
117-214

Principles	of	Software	Construction:					
Objects,	Design,	and	Concurrency

Invariants,	immutability,	and	testing

Josh	Bloch Charlie	Garrod									Darya	Melicher

217-214

Administrivia

• Homework	4a	due	Thursday	at	11:59	p.m.
– Mandatory	design	review	meeting	before	the	homework	deadline

• PA	voter	registration	deadline:		Tuesday,	October	9th
– https://www.pavoterservices.pa.gov/pages/VoterRegistrationApplication.aspx

317-214

Unfinished	business

417-214

A	simple	solution	to	HW	2	– Main	class

517-214

How	do	we	turn	HW2	into	HW3?

617-214

Lessons	(practical)

• Choose	low	level	abstractions	that	make	higher	level	tasks	easy
• When	you	want	to	represent	a	fixed	set	of	values	known	at	

compile	time,	consider	enums
• If	users	need	to	extend	the	set	consider	emulated	extensible	enum
• Bit	twiddling	should	be	part	of	every	programmers	tool	kit

– Don’t	overuse	it…
– But	do	consider	it,	especially	when	you	need	high	performance

717-214

Lessons	(philosophical)

• Good	habits	matter
– “The	way	to	write	a	perfect	program	is	to	make	yourself	a	perfect	

programmer	and	then	just	program	naturally.”	– Watts		S.	Humphrey,	1994

• Don’t	just	hack	it	up	and	say	you’ll	fix	it	later
– You	probably	won’t
– but	you	will	get	into	the	habit	of	just	hacking	it	up
– Also	it’s	way	more fun to	work	on	nice,	well-structured	code

• Even	small	design	decisions	matter
– If	your	code	is	getting	ugly,	go	back	to	the	drawing	board
– “A	week	of	coding	can	often	save	a	whole	hour	of	thought.”

• Strive	for	clarity
– It’s	not	enough	to	be	merely	correct;	aim	for	clearly	correct

817-214

Outline

• Class	invariants	and	defensive	copying
• Immutability
• Testing	and	coverage
• Testing	for	complex	environments

917-214

Class	invariants

• Critical	properties	of	the	fields	of	an	object
• Established	by	the	constructor
• Maintained	by	public	method	invocations

– May	be	invalidated	temporarily	during	method	execution

1017-214

Safe	languages	and	robust	programs

• Unlike	C/C++,	Java	language	safe
– Immune	to	buffer	overruns,	wild	pointers,	etc.

• Makes	it	possible	to	write	robust classes
– Correctness	doesn’t	depend	on	other	modules
– Even	in	safe	language,	requires	programmer	effort

1117-214

Defensive	programming

• Assume	clients	will	try	to	destroy	invariants
– May	actually	be	true	(malicious	hackers)
– More	likely:	honest	mistakes

• Ensure	class	invariants	survive	any	inputs
– Defensive	copying
– Minimizing	mutability

1217-214

This	class	is	not	robust

public final class Period {
private final Date start, end; // Invariant: start <= end

/**
* @throws IllegalArgumentException if start > end
* @throws NullPointerException if start or end is null
*/
public Period(Date start, Date end) {

if (start.after(end))
throw new IllegalArgumentException(start + " > " + end);

this.start = start;
this.end = end;

}

public Date start() { return start; }
public Date end() { return end; }
... // Remainder omitted

}

1317-214

The	problem:	Date	is	mutable
Obsolete	as	of	Java	8;	sadly	not	deprecated	even	in	Java	11

// Attack the internals of a Period instance
Date start = new Date(); // (The current time)
Date end = new Date(); // " " "
Period p = new Period(start, end);
end.setYear(78); // Modifies internals of p!

1417-214

The	solution:	defensive	copying

// Repaired constructor - defensively copies parameters
public Period(Date start, Date end) {

this.start = new Date(start.getTime());
this.end = new Date(end.getTime());
if (this.start.after(this.end))

throw new IllegalArgumentException(start + " > "+ end);
}

1517-214

A	few	important	details

• Copies	made	before	checking	parameters
• Validity	check	performed	on	copies
• Eliminates	window	of	vulnerability	between	validity	check	&	copy
• Thwarts	multithreaded	TOCTOU	attack

– Time-Of-Check-To-Time-Of-U

// BROKEN - Permits multithreaded attack!
public Period(Date start, Date end) {

if (start.after(end))
throw new IllegalArgumentException(start + " > " + end);

// Window of vulnerability
this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

}

1617-214

Another	important	detail

• Used	constructor,	not	clone,	to	make	copies
– Necessary	because	Date	class	is	nonfinal
– Attacker	could	implement	malicious	subclass

• Records	reference	to	each	extant	instance
• Provides	attacker	with	access	to	instance	list

• But	who	uses	clone,	anyway?	[EJ	Item	11]

1717-214

Unfortunately,	constructors	are	only	half	the	battle

// Accessor attack on internals of Period
Period p = new Period(new Date(), new Date());
Date d = p.end();
p.end.setYear(78); // Modifies internals of p!

1817-214

The	solution:	more	defensive	copying

// Repaired accessors - defensively copy fields
public Date start() {

return new Date(start.getTime());
}
public Date end() {

return new Date(end.getTime());
}

Now	Period	class	is	robust!

1917-214

Summary

• Don’t	incorporate	mutable	parameters
into	object;	make	defensive	copies

• Return	defensive	copies	of	mutable	fields…
• Or	return	unmodifiable view	of	mutable	fields
• Real	lesson	– use	immutable components

– Eliminates	the	need	for	defensive	copying

2017-214

Outline

• Class	invariants	and	defensive	copying
• Immutability
• Testing	and	coverage
• Testing	for	complex	environments

2117-214

Immutable	classes

• Class	whose	instances	cannot	be	modified
• Examples:	String,	Integer,	BigInteger,	Instant
• How,	why,	and	when	to	use	them

2217-214

How	to	write	an	immutable	class

• Don’t	provide	any	mutators
• Ensure	that	no	methods	may	be	overridden
• Make	all	fields	final
• Make	all	fields	private
• Ensure	security	of	any	mutable	components

2317-214

public final class Complex {
private final double re, im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

// Getters without corresponding setters
public double realPart() { return re; }
public double imaginaryPart() { return im; }

// minus, times, dividedBy similar to add
public Complex plus(Complex c) {

return new Complex(re + c.re, im + c.im);
}

Immutable	class	example

2417-214

@Override public boolean equals(Object o) {
if (!(o instanceof Complex)) return false;
Complex c = (Complex) o;
return Double.compare(re, c.re) == 0 &&

Double.compare(im, c.im) == 0;
}

@Override public int hashCode() {
return 31 * Double.hashCode(re) + Double.hashCode(im);

}

@Override public String toString() {
return String.format("%d + %di", re, im)";

}
}

Immutable	class	example	(cont.)
Nothing	interesting	here

2517-214

Distinguishing	characteristic

• Return	new	instance	instead	of	modifying
• Functional	programming
• May	seem	unnatural	at	first
• Many	advantages

2617-214

Advantages

• Simplicity
• Inherently	Thread-Safe
• Can	be	shared	freely
• No	need	for	defensive	copies	
• Excellent	building	blocks

2717-214

Major	disadvantage

• Separate	instance	for	each	distinct	value
• Creating	these	instances	can	be	costly

BigInteger moby = ...; // A million bits long
moby = moby.flipBit(0); // Ouch!

• Problem	magnified	for	multistep	operations
– Well-designed	immutable	classes	provide	common	multistep	operations

• e.g.,	myBigInteger.modPow(exponent, modulus)
– Alternative:	mutable	companion	class

• e.g.,	StringBuilder for	String

2817-214

When	to	make	classes	immutable

• Always,	unless	there's	a	good	reason	not	to
• Always	make	small	“value	classes”	immutable!

– Examples:	Color,	PhoneNumber,	Unit
– Date and	Point were	mistakes!
– Experts	often	use	long instead	of	Date

2917-214

When	to	make	classes	mutable

• Class	represents	entity	whose	state	changes
– Real-world	- BankAccount,	TrafficLight
– Abstract	- Iterator, Matcher, Collection
– Process	classes	- Thread,	Timer

• If	class	must	be	mutable,	minimize	mutability
– Constructors	should	fully	initialize	instance
– Avoid	reinitializemethods

3017-214

Outline

• Class	Invariants
• Immutability
• Testing	and	coverage
• Testing	for	complex	environments

3117-214

Why	do	we	test?

3217-214

Testing	decisions

• Who	tests?
– Developers	who	wrote	the	code
– Quality	Assurance	Team	and	Technical	Writers
– Customers

• When	to	test?
– Before	and	during	development
– After	milestones
– Before	shipping
– After	shipping

3317-214

Test	driven	development

• Write	tests	before	code	
• Never	write	code	without	a	failing	test
• Code	until	the	failing	test	passes

3417-214

Why	use	test	driven	development?

• Forces	you	to	think	about	interfaces	early
• Higher	product	quality

– Better	code	with	fewer	defects

• Higher	test	suite	quality
• Higher	productivity
• It’s	fun	to	watch	tests	pass

3517-214

TDD	in	practice

• Empirical	studies	on	TDD	show:
– May	require	more	effort
– May	improve	quality	and	save	time

• Selective	use	of	TDD	is	best
• Always	use	TDD	for	bug	reports

– Regression	tests

3617-214

How	much	testing?

• You	generally	cannot	test	all	inputs
– Too	many	– usually	infinite

• But	when	it	works,	exhaustive	testing	is	best!

3717-214

What	makes	a	good	test	suite?

• Provides	high	confidence	that	code	is	correct
• Short,	clear,	and	non-repetitious

– More	difficult	for	test	suites	than	regular	code
– Realistically,	test	suites	will	look	worse

• Can	be	fun	to	write	if	approached	in	this	spirit

3817-214

Next	best	thing	to	exhaustive	testing:	random	inputs

• Also	know	as	fuzz	testing,	torture	testing
• Try	“random”	inputs,	as	many	as	you	can

– Choose	inputs	to	tickle	interesting	cases
– Knowledge	of	implementation	helps	here

• Seed	random	number	generator	so	tests	repeatable

3917-214

Black-box	testing

• Look	at	specifications,	not	code
• Test	representative	cases
• Test	boundary	conditions
• Test	invalid	(exception)	cases
• Don’t	test	unspecified	cases

4017-214

White-box	testing

• Look	at	specifications	and code
• Write	tests	to:

– Check	interesting	implementation	cases
– Maximize	branch	coverage

4117-214

Code	coverage	metrics

• Method	coverage	– coarse	
• Branch	coverage	– fine
• Path	coverage	– too	fine

– Cost	is	high,	value	is	low
– (Related	to	cyclomatic complexity)

4217-214

Coverage	metrics:	useful	but	dangerous

• Can	give	false	sense	of	security
• Examples	of	what	coverage	analysis	could	miss

– Data	values
– Concurrency	issues	– race	conditions,	etc.
– Usability	problems
– Customer	requirements	issues

• High	branch	coverage	is	not sufficient

4317-214

Test	suites	– ideal	and	real

• Ideal	test	suites	would
– Uncover	all	errors	in	code
– Test	“non-functional”	attributes	such	as	performance	and	security
– Minimum	size	and	complexity

• Real	test	Suites
– Uncover	some	portion	of	errors	in	code
– Have	errors	of	their	own
– Are	nonetheless	priceless

4417-214

Outline

• Class	invariants
• Immutability
• Testing	and	coverage
• Testing	for	complex	environments

4517-214

Problems	when	testing	some	apps

• User-facing	applications
– Users	click,	drag,	etc.,	and	interpret	output
– Timing	issues

• Testing	against	big	infrastructure
– Databases,	web	services,	etc.

• Real	world	effects
– Printing,	mailing	documents,	etc.

• Collectively	comprise	the test	environment

4617-214

Example	– Tiramisu	app

• Mobile	route	planning	app
• Android	UI
• Back	end	uses	live	PAT	data

4717-214

Another	example

• 3rd	party	Facebook apps
• Android	user	interface
• Backend	uses	Facebook data

4817-214

Testing	in	real	environments

Code FacebookAndroid	client

void buttonClicked() {
render(getFriends());

}

List<Friend> getFriends() {
Connection c = http.getConnection();
FacebookApi api = new FacebookApi(c);
List<Node> persons = api.getFriends("john");
for (Node person1 : persons) {

for (Node person2 : persons) {
…
}

}
return result;

}

4917-214

Eliminating	Android	dependency

Code FacebookTest	driver

@Test void testGetFriends() {
... // A Junit test

}

List<Friend> getFriends() {
Connection c = http.getConnection();
FacebookApi api = new FacebookApi(c);
List<Node> persons = api.getFriends("john");
for (Node person1 : persons) {

for (Node person2 : persons) {
…
}

}
return result;

}

5017-214

That	won’t	quite	work

• GUI	applications	process	many thousands of	events
• Solution:	automated	GUI	testing	frameworks

– Allow	streams	of	GUI	events	to	be	captured,	replayed	

• These	tools	are	sometimes	called	robots

5117-214

Eliminating	Facebook dependency

Code Mock	
Facebook

@Test void testGetFriends() {
... // A Junit test

}

List<Friend> getFriends() {
FacebookApi api = new MockFacebook(c);
List<Node> persons = api.getFriends("john");
for (Node person1 : persons) {

for (Node person2 : persons) {
…
}

}
return result;

}

Test	driver

5217-214

That	won’t	quite	work!

• Changing	production	code	for	testing	unacceptable
• Problem	caused	by	constructor in	code
• Instead	of	constructor,	use	special	factory	that	allows	alternative	

implementations
• Use	tools	to	facilitate	this	sort	of	testing

– Dependency	injection	tools,	e.g.,	Dagger,	Guice,	Spring
– Mock	object	frameworks	such	as	Mockito

5317-214

Fault	injection

• Mocks	can	emulate	failures	such	as	timeouts
• Allows	you	to	verify	the	robustness	of	system	against	faults	that	

you	can’t	generate	at	will

Code Mock	
FacebookTest	driver

5417-214

Advantages	of	using	mocks

• Test	code	locally	without	large	environment
• Enable	deterministic	tests	(in	some	cases)
• Enable	fault	injection
• Can	speed	up	test	execution

– e.g.,	avoid	slow	database	access

• Can	simulate	functionality	not	yet	implemented
• Enable	test	automation

5517-214

Design	Implications	

• Think	about	testability	when	writing	code
• When	a	mock	may	be	appropriate,	design	for	it
• Hide	subsystems	behind	an	interfaces
• Use	factories,	not	constructors	to	instantiate
• Use	appropriate	tools

– Dependency	injection	or	mocking	frameworks

5617-214

More	Testing	in	15-313
Foundations	of	Software	Engineering

• Manual	testing
• Security	testing,	penetration	testing
• Fuzz	testing	for	reliability
• Usability	testing
• GUI/Web	testing
• Regression	testing
• Differential	testing
• Stress/soak	testing

5717-214

Conclusion

• To	maintain	class	invariants
– Minimize	mutability
– Make	defensive	copies	where	required

• Interface	testing	is	critical
– Design	interfaces	to	facilitate	testing
– Write	creative	test	suites	that	maximize	power-to-weight	ratio
– Coverage	tools	can	help	gauge	test	suite	quality

• Testing	apps	with	complex	environments	requires	added	effort

