
1 17-214

Principles of Software Construction:
Objects, Design, and Concurrency

Design case studies

The Java Collections Framework

Josh Bloch Charlie Garrod Darya Melicher

2 17-214

Administrivia

• Homework 4b due next Thursday, October 17th
– Homework 4a feedback coming tomorrow or Thursday

3 17-214

Key concepts from last Thursday

• Use the observer pattern to decouple two-way dependences
• Multi-threaded programming is genuinely hard

– Neither under- nor over-synchronize
– Immutable types are your friend

• GUI programming is inherently multi-threaded
– Swing calls must be made on the event dispatch thread
– No other significant work should be done on the EDT

4 17-214

Key concepts from last recitation

• GUI programming is not pretty
• GUI programming is a bit tedious
• But it’s not magic, and you can do it

5 17-214

We take you back now to the late ’90s

• It was a simpler time
– Java had only Vector, Hashtable & Enumeration
– But it needed more; platform was growing!

• The barbarians were pounding the gates
– JGL was a transliteration of STL to Java
– It had 130 (!) classes and interfaces
– The JGL designers wanted badly to put it in the JDK

• It fell to me to design something better☺

Presenter
Presentation Notes
I spent a good chunk of 1997 designing the Java collections framework.

6 17-214

Here’s the first collections talk ever

• Debuted at JavaOne 1998
• No one knew what a collections framework was

– Or why they needed one

• Talk aimed to
– Explain the concept
– Sell Java programmers on this framework
– Teach them to use it

Presenter
Presentation Notes
I wanted the audience to leave the talk thinking “Java collections are great, and now I know how to use them.”

7 17-214

The JavaTM Platform
Collections Framework

Joshua Bloch
Sr. Staff Engineer, Collections Architect

Sun Microsystems, Inc.

Presenter
Presentation Notes
Mention the old version of the cup and steam logo, company that doesn’t exist any more.

8 17-214

What is a Collection?

• Object that groups elements
• Main Uses

– Data storage and retrieval
– Data transmission

• Familiar Examples
– java.util.Vector
– java.util.Hashtable
– array

9 17-214

What is a Collections Framework?

• Unified Architecture
– Interfaces - implementation-independence
– Implementations - reusable data structures
– Algorithms - reusable functionality

• Best-known examples
– C++ Standard Template Library (STL)
– Smalltalk collections

10 17-214

Benefits

• Reduces programming effort
• Increases program speed and quality
• Interoperability among unrelated APIs
• Reduces effort to learn new APIs
• Reduces effort to design new APIs
• Fosters software reuse

11 17-214

Design Goals

• Small and simple
• Reasonably powerful
• Easily extensible
• Compatible with preexisting collections
• Must feel familiar

12 17-214

Architecture Overview

• Core Collection Interfaces
• General-Purpose Implementations
• Wrapper Implementations
• Abstract Implementations
• Algorithms

13 17-214

Core Collection Interfaces

14 17-214

Collection Interface

public interface Collection<E> {
 int size();
 boolean isEmpty();
 boolean contains(Object element);
 boolean add(E element); // Optional
 boolean remove(Object element); // Optional
 Iterator<E> iterator();

 Object[] toArray();
 T[] toArray(T a[]);

 // Bulk Operations
 boolean containsAll(Collection<?> c);
 boolean addAll(Collection<? Extends E> c); // Optional
 boolean removeAll(Collection<?> c); // Optional
 boolean retainAll(Collection<?> c); // Optional
 void clear(); // Optional
}

Presenter
Presentation Notes
Notice that I have added generics to this talk; that’s pretty much the only change I’ve made to the original talk, because I thought that it would be wrong to present raw types, which are very dangerous.

15 17-214

Iterator Interface

• Replacement for Enumeration interface
– Adds remove method
– Improves method names

 public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove(); // Optional
 }

16 17-214

Collection Example
Reusable algorithm to eliminate nulls

public static boolean removeNulls(Collection<?> c) {
 for (Iterator<?> i = c.iterator(); i.hasNext();) {
 if (i.next() == null)
 i.remove();
 }
}

17 17-214

Set Interface

• Adds no methods to Collection!
• Adds stipulation: no duplicate elements
• Mandates equals and hashCode calculation

public interface Set<E> extends Collection<E> {
}

18 17-214

Set Idioms

Set<Type> s1, s2;

boolean isSubset = s1.containsAll(s2);

Set<Type> union = new HashSet<>(s1);
union = union.addAll(s2);

Set<Type> intersection = new HashSet<>(s1);
intersection.retainAll(s2);

Set<Type> difference = new HashSet<>(s1);
difference.removeAll(s2);

Collection<Type> c;
Collection<Type> noDups = new HashSet<>(c);

19 17-214

List Interface
A sequence of objects

public interface List<E> extends Collection<E> {
 E get(int index);
 E set(int index, E element); // Optional
 void add(int index, E element); // Optional
 Object remove(int index); // Optional
 boolean addAll(int index, Collection<? extends E> c);
 // Optional
 int indexOf(Object o);
 int lastIndexOf(Object o);

 List<E> subList(int from, int to);

 ListIterator<E> listIterator();
 ListIterator<E> listIterator(int index);
}

20 17-214

List Example
Reusable algorithms to swap and randomize

public static <E> void swap(List<E> a, int i, int j) {
 E tmp = a.get(i);
 a.set(i, a.get(j));
 a.set(j, tmp);
}

private static Random r = new Random();

public static void shuffle(List<?> a) {
 for (int i = a.size(); i > 1; i--)
 swap(a, i - 1, r.nextInt(i));
}

Presenter
Presentation Notes
Fisher-Yates shuffle algorithm

21 17-214

List Idioms

List<Type> a, b;

// Concatenate two lists
a.addAll(b);

// Range-remove
a.subList(from, to).clear();

// Range-extract
List<Type> partView = a.subList(from, to);
List<Type> part = new ArrayList<>(partView);
partView.clear();

22 17-214

Map Interface
A key-value mapping

public interface Map<K,V> {
 int size();
 boolean isEmpty();
 boolean containsKey(Object key);
 boolean containsValue(Object value);
 Object get(Object key);
 Object put(K key, V value); // Optional
 Object remove(Object key); // Optional
 void putAll(Map<? Extends K, ? Extends V> t); // Opt.
 void clear(); // Optional

 // Collection Views
 public Set<K> keySet();
 public Collection<V> values();
 public Set<Map.Entry<K,V>> entrySet();
}

23 17-214

Map Idioms

// Iterate over all keys in Map m
Map<Key, Val> m;
for (iterator<Key> i = m.keySet().iterator(); i.hasNext();)
 System.out.println(i.next());

// Iterate over all keys in Map m as of Java 5 (2004)
for (Key k : m.keySet())
 System.out.println(i.next());

// "Map algebra"
Map<Key, Val> a, b;
boolean isSubMap = a.entrySet().containsAll(b.entrySet());

Set<Key> commonKeys =
 new HashSet<>(a.keySet()).retainAll(b.keySet); [sic!]

//Remove keys from a that have mappings in b
a.keySet().removeAll(b.keySet());

Presenter
Presentation Notes
This bug was present in the talk I gave in 1998, and is indicative of a real problem in the API that is still present today. One might expect retainAll (and other collection ops) to return the collection, but they don’t; they return a boolean. When the author of an API can’t use it properly, it’s a bad sign! Even a good API like collections is far from perfect.

24 17-214

General Purpose Implementations
Consistent Naming and Behavior

25 17-214

• Set
– HashSet -- O(1) access, no order guarantee
– TreeSet -- O(log n) access, sorted

• Map
– HashMap -- (See HashSet)
– TreeMap -- (See TreeSet)

• List
– ArrayList -- O(1) random access, O(n) insert/remove
– LinkedList -- O(n) random access, O(1) insert/remove;

• Use for queues and deques (No longer a good idea;
 use ArrayDeque instead.)

Choosing an Implementation

26 17-214

Implementation Behavior
Unlike Vector and Hashtable…

• Fail-fast iterator
• Null elements, keys, values permitted
• Not thread-safe

27 17-214

Synchronization Wrappers
A new approach to thread safety

• Anonymous implementations, one per core interface
• Static factories take collection of appropriate type
• Thread-safety assured if all access through wrapper
• Must manually synchronize iteration
• It was new then; it’s old now!

– Synchronization wrappers are now largely obsolete
– Made obsolete by concurrent collections

28 17-214

Synchronization Wrapper Example

Set<String> s = Collections.synchronizedSet(new HashSet<>());
 ...
s.add("wombat"); // Thread-safe
 ...
synchronized(s) {
 Iterator<String> i = s.iterator(); // In synch block!
 while (i.hasNext())
 System.out.println(i.next());
}

// In Java 5 (post-2004)
synchronized(s) {
 for (String t : s)
 System.out.println(i.next());
}

29 17-214

Unmodifiable Wrappers

• Analogous to synchronization wrappers
– Anonymous implementations
– Static factory methods
– One for each core interface

• Provide read-only access

30 17-214

Convenience Implementations

• Arrays.asList(E[] a)
– Allows array to be "viewed" as List
– Bridge to Collection-based APIs

• EMPTY_SET, EMPTY_LIST, EMPTY_MAP
– immutable constants

• singleton(E o)
– immutable set with specified object

• nCopies(E o)
– immutable list with n copies of object

31 17-214

• Persistent
• Highly concurrent
• High-performance, special-purpose
• Space-efficient representations
• Fancy data structures
• Convenience classes

Custom Implementation Ideas

32 17-214

Custom Implementation Example
It’s easy with our abstract implementations

// List adapter for primitive int array
public static List intArrayList(int[] a) {
 return new AbstractList() {
 public Integer get(int i) {
 return new Integer(a[i]);
 }

 public int size() { return a.length; }

 public Object set(int i, Integer e) {
 int oldVal = a[i];
 a[i] = e.intValue();
 return new Integer(oldVal);
 }
 };
}

Presenter
Presentation Notes
Where did you see this? (“Home on the range” problem in midterm exam.)

33 17-214

static <T extends Comparable<? super T>> void sort(List<T> list);

static int binarySearch(List list, Object key);

static <T extends Comparable<? super T>> T min(Collection<T> coll);

static <T extends Comparable<? super T>> T max(Collection<T> coll);

static <E> void fill(List<E> list, E e);

static <E> void copy(List<E> dest, List<? Extends E> src);

static void reverse(List<?> list);

static void shuffle(List<?> list);

Reusable Algorithms

Presenter
Presentation Notes
Notice that there were only eight reusable algorithms in the initial release. I had to fight even to put in these. On the bright side, it was easy to remember, because there were so few of them.

34 17-214

Algorithm Example 1
Sorting lists of comparable elements

List<String> strings; // Elements type: String
 ...
Collections.sort(strings); // Alphabetical order

LinkedList<Date> dates; // Elements type: Date
 ...
Collections.sort(dates); // Chronological order

// Comparable interface (Infrastructure)
public interface Comparable<E extends Comparable<E>> {
 int compareTo(Object o);
}

35 17-214

Comparator Interface
Infrastructure

• Specifies order among objects
– Overrides natural order on comparables
– Provides order on non-comparables

public interface Comparator<T> {
 public int compare(T o1, T o2);
}

36 17-214

Algorithm Example 2
Sorting with a comparator

List<String> strings; // Element type: String

Collections.sort(strings, Collections.reverseOrder());

// Case-independent alphabetical order
static Comparator<String> cia = new Comparator<>() {
 public int compare(String c1, String c2) {
 return c1.toLowerCase().compareTo(c2.toLowerCase());
 }
};

Collections.sort(strings, cia);

Presenter
Presentation Notes
Case independent comparator is obsolete, but it gets the point across

37 17-214

Compatibility
Old and new collections interoperate freely

• Upward Compatibility
– Vector<E> implements List<E>
– Hashtable<K,V> implements Map<K,V>
– Arrays.asList(myArray)

• Backward Compatibility
– myCollection.toArray()
– new Vector<>(myCollection)
– new Hashtable<>(myMap)

37

38 17-214

API Design Guidelines

• Avoid ad hoc collections
– Input parameter type:

• Any collection interface (Collection, Map best)
• Array may sometimes be preferable

– Output value type:
• Any collection interface or class
• Array

• Provide adapters for your legacy collections

39 17-214

Sermon

• Programmers:
– Use new implementations and algorithms
– Write reusable algorithms
– Implement custom collections

• API Designers:

– Take collection interface objects as input
– Furnish collections as output

40 17-214

For More Information

http://java.sun.com/products/jdk/1.2/docs/
guide/collections/index.html

Presenter
Presentation Notes
I’d take that URL with a grain of salt.

http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html
http://java.sun.com/products/jdk/1.2/docs/guide/collections/index.html

41 17-214

Takeaways

• Collections haven’t changed that much since ’98
• API has grown, but essential character unchanged

– With arguable exception of Java 8 streams & default methods on core interfaces (2014)

42 17-214

Part 2: Outline

I. The initial release of the collections API
II. Design of the first release
III. Evolution
IV. Code example
V. Critique

43 17-214

Collection interfaces
First release, 1998

44 17-214

General-purpose implementations
First release, 1998

45 17-214

Other implementations
 First release, 1998

• Convenience implementations
– Arrays.asList(Object[] a)
– EMPTY_SET, EMPTY_LIST, EMPTY_MAP
– singleton(Object o)
– nCopies(Object o)

• Decorator implementations
– Unmodifiable{Collection,Set,List,Map,SortedMap}
– Synchronized{Collection,Set,List,Map,SortedMap}

• Special Purpose implementation – WeakHashMap

46 17-214

Reusable algorithms
 First release, 1998

• static void sort(List[]);

• static int binarySearch(List list, Object key);

• static object min(List[]);

• static object max(List[]);

• static void fill(List list, Object o);

• static void copy(List dest, List src);

• static void reverse(List list);

• static void shuffle(List list);

47 17-214

And that’s all there was to it!

Presenter
Presentation Notes
Now we’re going to go from the general to the specific, and discuss the Java Collections Framework.

48 17-214

OK, I told a little white lie: there were also array utilities
First release, 1998

• static int binarySearch(type[] a, type key)

• static int binarySearch(Object[] a, Object key, Comparator c)

• static boolean equals(type[] a, type[] a2)

• static void fill(type[] a, type val)

• static void fill(type[] a, int fromIndex, int toIndex, type val)

• static void sort(type[] a)

• static void sort(type[] a, int fromIndex, int toIndex)

• static void sort(type[] a, Comparator c)

• static void sort(type[] a, int fromIdx, int toidx, Comparator c)

Presenter
Presentation Notes
But this adds almost nothing to the conceptual surface area of the API, and was necessary

49 17-214

Documentation matters

“Reuse is something that is far easier to say than to do. Doing it
requires both good design and very good documentation. Even
when we see good design, which is still infrequently, we won’t see
the components reused without good documentation.”

-D. L. Parnas, 1994;
 In Brooks, The Mythical Man Month

50 17-214

Of course you need good JavaDoc
But it is not sufficient for a substantial API!

51 17-214

A single place to go for documentation

52 17-214

Overviews provide understanding
A place to go when first learning an API

53 17-214

Annotated outlines provide access
They’re awesome and underutilized

54 17-214

A design rationale saves you hassle
and provides a testament to history (“apologia”)

55 17-214

Outline

I. The initial release of the collections API
II. Design of the first release
III. Evolution
IV. Code example
V. Critique

56 17-214

A wonderful source of use cases
 “Good artists copy, great artists steal.” – Pablo Picasso (ascribed)

57 17-214

You must maintain an issues list

• Centralizes all open and closed design issues
• List pros and cons for each possible decision
• Essential for efficient progress
• Forms the basis of a design rationale

Presenter
Presentation Notes
Show actual issues lis

58 17-214

The first draft of API was not so nice

• Map was called Table
• No HashMap, only Hashtable
• No algorithms (Collections, Arrays)
• Contained some unbelievable garbage

59 17-214

/**
 * This interface must be implemented by Collections and Tables that are
 * <i>views</i> on some backing collection. (It is necessary to
 * implement this interface only if the backing collection is not
 * <i>encapsulated</i> by this Collection or Table; that is, if the
 * backing collection might conceivably be be accessed in some way other
 * than through this Collection or Table.) This allows users
 * to detect potential <i>aliasing</i> between collections.
 * <p>
 * If a user attempts to modify one collection
 * object while iterating over another, and they are in fact views on
 * the same backing object, the iteration may behave erratically.
 * However, these problems can be prevented by recognizing the
 * situation, and "defensively copying" the Collection over which
 * iteration is to take place, prior to the iteration.
 */

public interface Alias {
 /**
 * Returns the identityHashCode of the object "ultimately backing" this
 * collection, or zero if the backing object is undefined or unknown.
 * The purpose of this method is to allow the programmer to determine
 * when the possiblity of <i>aliasing</i> exists between two collections
 * (in other words, modifying one collection could affect the other).
 * This is critical if the programmer wants to iterate over one collection
 * and modify another; if the two collections are aliases, the effects of
 * the iteration are undefined, and it could loop forever. To avoid
 * this behavior, the careful programmer must "defensively copy" the
 * collection prior to iterating over it whenver the possibility of
 * aliasing exists.
 * <p>
 * If this collection is a view on an Object that does not impelement
 * Alias, this method must return the IdentityHashCode of the backing
 * Object. For example, a List backed by a user-provided array would
 * return the IdentityHashCode of the array.

 * If this collection is a <i>view</i> on another Object that implements
 * Alias, this method must return the backingObjectId of the backing
 * Object. (To avoid the cost of recursive calls to this method, the
 * backingObjectId may be cached at creation time).
 * <p>
 * For all collections backed by a particular "external data source" (a
 * SQL database, for example), this method must return the same value.
 * The IdentityHashCode of a "proxy" Object created just for this
 * purpose will do nicely, as will a pseudo-random integer permanently
 * associated with the external data source.
 * <p>
 * For any collection backed by multiple Objects (a "concatenation
 * view" of two Lists, for instance), this method must return zero.
 * Similarly, for any <i>view</i> collection for which it cannot be
 * determined what Object backs the collection, this method must return
 * zero. It is always safe for a collection to return zero as its
 * backingObjectId, but doing so when it is not necessary will lead to
 * inefficiency.
 * <p>
 * The possibility of aliasing between two collections exists iff
 * any of the following conditions are true:
 * The two collections are the same Object.
 * Either collection implements Alias and has a
 * backingObjectId that is the identityHashCode of
 * the other collection.
 * Either collection implements Alias and has a
 * backingObjectId of zero.
 * Both collections implement Alias and they have equal
 * backingObjectId's.
 *
 * @see java.lang.System#identityHashCode
 * @since JDK1.2
 */
 int backingObjectId();
}

Automatic alias detection –
a horrible idea that died on the vine

60 17-214

I received a lot of feedback

• Initially from a small circle of colleagues
– Some very good advice
– Some not so good

• Then from the public at large: beta releases
– Hundreds of messages
– Many API flaws were fixed in this stage
– I put up with a lot of flaming

Presenter
Presentation Notes
Mention JGL and UnsupportedOperationException as notable flame topics

61 17-214

Review from a very senior engineer

API vote notes
===
Array yes But remove binarySearch* and toList
BasicCollection no I don't expect lots of collection classes
BasicList no see List below
Collection yes But cut toArray
Comparator no
DoublyLinkedList no (without generics this isn't worth it)
HashSet no
LinkedList no (without generics this isn't worth it)
List no I'd like to say yes, but it's just way
 bigger than I was expecting
RemovalEnumeration no
Table yes BUT IT NEEDS A DIFFERENT NAME
TreeSet no

I'm generally not keen on the toArray methods because they add complexity

Simiarly, I don't think that the table Entry subclass or the various
views mechanisms carry their weight.

62 17-214

III. Evolution of Java collections

Release, Year Changes
JDK 1.0, 1996 Java Released: Vector, Hashtable, Enumeration

JDK 1.1, 1996 (No API changes)
J2SE 1.2, 1998 Collections framework added
J2SE 1.3, 2000 (No API changes)
J2SE 1.4, 2002 LinkedHash{Map,Set}, IdentityHashSet, 6 new algorithms
J2SE 5.0, 2004 Generics, for-each, enums: generified everything,

Iterable, Queue, Enum{Set,Map}, concurrent collections
Java 6, 2006 Deque, Navigable{Set,Map}, newSetFromMap, asLifoQueue
Java 7, 2011 No API changes. Improved sorts & defensive hashing
Java 8, 2014 Lambdas, streams, new methods on core interfaces
Java 9, 2017 Convenience factories: Set.of(), List.of, Map.of()

Presenter
Presentation Notes
Twenty-one years in one slide
JDK 1.0, Java w/o a collections framework managed to do something that C++ couldn’t do with the STL: a hashMap
Mention implementation pattern: alternating stabilization and implementation releases.

63 17-214

IV. Example – how to find anagrams

• Alphabetize the characters in each word
– cat → act, dog → dgo, mouse → emosu
– Resulting string is called alphagram

• Anagrams share the same alphagram!
– stop → opst, post → opst, tops → opst, opts → opst

• So go through words making “multimap”from alphagram to word

64 17-214

How to find anagrams in Java (1/2)

public static void main(String[] args) throws IOException {
 // Read words from file and put into a simulated multimap
 Map<String, List<String>> groups = new HashMap<>();
 try (Scanner s = new Scanner(new File(args[0]))) {
 while (s.hasNext()) {
 String word = s.next();
 String alpha = alphabetize(word);

 // Next 4 lines could be replaced by merge method (Java 8)
 List<String> group = groups.get(alpha);
 if (group == null)
 groups.put(alpha, group = new ArrayList<>());
 group.add(word);
 }
 }

65 17-214

How to find anagrams in Java (2/2)

 // Print all anagram groups above size threshold
 int minGroupSize = Integer.parseInt(args[1]);
 for (List<String> group : groups.values())
 if (group.size() >= minGroupSize)
 System.out.println(group.size() + ": " + group);

 // Returns the alphagram for a string
 private static String alphabetize(String s) {
 char[] a = s.toCharArray();
 Arrays.sort(a);
 return new String(a);
 }
}

Presenter
Presentation Notes
Nothing up my sleeve: show the code running in IntelliJ (presenter mode)

66 17-214

Two slides in Java vs. an entire chapter in STL
Java’s verbosity is somewhat exaggerated

67 17-214

Epilogue: How to find anagrams in Java 8 (streams)

public class Anagrams {
 public static void main(String[] args) throws IOException {
 Path dictionary = Paths.get(args[0]);
 int minGroupSize = Integer.parseInt(args[1]);

 try (Stream<String> words = Files.lines(dictionary)) {
 words.collect(groupingBy(word -> alphabetize(word)))
 .values().stream()
 .filter(group -> group.size() >= minGroupSize)
 .forEach(g -> System.out.println(g.size() + ": " + g));
 }
 }

 private static String alphabetize(String s) {
 char[] a = s.toCharArray();
 Arrays.sort(a);
 return new String(a);
 }
}

Presenter
Presentation Notes
Nothing up my sleeve: show the code running in IntelliJ (presenter mode)

68 17-214

V. Critique
Some things I wish I’d done differently

• Algorithms should return collection, not void or boolean
– Enables fluent APIs, turns ugly multiliners into nice one-liners
 private static String alphabetize(String s) {
 return new String(Arrays.sort(s.toCharArray()));
 }

• Collection should have get(), remove()
– Queue and Deque eventually did this

• Sorted{Set,Map} should have had proper navigation
– Navigable{Set,Map} turned Sorted{Set,Map} into warts

69 17-214

Conclusion

• It takes a lot of work to make something that appears obvious
– Coherent, unified vision
– Willingness to listen to others
– Flexibility to accept change
– Tenacity to resist change
– Good documentation!

• It’s worth the effort!
– A solid foundation can last two+ decades

	Principles of Software Construction: 	 Objects, Design, and Concurrency��Design case studies��The Java Collections Framework��Josh Bloch Charlie Garrod Darya Melicher
	Administrivia
	Key concepts from last Thursday
	Key concepts from last recitation
	We take you back now to the late ’90s
	Here’s the first collections talk ever
	The JavaTM Platform�Collections Framework
	What is a Collection?
	What is a Collections Framework?
	Benefits
	Design Goals
	Architecture Overview
	Core Collection Interfaces
	Collection Interface
	Iterator Interface
	Collection Example�Reusable algorithm to eliminate nulls
	Set Interface
	Set Idioms
	List Interface�A sequence of objects
	List Example�Reusable algorithms to swap and randomize
	List Idioms
	Map Interface�A key-value mapping
	Map Idioms
	General Purpose Implementations�Consistent Naming and Behavior
	Choosing an Implementation
	Implementation Behavior�Unlike Vector and Hashtable…
	Synchronization Wrappers�A new approach to thread safety
	Synchronization Wrapper Example
	Unmodifiable Wrappers
	Convenience Implementations
	Custom Implementation Ideas
	Custom Implementation Example�It’s easy with our abstract implementations
	Reusable Algorithms
	Algorithm Example 1�Sorting lists of comparable elements
	Comparator Interface�Infrastructure
	Algorithm Example 2�Sorting with a comparator
	Compatibility�Old and new collections interoperate freely
	API Design Guidelines
	Sermon
	For More Information
	Takeaways
	Part 2: Outline
	Collection interfaces�First release, 1998
	General-purpose implementations�First release, 1998
	Other implementations� First release, 1998
	Reusable algorithms� First release, 1998
	And that’s all there was to it!
	OK, I told a little white lie: there were also array utilities�First release, 1998
	Documentation matters
	Of course you need good JavaDoc�But it is not sufficient for a substantial API!
	A single place to go for documentation
	Overviews provide understanding�A place to go when first learning an API
	Annotated outlines provide access�They’re awesome and underutilized
	A design rationale saves you hassle�and provides a testament to history (“apologia”)
	Outline
	A wonderful source of use cases� “Good artists copy, great artists steal.” – Pablo Picasso (ascribed)
	You must maintain an issues list
	The first draft of API was not so nice
	Automatic alias detection – �a horrible idea that died on the vine
	I received a lot of feedback
	Review from a very senior engineer
	III. Evolution of Java collections
	IV. Example – how to find anagrams
	How to find anagrams in Java (1/2)
	How to find anagrams in Java (2/2)
	Two slides in Java vs. an entire chapter in STL�Java’s verbosity is somewhat exaggerated
	Epilogue: How to find anagrams in Java 8 (streams)
	V. Critique�Some things I wish I’d done differently
	Conclusion

