O-O	
•  Introduc9on	to	design	

–  Design	goals,	principles,	paierns	
•  Designing	classes	

–  Design	for	change	
–  Design	for	reuse	

•  Designing	(sub)systems	
–  Design	for	robustness	
–  Design	for	change	(cont.)	

•  Design	case	studies	
•  Design	for	large-scale	reuse	
•  Explicit	concurrency	

•  Crosscukng	topics:	
–  Modern	development	tools:	

IDEs,	version	control,	build	
automa9on,	con9nuous	
integra9on,	sta9c	analysis	

–  Modeling	and	specifica9on,	
formal	and	informal	

–  Func9onal	correctness:	Tes9ng,	
sta9c	analysis,	verifica9on	

29 17-214

Concurrency,	mo9va9on	and	primi9ves	

•  The	backstory	
–  Mo9va9on,	goals,	problems,	…	

•  Concurrency	primi9ves	in	Java	
•  Coming	soon	(not	today):	

–  Higher-level	abstrac9ons	for	concurrency	
–  Program	structure	for	concurrency	
–  Frameworks	for	concurrent	computa9on	

30 17-214

Power	requirements	of	a	CPU	

•  Approx.:		Capacitance	*	Voltage2	*	Frequency	
•  To	increase	performance:	

–  More	transistors,	thinner	wires	
•  More	power	leakage:		increase	V	

–  Increase	clock	frequency	F	
•  Change	electrical	state	faster:		increase	V	

•  Dennard	scaling:		As	transistors	get	smaller,	power	density	is	
approximately	constant…	
–  …un9l	early	2000s	

•  Heat	output	is	propor9onal	to	power	input	

31 17-214

One	op9on:		fix	the	symptom	

•  Dissipate	the	heat	

32 17-214

One	op9on:		fix	the	symptom	

•  Beier:		Dissipate	the	heat	with	liquid	nitrogen	
–  Overclocking	by	Tom's	Hardware's	5	GHz	project	

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html

33 17-214

Processor	characteris9cs	over	9me	

34 17-214

Concurrency	then	and	now	

•  In	the	past,	mul9-threading	just	a	convenient	abstrac9on	
–  GUI	design:		event	dispatch	thread	
–  Server	design:		isolate	each	client's	work	
–  Workflow	design:		isolate	producers	and	consumers	

•  Now:		required	for	scalability	and	performance	

35 17-214

We	are	all	concurrent	programmers	

•  Java	is	inherently	mul9threaded	
•  To	u9lize	modern	processors,	we	must	write	mul9threaded	code	
•  Good	news:	a	lot	of	it	is	wriien	for	you	

–  Excellent	libraries	exist	(java.util.concurrent)	
•  Bad	news:	you	s9ll	must	understand	fundamentals	

–  …to	use	libraries	effec9vely	
–  …to	debug	programs	that	make	use	of	them	

36 17-214

Aside:		Concurrency	vs.	parallelism,	visualized	

•  Concurrency	without	parallelism:	

•  Concurrency	with	parallelism:	

37 17-214

Basic	concurrency	in	Java	

•  An	interface	represen9ng	a	task	
public	interface	Runnable	{	
				void	run();	
}	

•  A	class	to	execute	a	task	in	a	thread	
public	class	Thread	{	
				public	Thread(Runnable	task);	
				public	void	start();	
				public	void	join();			
				…	
}	

38 17-214

Example:	Money-grab	(1)	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								source.balance	-=	amount;	
								dest.balance			+=	amount;	
				}	
				public	long	balance()	{	
								return	balance;	
				}	
}	

39 17-214

Example:	Money-grab	(2)	
public	static	void	main(String[]	args)	throws	InterruptedException	

{	
				BankAccount	bugs	=	new	BankAccount(100);	
				BankAccount	daffy	=	new	BankAccount(100);	
					
				Thread	bugsThread	=	new	Thread(()->	{	
								for	(int	i	=	0;	i	<	1_000_000;	i++)	
												transferFrom(daffy,	bugs,	100);	
				});	
					
				Thread	daffyThread	=	new	Thread(()->	{	
								for	(int	i	=	0;	i	<	1_000_000;	i++)	
												transferFrom(bugs,	daffy,	100);	
				});	
					
				bugsThread.start();	daffyThread.start();	
				bugsThread.join();	daffyThread.join();	
				System.out.println(bugs.balance()	+	daffy.balance());	
}	

40 17-214

What	went	wrong?	

•  Daffy	&	Bugs	threads	had	a	race	condi.on	for	shared	data	
–  Transfers	did	not	happen	in	sequence	

•  Reads	and	writes	interleaved	randomly	
–  Random	results	ensued	

41 17-214

The	challenge	of	concurrency	control	

•  Not	enough	concurrency	control:		safety	failure	
–  Incorrect	computa9on	

•  Too	much	concurrency	control:		liveness	failure	
–  Possibly	no	computa9on	at	all	(deadlock	or	livelock)	

42 17-214

Shared	mutable	state	requires	concurrency	control	

•  Three	basic	choices:	
1.  Don't	mutate:		share	only	immutable	state	
2.  Don't	share:		isolate	mutable	state	in	individual	threads	
3.  If	you	must	share	mutable	state:		limit	concurrency	to	achieve	safety	

43 17-214

An	easy	fix:	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	synchronized	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								source.balance	-=	amount;	
								dest.balance			+=	amount;	
				}	
				public	synchronized	long	balance()	{	
								return	balance;	
				}	
}	

44 17-214

Concurrency	control	with	Java's	intrinsic	locks	

•  synchronized	(foo)	{	…	}		
–  Synchronizes	en9re	block	on	object	foo;	cannot	forget	to	unlock	
–  Intrinsic	locks	are	exclusive:	One	thread	at	a	9me	holds	the	lock	
–  Intrinsic	locks	are	reentrant:		A	thread	can	repeatedly	get	same	lock	

45 17-214

Concurrency	control	with	Java's	intrinsic	locks	

•  synchronized	(foo)	{	…	}		
–  Synchronizes	en9re	block	on	object	foo;	cannot	forget	to	unlock	
–  Intrinsic	locks	are	exclusive:	One	thread	at	a	9me	holds	the	lock	
–  Intrinsic	locks	are	reentrant:		A	thread	can	repeatedly	get	same	lock	

•  synchronized	on	an	instance	method		
–  Equivalent	to		synchronized	(this)	{	…	}	for	en9re	method	

•  synchronized	on	a		sta9c	method	in	class	Foo	
–  Equivalent	to		synchronized	(Foo.class)	{	…	}	for	en9re	method	

46 17-214

Summary	

•  Like	it	or	not,	you’re	a	concurrent	programmer	
•  Ideally,	avoid	shared	mutable	state	

–  If	you	can’t	avoid	it,	synchronize	properly	

