Principles of Software Construction:
Objects, Design, and Concurrency

Design case studies

The Java Collections Framework

Josh Bloch Charlie Garrod Darya Melicher

&:urm‘gh- Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH

[]
institute F
17-214 1 e
RESEARCH

Administrivia

e Homework 4b due next Thursday, October 17th
— Homework 4a feedback coming tomorrow or Thursday

[]
institute F
17-214 5 e
RESEARCH

Key concepts from last Thursday

e Use the observer pattern to decouple two-way dependences
e Multi-threaded programming is genuinely hard

— Neither under- nor over-synchronize
— Immutable types are your friend

e GUI programming is inherently multi-threaded
— Swing calls must be made on the event dispatch thread
— No other significant work should be done on the EDT

[]
institute F
17-214 3 e
RESEARCH

Key concepts from last recitation

* GUI programming is not pretty
e GUI programming is a bit tedious
e Butit’s not magic, and you can do it

®
institute f
17-214 a SOFTWARE
RESEARCH

®
We take you back now to the late "90s

e |twas asimpler time
— Javahad onlyVector,Hashtable & Enumeration
— But it needed more; platform was growing!

e The barbarians were pounding the gates
— JGL was a transliteration of STL to Java
— It had 130 (!) classes and interfaces
— The JGL designers wanted badly to put it in the JDK

e |t fell to me to design something better ©

[]
institute F
17-214 5 e
RESEARCH

Presenter
Presentation Notes
I spent a good chunk of 1997 designing the Java collections framework.

B
Here’s the first collections talk ever

e Debuted at JavaOne 1998

* No one knew what a collections framework was
— Or why they needed one

e Talk aimedto
— Explain the concept
— Sell Java programmers on this framework
— Teach them to use it

[]
institute F
17-214 6 e
RESEARCH

Presenter
Presentation Notes
I wanted the audience to leave the talk thinking “Java collections are great, and now I know how to use them.”

17-214

The Java™ Platform
Collections Framework

Joshua Bloch
Sr. Staff Engineer, Collections Architect

Sun Microsystems, Inc. g%t /
=

Presenter
Presentation Notes
Mention the old version of the cup and steam logo, company that doesn’t exist any more.

What is a Collection?

 Object that groups elements

* Main Uses
— Data storage and retrieval
— Data transmission

e Familiar Examples
— java.util.Vector
— java.util.Hashtable
— array

A
=

JAVA

institute f
17-214 8 SOFTWARE
RESEARCH

What is a Collections Framework?

e Unified Architecture

— Interfaces - implementation-independence
— Implementations - reusable data structures
— Algorithms - reusable functionality

e Best-known examples
— C++ Standard Template Library (STL)
— Smalltalk collections

A
=

JAVA

institute f
17-214 9 SOFTWARE
RESEARCH

Benefits

e Reduces programming effort

* Increases program speed and quality
e Interoperability among unrelated APIs
 Reduces effort to learn new APIs

e Reduces effort to design new APlIs

e Fosters software reuse

%@g
JAVA

institute for
17-214 10 SO

Design Goals

e Small and simple

e Reasonably powerful

e Easily extensible

e Compatible with preexisting collections
* Must feel familiar

%é
JAVA

institute for
17-214 11 SO

Architecture Overview

e Core Collection Interfaces

e General-Purpose Implementations
e Wrapper Implementations

e Abstract Implementations

e Algorithms

%@g
JAVA

institute for
17-214 12 SO

Core Collection Interfaces

)
SortedSet
=

Se——"

JAVA

institute for
17-214 13 SOrAlE

.

Collection Interface

public interface Collection<E> {
int size();

boolean
boolean
boolean
boolean

isEmpty();

contains(Object element);

add(E element); // Optional
remove(Object element); // Optional

Iterator<E> iterator();

Object[] toArray();
T[] toArray(T al[]);

// Bulk Operations
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? Extends E> c); // Optional
boolean removeAll(Collection<?> c); // Optional .
boolean retainAll(Collection<?> c); // Optional gééiép
void clear(); // Optional =
} <é§§§;¢
JAVA
17-214 o [H 85

Presenter
Presentation Notes
Notice that I have added generics to this talk; that’s pretty much the only change I’ve made to the original talk, because I thought that it would be wrong to present raw types, which are very dangerous.

Iterator Interface

 Replacement for Enumeration interface
— Adds remove method
— Improves method names

public interface Iterator<E> {
boolean hasNext();
E next();
void remove(); // Optional

A
=

JAVA

institute for
17-214 15 SO

Collection Example
Reusable algorithm to eliminate nulls

public static boolean removeNulls(Collection<?> c) {
for (Iterator<?> i = c.iterator(); i.hasNext();) {
if (i.next() == null)
i.remove();

A
=

JAVA

institute for
17-214 16 SO

Set Interface

 Adds no methods to Collection!
e Adds stipulation: no duplicate elements
 Mandates equals and hashCode calculation

public interface Set<E> extends Collection<E> {

}

%@g
JAVA

institute for
17-214 17 SO

Set Idioms

Set<Type> sl, s2;
boolean isSubset = sl.containsAll(s2);

Set<Type> union = new HashSet<>(sl1);
union = union.addAll(s2);

Set<Type> intersection = new HashSet<>(sl);
intersection.retainAll(s2);

Set<Type> difference = new HashSet<>(sl);
difference.removeAll(s2);

Collection<Type> c;)
Collection<Type> noDups = new HashSet<>(c); gééi%p
=

JAVA

institute for
17-214 18 SO

List Interface
A sequence of objects

public interface List<E> extends Collection<E> {
E get(int index);

E set(int index, E element); // Optional
void add(int index, E element); // Optional
Object remove(int index); // Optional

boolean addAll(int index, Collection<? extends E> c);

// Optional
int indexOf(Object o0);
int lastIndexOf(Object 0);

List<E> subList(int from, int to);
ListIterator<E> listIterator(); /
ListIterator<E> listIterator(int index);

=

} S—=

JAVA

institute for
17-214 19 SO

.

List Example
Reusable algorithms to swap and randomize

public static <E> void swap(List<E> a, int i, int j) {
E tmp = a.get(i);
a.set(i, a.get(j));
a.set(j, tmp);

private static Random r = new Random();

public static void shuffle(List<?> a) {
for (int i = a.size(); i > 1; i--)
swap(a, i - 1, r.nextInt(i));
} (%ﬁ
=

JAVA

institute for
17-214 20 SO

Presenter
Presentation Notes
Fisher-Yates shuffle algorithm

List Idioms

List<Type> a, b;

// Concatenate two lists
a.addAll(b);

// Range-remove
a.subList(from, to).clear();

// Range-extract
List<Type> partView = a.sublList(from, to);
List<Type> part = new ArraylList<>(partView);

partView.clear(); gg%i%p
=

e

JAVA

institute for
17-214 21 SO

Map Interface
A key-value mapping

public interface Map<K,V> {
int size();
boolean isEmpty();
boolean containsKey(Object key);
boolean containsValue(Object value);
Object get(Object key);
Object put(K key, V value); // Optional
Object remove(Object key); // Optional
void putAll(Map<? Extends K, ? Extends V> t); // Opt.
void clear(); // Optional

// Collection Views

public Set<K> keySet();)

public Collection<V> values();
ublic Set<Map.Entry<K,V>> entrySet(); =

} p p y ySet() =

JAVA

institute for
17-214 22 SO

.

Map Idioms

// Iterate over all keys in Map m

Map<Key, Val> m;

for (iterator<Key> i = m.keySet().iterator(); i.hasNext();)
System.out.println(i.next());

// Iterate over all keys in Map m as of Java 5 (2004)
for (Key k : m.keySet())
System.out.println(i.next());

// "Map algebra"
Map<Key, Val> a, b;
boolean isSubMap = a.entrySet().containsAll(b.entrySet());

Set<Key> commonKeys =

new HashSet<>(a.keySet()).retainAll(b.keySet); [sic!])
//Remove keys from a that have mappings in b »
a.keySet().removeAll(b.keySet()); Gg 3

JAVA

institute for
17-214 23 SO

Presenter
Presentation Notes
This bug was present in the talk I gave in 1998, and is indicative of a real problem in the API that is still present today. One might expect retainAll (and other collection ops) to return the collection, but they don’t; they return a boolean. When the author of an API can’t use it properly, it’s a bad sign! Even a good API like collections is far from perfect.

General Purpose Implementations
Consistent Naming and Behavior

Implementations

Hash Resizable | Balanced | Linked
Table Array Tree E

HashSet TreeSet

Interfaces | List ArrayList

—

e

JAVA

institute for
17-214 24 SOrAlE

Choosing an Implementation

e Set
— HashSet -- O(1) access, no order guarantee

— TreeSet -- O(log n) access, sorted
* Map
— HashMap -- (See HashSet)
— TreeMap -- (See TreeSet)
e List
— ArraylList -- O(1) random access, O(n) insert/remove
— LinkedList -- O(n) random access, O(1) insert/remove;

e Use for queues and deques (No longer a good idea; /
use ArrayDeque instead.) »

=

JAVA

institute for
17-214 25 SO

Implementation Behavior
Unlike Vector and Hashtable...

e Fail-fast iterator
* Null elements, keys, values permitted

e Not thread-safe

%%%
JAVA

institute for
17-214 26 SO

Synchronization Wrappers
A new approach to thread safety

 Anonymous implementations, one per core interface
e Static factories take collection of appropriate type
 Thread-safety assured if all access through wrapper
e Must manually synchronize iteration

e |t was new then; it’s old now!

— Synchronization wrappers are now largely obsolete
— Made obsolete by concurrent collections

%%%
JAVA

institute for
17-214 27 SO

Synchronization Wrapper Example

Set<String> s = Collections.synchronizedSet(new HashSet<>());
s.add("wombat"); // Thread-safe

synchronized(s) {
Iterator<String> i
while (i.hasNext())
System.out.println(i.next());

s.iterator(); // In synch block!

¥

// In Java 5 (post-2004)

synchronized(s) { Z
for (String t : s) z
System.out.println(i.next()); =

} JAVA

institute for
17-214 28 SO

Unmodifiable Wrappers

 Analogous to synchronization wrappers
— Anonymous implementations
— Static factory methods
— One for each core interface

 Provide read-only access

A
=

JAVA

institute for
17-214 29 SO

Convenience Implementations

e Arrays.asList(E[] a)
— Allows array to be "viewed" as List
— Bridge to Collection-based APIs

EMPTY_SET, EMPTY_LIST, EMPTY_MAP
— immutable constants
e singleton(E o)
— immutable set with specified object
e nCopies(E o)
— immutable list with n copies of object

%@g
JAVA

institute for
17-214 30 SO

Custom Implementation Ideas

* Persistent

e Highly concurrent
 High-performance, special-purpose
e Space-efficient representations

e Fancy data structures

e Convenience classes

%@g
JAVA

institute for
17-214 31 SO

.

Custom Implementation Example
It’s easy with our abstract implementations

// List adapter for primitive int array
public static List intArraylList(int[] a) {
return new AbstractList() {
public Integer get(int i) {
return new Integer(a[i]);

}

public int size() { return a.length; }

public Object set(int i, Integer e) {
int oldval = a[i];
al[i] = e.intValue();
return new Integer(oldval);

} _

s J
} &
=

JAVA

institute for
17-214 32 SO

Presenter
Presentation Notes
Where did you see this? (“Home on the range” problem in midterm exam.)

®
Reusable Algorithms

static <T extends Comparable<? super T>> void sort(List<T> list);
static int binarySearch(List list, Object key);
static <T extends Comparable<? super T>> T min(Collection<T> coll);
static <T extends Comparable<? super T>> T max(Collection<T> coll);
static <E> void fill(List<E> list, E e);
static <E> void copy(List<E> dest, List<? Extends E> src);
static void reverse(List<?> list);
static void shuffle(List<?> list);

)

—

=

JAVA

institute for
17-214 33 SO

Presenter
Presentation Notes
Notice that there were only eight reusable algorithms in the initial release. I had to fight even to put in these. On the bright side, it was easy to remember, because there were so few of them.

Algorithm Example 1

Sorting lists of comparable elements

List<String> strings; // Elements type: String

Collections.sort(strings); // Alphabetical order

LinkedList<Date> dates; // Elements type: Date
Collections.sort(dates); // Chronological order

// Comparable interface (Infrastructure)
public interface Comparable<E extends Comparable<E>> {

int compareTo(Object 0);)
}
=

S

JAVA

institute for
17-214 34 SO

Comparator Interface
Infrastructure

e Specifies order among objects
— Overrides natural order on comparables
— Provides order on non-comparables

public interface Comparator<T> {
public int compare(T ol, T 02);

A
=

JAVA

institute for
17-214 35 SO

- Algorithm Example 2

Sorting with a comparator

List<String> strings; // Element type: String

Collections.sort(strings, Collections.reverseOrder());

// Case-independent alphabetical order
static Comparator<String> cia = new Comparator<>() {
public int compare(String cl, String c2) {
return cl.tolLowerCase().compareTo(c2.toLowerCase());
}
¥

Collections.sort(strings, cia); ggé%
=

S

JAVA

institute for
17-214 36 SO

Presenter
Presentation Notes
Case independent comparator is obsolete, but it gets the point across

Compatibility

Old and new collections interoperate freely

e Upward Compatibility
— Vector<E> implements List<E>
— Hashtable<K,V> implements Map<K,V>
— Arrays.aslList(myArray)

e Backward Compatibility
— myCollection.toArray()
— new Vector<>(myCollection)
— new Hashtable<>(myMap)

A
=

JAVA

institute for
17-214 37 SO

APl Design Guidelines

e Avoid ad hoc collections
— Input parameter type:
* Any collection interface (Collection, Map best)
e Array may sometimes be preferable
— Output value type:
e Any collection interface or class
* Array

* Provide adapters for your legacy collections

A
=

JAVA

institute for
17-214 38 SO

Sermon

* Programmers:
— Use new implementations and algorithms
— Write reusable algorithms
— Implement custom collections

* API Designers:
— Take collection interface objects as input
— Furnish collections as output

)

a—

=

JAVA

institute for
17-214 39 SO

For More Information

/
http://java.sun.com/products/jdk/1.2/docs/ %’é
guide/collections/index.html =

JAVA

institute for
17-214 40 SOrAlE

Presenter
Presentation Notes
I’d take that URL with a grain of salt.

http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html

Takeaways

e (Collections haven’t changed that much since 98

e APl has grown, but essential character unchanged
— With arguable exception of Java 8 streams & default methods on core interfaces (2014)

[]
institute for
17-214 a1 SO

Part 2: Outline

|. The initial release of the collections API
Il. Design of the first release

Ill. Evolution

V. Code example

V. Critique

[]
institute for
17-214 a2 SO

Collection interfaces
First release, 1998

Collection

(]
institute for
17-214 43 SO

General-purpose implementations
First release, 1998

Implementations

EE Resizable | Balanced | Linked
Table Array Tree List

HashSet TreeSet

Linked

Interfaces | List ArrayList List

Map | HashMap

[]
institute for
17-214 a4 SO

Other implementations
First release, 1998

e Convenience implementations
— Arrays.aslList(Object[] a)
— EMPTY_SET, EMPTY_LIST, EMPTY_MAP
— singleton(Object o)
— nCopies(Object o)
e Decorator implementations
— Unmodifiable{Collection,Set,List,Map,SortedMap}
— Synchronized{Collection,Set,List,Map,SortedMap}

e Special Purpose implementation —WeakHashMap

[]
institute for
17-214 45 SO

Reusable algorithms
First release, 1998

e static
e static
e static
e static
e static
e static
e static

e static

17-214

void sort(List[]);

int binarySearch(List list, Object key);
object min(List[]);

object max(List[]);

void fill(List list, Object 0);

void copy(List dest, List src);

void reverse(List list);

void shuffle(List list);

®
institute for
SOFTWARE
46 RESEARCH

And that’s all there was to it!

[]
institute for
17-214 YA | S [Esats

Presenter
Presentation Notes
Now we’re going to go from the general to the specific, and discuss the Java Collections Framework.

.

OK, | told a little white lie: there were also array utilities
First release, 1998

e static
e static
e static
e static
e static
e static
e static
e static
e static
17-214

int binarySearch(type[] a, type key)

int binarySearch(Object[] a, Object key, Comparator c)

boolean equals(type[] a, type[] a2)

void
void
void
void
void

void

fill(type[] a, type val)

fill(type[]
sort(typel]
sort(typel]
sort(typel]
sort(typel]

a,
a)
a,
a,

a,

int fromIndex, int tolIndex, type val)

int fromIndex, int tolIndex)
Comparator c)

int fromIdx, int toidx, Comparator c)

institute for
SOFTWARE
48 RESEARCH

Presenter
Presentation Notes
But this adds almost nothing to the conceptual surface area of the API, and was necessary

Documentation matters

“Reuse is something that is far easier to say than to do. Doing it
requires both good design and very good documentation. Even
when we see good design, which is still infrequently, we won’t see
the components reused without good documentation.”

-D. L. Parnas, 1994;
In Brooks, The Mythical Man Month

[]
institute for
17-214 49 SO

Of course you need good JavaDoc
But it is not sufficient for a substantial API!

|/ [1 Java Platform 1.2 AF x‘\:E Outline of the Collec: x .. NV @J { = ‘ ‘ >
€« C | [www.cs.mun.ca/~michael/java/jdk1.2-docs/ap Jutil/Map.htm Qs e O 9 OO0 =
= Apps [3 Print [Wayback M Symbols 12 TitanTV [3 SPI & RealOEM.com ... B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} wwwiicarsoftus.. (& http//www.cs.c... ©& Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks
Overview Package [SEER)Use Tree Deprecated Index Help Java Platform 1.2
PREV CLASS NEXTCLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHCOD

java.util

Interface Map

All Known Subinterfaces:
SortedMap

All Known Implementing Classes:
AbstractMap, HashMap, Hashtable, RenderingHints, WeakHashMap, Attributes

public abstract interface Map
An object that maps keys to values. A map cannot contain duplicate keys; each key can map to at most one value.
This interface takes the place of the Dictionary class, which was a totally abstract class rather than an interface.

The Map interface provides three collection views, which allow a map's contents to be viewed as a set of keys, collection of values, or set of key-value mappings. The order of a map is defined as
the order in which the iterators on the map's collection views return their elements. Some map implementations, like the TreeMap class, make specific guarantees as to their order; others, like the
HashMap class, do not.

Note: great care must be exercised if mutable objects are used as map keys. The behavior of a map is not specified if the value of an object 1s changed in a manner that affects equals comparisons
while the object is a key in the map. A special case of this prohibition is that it is not permissible for a map to contain itself as a key. While it 1s permissible for a map to contain itself as a value,
extreme caution is advised: the equals and hashCode methods are no longer well defined on a such a map.

All general-purpose map implementation classes should provide two "standard" constructors: a void (no arguments) constructor which creates an empty map, and a constructor with a single
argument of type Map, which creates a new map with the same key-value mappings as its argument. In effect, the latter constructor allows the user to copy any map, producing an equivalent map
of the desired class. There is no way to enforce this recommendation (as interfaces cannot contain constructors) but all of the general-purpose map implementations in the JDK comply.

Since:

= | B | — — | | | W il s T s]

institute for
17-214 50 SO

A single place to go for documentation

k " [The Collections Frar xv\E Outline of the Collec x W ‘—_—'-'\ Joshus | { — ‘ ‘ X ‘
€ > C |[3 www.cs.mun.ca/~michael/java/jdk1.2-docs/guide/collections/index.html Qi e O @ OO0 =
= Apps [3 Print [Wayback M Symbols 12 TitanTV [3 SPI & RealOEM.com ... B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} wwwiicarsoftus.. (& http//www.cs.c... ©& Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks

P IDK 1.2 Contents
f -{ 4 .
2 The Collections Framework
e

The collections framework is a unified architecture for representing and manipulating collections, allowing them to be manipulated independently of the details of their
representation. It reduces programming effort while increasing performance. It allows for interoperability among unrelated APTs, reduces effort in designing and learning new APIs,
and fosters software reuse. The framework is based on six collection interfaces. It includes implementations of these interfaces, and algorithms to manipulate them.

Overview

s Overview - An overview of the Collections framework.

API Specification

¢ API Reference - An annotated outline of the classes and interfaces comprising the collections framework, with links into the JavaDoc.

API Enhancements

* API Enhancements - An annotated list of API changes between the Beta4 and FCS releases, with links into the JavaDoc.

Design FAQ

* Design FAQ- Answers to frequently asked questions concerning the design of the collections framework.

Tutorial

¢ Tutorial - A tutorial introduction to the collections framework with plenty of programming examples.

Copyright © 1995-98 Sun Microsvstems. Inc. All Rights Reserved. osun
mrpsens

(s

send comments to: collections-comments@java.sun.com

1T S -

institute for
17-214 51 SO

Overviews provide understanding
A place to go when first learning an API

/' [3 Collections Framewi x‘(E Outline of the Collec x % W . Joshua | { =) ‘ ‘ 28 ‘
€« C | [www.cs.mun.ca/~michael/java/jdk1.2-docs/guide/collections/oveny t Qi e O @ OO0 =
= Apps [3 Print [Wayback M Symbols 12 TitanTV [3 SPI & RealOEM.com ... B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} wwwiicarsoftus.. (& http//www.cs.c... ©& Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks

1
" }(- -
o
< Collections Framework Overview
=
JAVA
Introduction

The 1.2 release of the Java platform includes a new collections framework. A collection 1s an object that represents a group of objects (such as the familiar Vector class). A collections framework
is a unified architecture for representing and manipulating collections, allowing them to be manipulated independently of the details of their representation.

The primary advantages of a collections framework are that it:

* Reduces programming effort by providing useful data structures and algorithms so you don't have to write them yourself.

¢ Increases performance by providing high-performance implementations of useful data structures and algorithms. Because the various implementations of each interface are
interchangeable, programs can be easily tuned by switching implementations.

¢ Provides interoperability between unrelated APIs by establishing a common language to pass collections back and forth.

¢ Reduces the effort required to learn APIs by eliminating the need to learn multiple ad hoc collection APIs.

* Reduces the effort required to design and implement APIs by eliminating the need to produce ad hoc collections APIs.

« Fosters software reuse by providing a standard interface for collections and algorithms to manipulate them.

The collections framework consists of:

* Collection Interfaces - Represent different types of collections, such as sets, lists and maps. These interfaces form the basis of the framework.

* General-purpose Implementations - Primary implementations of the collection interfaces.

¢ Legacy Implementations - The collection classes from earlier releases, Vector and Hashtable, have been retrofitted to implement the collection interfaces.

¢ Wrapper Implementations - Add functionality. such as synchronization, to other implementations.

¢ Convenience Implementations - High-performance "mini-implementations" of the collection interfaces.

¢ Abstract Implementations - Partial implementations of the collection interfaces to facilitate custom implementations.

s Algorithms - Static methods that perform useful functions on collections, such as sorting a list.

¢ Infrastructure - Interfaces that provide essential support for the collection interfaces.

¢ Array Utilities - Utility functions for arrays of primitives and reference objects. Not, strictly speaking, a part of the Collections Framework, this functionality is being added to the Java
platform at the same time and relies on some of the same infrastructure.

= | T I 'l — S e oW _— | |17 S -

institute for
17-214 52 SOrAlE

Annotated outlines provide access
They’re awesome and underutilized

|/ 1 Annotated Outline ¢ x\fCE Outline of the Collec: x % Joshua | b:. ‘ 28 ‘
€« C' | [} www.cs.mun.ca/~michael/java/jdk1.2-docs/guide/collections/reference.html Qe O @ 10 =
= Apps [3 Print [Wayback M Symbols 12 TitanTV [3 SPI & RealOEM.com ... B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} wwwiicarsoftus.. (& http//www.cs.c... ©& Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks
1.
. ""?-// . .
2= Annotated Outline of Collections Framework
—_—
JAVA

The collections framework consists of:

* Collection Interfaces - The primary means by which collections are manipulated.
o Collection - A group of objects. No assumptions are made about the order of the collection (if any). or whether it may contain duplicate elements.
o Set - The familiar set abstraction. No duplicate elements permitted. May or may not be ordered. Extends the Collection interface.
o List - Ordered collection, also known as a sequence. Duplicates are generally permitted. Allows positional access. Extends the Collection interface.
o Map - A mapping from keys to values. Each key can map to at most one value.
o SortedSet - A set whose elements are automatically sorted, either in their natural ordering (see the Comparable interface), or by a Comparator object
provided when a SortedSet instance is created. Extends the Set interface.
o SortedMap - A map whose mappings are automatically sorted by key, either in the keys' natural ordering or by a comparator provided when a SortedMap
mstance 1s created. Extends the Map interface.
* General-Purpose Implementations - The primary implementations of the collection interfaces.
o HashSet - Hash table implementation of the Set interface. The best all-around implementation of the Set interface.
o TreeSet Red-black tree implementation of the Sortedset interface.
o ArrayList - Resizable-array implementation of the List interface. (Essentially an unsynchronized vector.) The best all-around implementation of the
List interface.
o LinkedList - Doubly-linked list implementation of the List interface. May provide better performance than the ArrayList implementation if elements are
frequently inserted or deleted within the list. Useful for queues and double-ended queues (deques).
o HashMap - Hash table implementation of the Map interface. (Essentially an unsynchronized Hashtable that supports null keys and values.) The best all-
around implementation of the Map interface.
o TreeMap Red-black tree implementation of the SortedMap interface.
* Wrapper Implementations - Functionality-enhancing implementations for use with other implementations. Accessed soley through static factory methods.
o Collections.unmodifiablelnterface - Return an unmodifiable view of a specified collection that throws an UnsupportedOperationException if the user
attempts to modify it.

= |] T — 'l — I = | _— | |17 = -

institute for
17-214 53 SO

A design rationale saves you hassle
and provides a testament to history (“apologia”)

€« C' | [} www.cs.mun.ca/~michael/java/jdk1.2-docs/guide/collections/designfag.htm Qs em O @ 1

1

[
QS e
&3

[4 Java Collections APl [x \ [S] Outline of the Collec: x

= Apps [3 Print [Wayback M Symbols 12 TitanTV [3 SPI & RealOEM.com ... B Keyboard short... 3 Amazon.com:t.. #® USPS First Class [} wwwiicarsoftus.. (& http//www.cs.c... ©& Timovar / Solve.. [E] Home - Amazo... » [J Other bookmarks

=7 Java Collections API Design FAQ
JAVA

This document answers frequently asked questions concerning the design of the Java collections framework. It is derived from the large volume of traffic on the collections-comments alias. It
serves as a design rationale for the collections framework.

Core Interfaces - General Questions

1. Why don't vou support immutability directly in the core collection interfaces so that vou can do away with eptionai operations (and UnsupportedOperationException)?

[

. Won't programmers have to surround any code that calls optional operations with a try-catch clause in case they throw an UnsupportedOperationException?

3. Why isn't there a core interface for "bags" (AKA multisets)?

4. Why don't vou provide for "gating functions" that facilitate the implementation of type-safe collections?

5. Why didn't you use "Beans-style names" for consistency?

Collection Interface

1. Why doesn't Collection extend Cloneable and Serializable?

[

. Why don't you provide an "apply" method in Collection to apply a given method ("upcall™) to all the elements of the Collection?

3. Why didn't vou provide a ""Predicate" interface. and related methods (e.g.. a method to find the first element in the Collection satisfving the predicate)?

4. Why don't you provide a form of the addAll method that takes an Enumeration (or an Iterator)?

5. Why don't the concrete implementations in the JDK have Enumeration (or Iterator) constructors?

= smallta k-best-...Jpg " +* Show all downloads... *

institute for
17-214 54 SO

Outline

|. The initial release of the collections API
Il. Design of the first release

Ill. Evolution

V. Code example

V. Critique

[]
institute for
17-214 55 SO

A wonderful source of use cases
“Good artists copy, great artists steal.” — Pablo Picasso (ascribed)

SMALLIALK
BEST PRACTICE
l’A’l"l‘ls RN S

@
nstitute for
17-214 56 SO

You must maintain an issues list

e Centralizes all open and closed design issues
e List pros and cons for each possible decision
e Essential for efficient progress

 Forms the basis of a design rationale

17-214

57

institute for
SOFTWARE
RESEARCH

Presenter
Presentation Notes
Show actual issues lis

The first draft of APl was not so nice

e Map was called Table

e NoHashMap, only Hashtable

 No algorithms (Collections, Arrays)
e Contained some unbelievable garbage

[]
institute for
17-214 58 SO

Automatic alias detection —
a horrible idea that died on the vine

/** * If this collection is a <i>view</i> on another Object that implements

*

This interface must be implemented by Collections and Tables that are

*

<i>views</i> on some backing collection. (It is necessary to

* implement this interface only if the backing collection is not

* <i>encapsulated</i> by this Collection or Table; that is, if the

* backing collection might conceivably be be accessed in some way other
* than through this Collection or Table.) This allows users

* to detect potential <i>aliasing</i> between collections.

* <p>

* If a user attempts to modify one collection

* object while iterating over another, and they are in fact views on
* the same backing object, the iteration may behave erratically.

* However, these problems can be prevented by recognizing the

* situation, and "defensively copying" the Collection over which

* iteration is to take place, prior to the iteration.

*/

public interface Alias {
/**
* Returns the identityHashCode of the object "ultimately backing" this
* collection, or zero if the backing object is undefined or unknown.
* The purpose of this method is to allow the programmer to determine
* when the possiblity of <i>aliasing</i> exists between two collections
* (in other words, modifying one collection could affect the other).
* This is critical if the programmer wants to iterate over one collection
* and modify another; if the two collections are aliases, the effects of
* the iteration are undefined, and it could loop forever. To avoid
* this behavior, the careful programmer must "defensively copy" the
* collection prior to iterating over it whenver the possibility of
* aliasing exists.
* <p>
* If this collection is a view on an Object that does not impelement
* Alias, this method must return the IdentityHashCode of the backing
* Object. For example, a List backed by a user-provided array would

*

return the IdentityHashCode of the array.

17-214

* Alias, this method must return the backingObjectId of the backing

* Object. (To avoid the cost of recursive calls to this method, the

* backingObjectId may be cached at creation time).

* <p>

* For all collections backed by a particular "external data source" (a
* SQL database, for example), this method must return the same value.
* The IdentityHashCode of a "proxy" Object created just for this

* purpose will do nicely, as will a pseudo-random integer permanently
* associated with the external data source.

* <p>

* For any collection backed by multiple Objects (a "concatenation

* view" of two Lists, for instance), this method must return zero.

* Similarly, for any <i>view</i> collection for which it cannot be

* determined what Object backs the collection, this method must return
* zero. It is always safe for a collection to return zero as its

* backingObjectId, but doing so when it is not necessary will lead to
* inefficiency.

* <p>

* The possibility of aliasing between two collections exists iff

* any of the following conditions are true:

* <1i>The two collections are the same Object.

* Either collection implements Alias and has a

* backingObjectId that is the identityHashCode of
* the other collection.

* Either collection implements Alias and has a

* backingObjectId of zero.

* Both collections implement Alias and they have equal
* backingObjectId's.

*

* @see java.lang.System#identityHashCode

*

@since JDK1.2
*/
int backingObjectId();

institute for
SOFTWARE
59 RESEARCH

B
| received a lot of feedback

e |nitially from a small circle of colleagues
— Some very good advice
— Some not so good
e Then from the public at large: beta releases
— Hundreds of messages
— Many API flaws were fixed in this stage
— | put up with a lot of flaming

[]
institute for
17-214 60 SO

Presenter
Presentation Notes
Mention JGL and UnsupportedOperationException as notable flame topics

Review from a very senior engineer

API vote notes

Array yes But remove binarySearch* and tolist
BasicCollection no I don't expect lots of collection classes
BasiclList no see List below

Collection yes But cut toArray

Comparator no

DoublylLinkedList no (without generics this isn't worth it)
HashSet no

LinkedList no (without generics this isn't worth it)
List no I'd like to say yes, but it's just way

bigger than I was expecting
RemovalEnumeration no
Table yes BUT IT NEEDS A DIFFERENT NAME
TreeSet no

I'm generally not keen on the toArray methods because they add complexity

Simiarly, I don't think that the table Entry subclass or the various
views mechanisms carry their weight.

institute for
17-214 61 SO

S
l1l. Evolution of Java collections

JDK 1.0, 1996 Java Released: Vector, Hashtable, Enumeration

JDK 1.1, 1996 (No API changes)

J2SE 1.2, 1998 Collections framework added

J2SE 1.3, 2000 (No API changes)

J2SE 1.4, 2002 LinkedHash{Map,Set}, IdentityHashSet, 6 new algorithms

J2SE 5.0, 2004 Generics, for-each, enums: generified everything,
Iterable, Queue, Enum{Set,Map}, concurrent collections

Java 6, 2006 Deque, Navigable{Set,Map}, newSetFromMap, asLifoQueue
Java7, 2011 No API changes. Improved sorts & defensive hashing
Java 8, 2014 Lambdas, streams, new methods on core interfaces

Java9, 2017 Convenience factories: Set.of (), List.of, Map.of()

[]
institute for
17-214 62 SOrAlE

Presenter
Presentation Notes
Twenty-one years in one slide
JDK 1.0, Java w/o a collections framework managed to do something that C++ couldn’t do with the STL: a hashMap
Mention implementation pattern: alternating stabilization and implementation releases.

IV. Example — how to find anagrams

e Alphabetize the characters in each word
— cat - act, dog - dgo, mouse - emosu
— Resulting string is called alphagram

e Anagrams share the same alphagram!
— stop = opst, post & opst, tops = opst, opts = opst
e So go through words making “multimap”from alphagram to word

[]
institute for
17-214 63 SO

How to find anagrams in Java (1/2)

public static void main(String[] args) throws IOException {
// Read words from file and put into a simulated multimap
Map<String, List<String>> groups = new HashMap<>();
try (Scanner s = new Scanner(new File(args[0]))) {
while (s.hasNext()) {
String word = s.next();
String alpha = alphabetize(word);

// Next 4 lines could be replaced by merge method (Java 8)
List<String> group = groups.get(alpha);
if (group == null)

groups.put(alpha, group = new ArraylList<>());
group.add(word);

institute for
17-214 64 SO

How to find anagrams in Java (2/2)

// Print all anagram groups above size threshold
int minGroupSize = Integer.parselnt(args[1l]);
for (List<String> group : groups.values())
if (group.size() >= minGroupSize)
System.out.println(group.size() +

+ group);

// Returns the alphagram for a string

private static String alphabetize(String s) {
char[] a = s.toCharArray();
Arrays.sort(a);
return new String(a);

institute for
17-214 65 SO

Presenter
Presentation Notes
Nothing up my sleeve: show the code running in IntelliJ (presenter mode)

Two slides in Java vs. an entire chapter in STL
Java’s verbosity is somewhat exaggerated

S L Tutorial and

y

Reference Guude,

>
©
o
.
n
=
A

NLLOdWOD TYNO

H3S Db

Foreword by Alexander Stepanov

[]
institute for
17-214 66 SOrAlE

.

Epilogue: How to find anagrams in Java 8 (streams)

public class Anagrams {
public static void main(String[] args) throws IOException {
Path dictionary = Paths.get(args[0]);
int minGroupSize = Integer.parselnt(args[1l]);

try (Stream<String> words = Files.lines(dictionary)) {
words.collect(groupingBy(word -> alphabetize(word)))
.values().stream()
.filter(group -> group.size() >= minGroupSize)

.forkach(g -> System.out.println(g.size() + ": " + g));

}

private static String alphabetize(String s) {
char[] a = s.toCharArray();
Arrays.sort(a);
return new String(a);

[]
institute for
17-214 67 SO

Presenter
Presentation Notes
Nothing up my sleeve: show the code running in IntelliJ (presenter mode)

V. Critique
Some things | wish I’d done differently

e Algorithms should return collection, not void or boolean
— Enables fluent APIs, turns ugly multiliners into nice one-liners

private static String alphabetize(String s) {
return new String(Arrays.sort(s.toCharArray()));

}
e Collection should have get (), remove()
— Queue and Deque eventually did this

e Sorted{Set,Map}should have had proper navigation
— Navigable{Set Map}turned Sorted{Set,Map}into warts

[]
institute for
17-214 68 SO

Conclusion

e |t takes a lot of work to make something that appears obvious
— Coherent, unified vision
— Willingness to listen to others
— Flexibility to accept change
— Tenacity to resist change
— Good documentation!

* |It’s worth the effort!

— A solid foundation can last two+ decades

[]
institute for
17-214 69 SO

	Principles of Software Construction: 	 Objects, Design, and Concurrency��Design case studies��The Java Collections Framework��Josh Bloch Charlie Garrod Darya Melicher
	Administrivia
	Key concepts from last Thursday
	Key concepts from last recitation
	We take you back now to the late ’90s
	Here’s the first collections talk ever
	The JavaTM Platform�Collections Framework
	What is a Collection?
	What is a Collections Framework?
	Benefits
	Design Goals
	Architecture Overview
	Core Collection Interfaces
	Collection Interface
	Iterator Interface
	Collection Example�Reusable algorithm to eliminate nulls
	Set Interface
	Set Idioms
	List Interface�A sequence of objects
	List Example�Reusable algorithms to swap and randomize
	List Idioms
	Map Interface�A key-value mapping
	Map Idioms
	General Purpose Implementations�Consistent Naming and Behavior
	Choosing an Implementation
	Implementation Behavior�Unlike Vector and Hashtable…
	Synchronization Wrappers�A new approach to thread safety
	Synchronization Wrapper Example
	Unmodifiable Wrappers
	Convenience Implementations
	Custom Implementation Ideas
	Custom Implementation Example�It’s easy with our abstract implementations
	Reusable Algorithms
	Algorithm Example 1�Sorting lists of comparable elements
	Comparator Interface�Infrastructure
	Algorithm Example 2�Sorting with a comparator
	Compatibility�Old and new collections interoperate freely
	API Design Guidelines
	Sermon
	For More Information
	Takeaways
	Part 2: Outline
	Collection interfaces�First release, 1998
	General-purpose implementations�First release, 1998
	Other implementations� First release, 1998
	Reusable algorithms� First release, 1998
	And that’s all there was to it!
	OK, I told a little white lie: there were also array utilities�First release, 1998
	Documentation matters
	Of course you need good JavaDoc�But it is not sufficient for a substantial API!
	A single place to go for documentation
	Overviews provide understanding�A place to go when first learning an API
	Annotated outlines provide access�They’re awesome and underutilized
	A design rationale saves you hassle�and provides a testament to history (“apologia”)
	Outline
	A wonderful source of use cases� “Good artists copy, great artists steal.” – Pablo Picasso (ascribed)
	You must maintain an issues list
	The first draft of API was not so nice
	Automatic alias detection – �a horrible idea that died on the vine
	I received a lot of feedback
	Review from a very senior engineer
	III. Evolution of Java collections
	IV. Example – how to find anagrams
	How to find anagrams in Java (1/2)
	How to find anagrams in Java (2/2)
	Two slides in Java vs. an entire chapter in STL�Java’s verbosity is somewhat exaggerated
	Epilogue: How to find anagrams in Java 8 (streams)
	V. Critique�Some things I wish I’d done differently
	Conclusion

