Principles of Software Construction:

Objects, Design, and Concurrency
Part 42: Concurrency

Introduction to concurrency

Josh Bloch Charlie Garrod

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

17-214

Darya Melicher

1

institute for
SOFTWARE
RESEARCH

Administrivia

e Homework 5 team sign-up deadline tonight
« Team sizes, presentation slots, ...
— Midterm exam in class Thursday (November 15)
* Review session today 7-9 p.m. Porter Hall 100
— Next required reading due Tuesday
e Java Concurrency in Practice, Sections 11.3 and 11.4

— Homework 5 frameworks discussion

°

institute for

- SOFTWARE
17-214 2

Today

* Some puzzlers
* API design conclusions
* Introduction to concurrency

institute for
- SOFTWARE
17 2 14 3 RESEAI;\CH

1. “Time for a Change” (2002)

If you pay $2.00 for a gasket that costs
$1.10, how much change do you get?

public class Change {
public static void main(String args[]) {
System.out.println(2.00 - 1.10);

}

} JAVA’
P 7Zl ERS

Q"ﬁ"h 55

- e for
17-214 From An Evening Of Puzzlers by Josh Bloch 4 E?;Féi“{‘c’ﬁ

17-214

What does it print?

(@)0.9
(b) 0.90

(c) It varies
(d) None of the above

public class Change {
public static void main(String args[]) {
System.out.println(2.00 - 1.10);

}

What does it print?

(a) 0.9

(b) ©.90

(c) It varies

(d) None of the above: ©.8999999999999999

Decimal values can't be represented exactly
by float or double

(]
institute for
17-214 I | S [Euvs:

Another look

public class Change {
public static void main(String args[]) {
System.out.println(2.00 - 1.10);

}

institute for
- SOFTWARE
17 2 14 7 RESEAI;\CH

How do you fix it?

// You could fix it this way... -
import java.math.BigDecimal);/ Prints 0.90
public class Change {
public static void main(String args[]) {
System.out.println(
new BigDecimal("2.00").subtract(

new BigDecimal("1.10")));

// ...or you could fix it this way Prints 90

public class Change {
public static void main(String args[]) {
System.out.println(200 - 110);

}

institute for
17-214 8 SO

The moral

 Avoid float and double where exact answers are required
— For example, when dealing with money

 UseBigDecimal, int, or long instead

°
institute for

- SOFTWARE
17-214 o

2. “A Change is Gonna Come”

If you pay $2.00 for a gasket that costs
$1.10, how much change do you get?

import java.math.BigDecimal;

public class Change {
public static void main(String args[]) {
BigDecimal payment = new BigDecimal(2.00);
BigDecimal cost = new BigDecimal(1.10);
System.out.println(payment.subtract(cost));

17-214 10

~—wry
RC; R
Vet |®

Y Sam,

Shake

A Change Is
Gonna Come

. . .
institute for

I S SOFTWARE
RESEARCH

What does it print?

) O. 8999999999999999
) None of the above

(a) ©
(b
(c
(d

import java.math.BigDecimal;

public class Change {
public static void main(String args[]) {
BigDecimal payment = new BigDecimal(2.00);
BigDecimal cost = new BigDecimal(1.10);
System.out.println(payment.subtract(cost));

. nstitute for
17-214 11 SO

What does it print?

(a)©.9

(b) ©.960

(c) ©.8999999999999999
(d) None of the above:

0.89999999999999991118215802998747
6/66109466552/734375

We used the wrong BigDecimal constructor

- institute ror
17-214 12 [NYf o

Another look

The spec says:
public BigDecimal(double val)

Translates a double into a BigDecimal which is the
exact decimal representation of the double's binary
floating-point value.

import java.math.BigDecimal;

public class Change {
public static void main(String args[]) {
BigDecimal payment = new BigDecimal(2.00);
BigDecimal cost = new BigDecimal(1.10);
System.out.println(payment.subtract(cost));

17-214 13

institute for
SOFTWARE
RESEARCH

How do you fix it?

import java.math.BigDecimal; :
Prints ©.960

public class Change {
public static void main(String args[]) {
BigDecimal payment = new BigDecimal("2.00");
BigDecimal cost = new BigDecimal("1.10");
System.out.println(payment.subtract(cost));

institute for
17-214 14 SO

The moral

 Use new BigDecimal(String),
not new BigDecimal(double)
« BigDecimal.valueOf(double) is better, but not
perfect
— Use it for non-constant values.
* For API designers
— Make it easy to do the commonly correct thing

— Make it hard to misuse
— Make it possible to do exotic things

[J
institute for
17-214 15 SO

Key concepts from last Thursday

[J
institute for
17-214 16 SO

Key design principle: Information hiding

e "When in doubt, leave it out."

[J
institute for
17-214 17 SO

Minimize mutability

* C(Classes should be immutable unless there's a good reason to do
otherwise
— Advantages: simple, thread-safe, reusable
e See java.lang.String
— Disadvantage: separate object for each value

 Mutable objects require careful management of visibility and
side effects
— e.g. Component.getSize() returns a mutable Dimension

* Document mutability
— Carefully describe state space

[J
institute for
17-214 18 SO

Fail fast

* Report errors as soon as they are detectable
— Check preconditions at the beginning of each method
— Avoid dynamic type casts, run-time type-checking

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {
public Object put(Object key, Object value);

// Throws ClassCastException if this instance

// contains any keys or values that are not Strings
public void save(OutputStream out, String comments);

[J
institute for
17-214 19 SO

Subtleties of information hiding

* Prevent subtle leaks of implementation details

17-214

Documentation

Lack of documentation
Implementation-specific return types
Implementation-specific exceptions
Output formats

implements Serializable

20

institute for
SOFTWARE
RESEARCH

Avoid behavior that demands special processing

Do notreturn null to indicate an empty value
— e.g., Use an empty Collection or array instead

e Do notreturn null to indicate an error

— Use an exception instead

[J
institute for
17-214 21 SO

Throw exceptions only for exceptional behavior

* Do not force client to use exceptions for control flow:
private byte[] a = new byte[CHUNK SIZE];

void processBuffer (ByteBuffer buffer) {

try {
while (true) {

buffer.get(a);

}
} catch (BufferUnderflowException e) {

int remaining = buffer.remaining();
buffer.get(a, 9, remaining);

-
}

e Conversely, don’t fail silently:
ThreadGroup.enumerate(Thread[] list)

[J
institute for
17-214 22 SO

Context: The exception hierarchy in Java

Object

e

Throwable

unchecked . R /

‘. 1 Exception checked

NullPointerExcepti * EOFException

FileNotFoundException

IndexOutOfBoundsException
17-214 » [ElES

Avoid checked exceptions, if possible

* Overuse of checked exceptions causes boilerplate code:

try
Foo ¥ = (Foo) g.clone();

} catch (CloneNotSupportedException e) {
// This exception can't happen if Foo is Cloneable
throw new AssertionError(e);

[J
institute for
17-214 24 SO

Don't let your output become your de facto API

 Document the fact that output formats may evolve in the future

* Provide programmatic access to all data available in string form

org.omg.CORBA.MARSHAL:
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
com.

17-214

at
at
at
at
at
at
at
at
at
at
at
at

ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
ibm.
.ejs.oa.pool.ThreadPool$PooledWorker. run (ThreadPool.java:104)
ibm.

ibm

rmi.
rmi.
rmi.
rmi.
rmi.
rmi.
ejs.

io.ValueHandlerImpl

iiop.CDRInputStream.

io.ValueHandlerImpl
io.ValueHandlerImpl
io.ValueHandlerImpl

iiop.CDRInputStream.

com.ibm.ws.pmi.server.DataDescriptor; IllegalAccessException minor code: 4942F23E comg

.readValue (ValueHandlerImpl.java:199)
read value (CDRInputStream.java:1429)
.read Array (ValueHandlerImpl.java:625)
.readValueInternal (ValueHandlerImpl.java:273)
.readValue (ValueHandlerImpl.java:189)
read value (CDRInputStream.java:1429)

sm.beans. EJSRemoteStatelessPmiService Tie. invoke(EJSRemoteStatelessPmiService Tie. j:
CORBA.iiop.ExtendedServerDelegate.dispatch (ExtendedServerDelegate.java:515)
CORBA.iiop.ORB.process (ORB.java:2377)

CORBA.iiop.OrbWorker.run (OrbWorker.java:186)

ws.util.CachedThread.run (ThreadPool.java:137)

- S institute for
SOFTWARE
25 RESEARCH

Don't let your output become your de facto API

 Document the fact that output formats may evolve in the future

* Provide programmatic access to all data available in string form
public class Throwable {
public void printStackTrace(PrintStream s);
public StackTraceElement[] getStackTrace(); // since 1.4

public final class StackTraceElement {
public String getFileName();
public int getLineNumber();
public String getClassName();
public String getMethodName();
public boolean isNativeMethod();

. nstitute for
17-214 26 SO

APl design summary

e Accept the fact that you, and others, will make mistakes
— Use your API as you design it
— Get feedback from others
— Hide information to give yourself maximum flexibility later
— Design for inattentive, hurried users
— Document religiously

* |t takes a lot of work to make something that appears obvious

[J
institute for
17-214 27 SO

Semester overview

* Introduction to Java and O-O
* Introduction to design

— Design goals, principles, patterns
* Designing classes

— Design for change

— Design for reuse
e Designing (sub)systems

— Design for robustness

— Design for change (cont.)
* Design case studies
* Design for large-scale reuse

e Explicit concurrency

17-214

Crosscutting topics:

— Modern development tools:
IDEs, version control, build

automation, continuous
integration, static analysis

— Modeling and specification,
formal and informal

— Functional correctness: Testing,
static analysis, verification

- S institute for
SOFTWARE
28 RESEARCH

Concurrency, motivation and primitives

* The backstory

— Motivation, goals, problems, ...
* Concurrency primitives in Java

 Coming soon (not today):
— Higher-level abstractions for concurrency
— Program structure for concurrency
— Frameworks for concurrent computation

[J
institute for
17-214 29 SO

Power requirements of a CPU

 Approx.: Capacitance * Voltage? * Frequency
* Toincrease performance:

— More transistors, thinner wires

* More power leakage: increase V
— Increase clock frequency F

e Change electrical state faster: increase V

* Dennard scaling: As transistors get smaller, power density is
approximately constant...
— ...until early 2000s

* Heat output is proportional to power input

[J
institute for
17-214 30 SO

One option: fix the symptom

* Dissipate the heat

institute for
17-214 31 SO

One option: fix the symptom

e Better: Dissipate the heat with liquid nitrogen
— Overclocking by Tom's Hardware's 5 GHz project

i,
http://www.tomshardware.com/reviews/5-ghz-project,731-8.html
17-214 32

institute for
I S SOFTWARE
RESEARCH

Processor characteristics over time

Dotted line extrapolations by C. Moore

Transistors
(thousands)

Single-thread
Performance
(SpecINT)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and piotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten

17-214

33

institute for
SOFTWARE
RESEARCH

Concurrency then and now

* |n the past, multi-threading just a convenient abstraction
— GUI design: event dispatch thread
— Server design: isolate each client's work
— Workflow design: isolate producers and consumers

 Now: required for scalability and performance

[J
institute for
17-214 34 SO

We are all concurrent programmers

* Javaisinherently multithreaded
* To utilize modern processors, we must write multithreaded code

 Good news: a lot of it is written for you
— Excellent libraries exist (java.util.concurrent)

* Bad news: you still must understand fundamentals
— ...to use libraries effectively
— ...to debug programs that make use of them

[J
institute for
17-214 35 SO

Aside: Concurrency vs. parallelism, visualized

* Concurrency without parallelism:

e Concurrency with parallelism:

[J
institute for
17-214 36 SO

Basic concurrency in Java

* Aninterface representing a task
public interface Runnable {
void run();

¥

* Aclass to execute a task in a thread
public class Thread {
public Thread(Runnable task);
public void start();
public void join();

17-214

37

institute for
SOFTWARE
RESEARCH

Example: Money-grab (1)

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public long balance() {
return balance;

¥

[J
institute for
17-214 38 SO

Example: Money-grab (2)

public static void main(String[] args) throws InterruptedException

{
BankAccount bugs = new BankAccount(100);

BankAccount daffy = new BankAccount(100);

Thread bugsThread = new Thread(()-> {
for (int i = 0; 1 < 1 000 _000; i++)
transferFrom(daffy, bugs, 100);
})s

Thread daffyThread = new Thread(()-> {
for (int 1 = 0; 1 < 1 000 _000; i++)
transferFrom(bugs, daffy, 100);

})s

bugsThread.start(); daffyThread.start();
bugsThread.join(); daffyThread.join();
System.out.println(bugs.balance() + daffy.balance());

institute for
17-214 39 SO

What went wrong?

* Daffy & Bugs threads had a race condition for shared data
— Transfers did not happen in sequence

* Reads and writes interleaved randomly

— Random results ensued

[J
institute for
17-214 a0 SO

The challenge of concurrency control

* Not enough concurrency control: safety failure
— Incorrect computation

 Too much concurrency control: liveness failure

— Possibly no computation at all (deadlock or livelock)

[J
institute for
17-214 a1 SO

Shared mutable state requires concurrency control

* Three basic choices:
1. Don't mutate: share only immutable state
2. Don't share: isolate mutable state in individual threads
3. If you must share mutable state: limit concurrency to achieve safety

[J
institute for
17-214 42 SO

An easy fix:

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;
}
public synchronized long balance() {
return balance;

¥

[J
institute for
17-214 a3 SO

Concurrency control with Java's intrinsic locks

 synchronized (foo) { .. }
— Synchronizes entire block on object f00; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock

[J
institute for
17-214 a4 SO

Concurrency control with Java's intrinsic locks

 synchronized (foo) { .. }
— Synchronizes entire block on object f00; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock

 synchronized on aninstance method
— Equivalentto synchronized (this) { .. } for entire method

* synchronized on a static method in class Foo
— Equivalentto synchronized (Foo.class) { .. } for entire method

[J
institute for
17-214 as SO

Summary

* Like it or not, you’'re a concurrent programmer
* |deally, avoid shared mutable state

— If you can’t avoid it, synchronize properly

institute for
17-214 a6 SO

