
1 17-214

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	2:	Class-level	design	
	
'9s	a	gi3	to	be	simple,	or	Cleanliness	is	next	to	godliness	
	
Josh	Bloch									Charlie	Garrod									Darya	Melicher	

2 17-214

Administrivia	

•  Reading	due	today:		none!	
•  Homework	4a	due	Thursday	at	11:59	p.m.	

–  Mandatory	design	review	mee9ng	before	the	homework	deadline	

•  PA	voter	registra9on	deadline:		Tuesday,	October	9th	

3 17-214

Key	concepts	from	last	Tuesday	

4 17-214

Assign	object	responsibility	using	interac9on	diagrams		

•  For	a	given	system-level	opera9on,	create	an	object	interac9on	
diagram	at	the	implementa+on-level	of	abstrac9on	

•  Implementa9on-level	concepts:	
–  Implementa9on-like	method	names	
–  Programming	types	
–  Helper	methods	or	classes	
–  Ar9facts	of	design	paUerns	

5 17-214

Heuris9cs	for	responsibility	assignment	

•  Controller	heuris9c	
•  Informa9on	expert	heuris9c	
•  Creator	heuris9c	

6 17-214

Object-level	ar9facts	of	this	design	process	

•  Object	interac9on	diagrams	add	methods	to	objects	
–  Can	infer	addi9onal	data	responsibili9es	
–  Can	infer	addi9onal	data	types	and	architectural	paUerns	

•  Object	model	aggregates	important	design	decisions	
–  Is	an	implementa9on	guide	

7 17-214

Today	

•  Midterm	exam	post-mortem	
•  Homeworks	2	and	3	post-mortem	

8 17-214

Midterm	exam	results	

•  Average:		45	out	of	74	
•  Standard	devia9on:		10	

9 17-214

Not	so	big	data	

In this problem, you will demonstrate your understanding of two design
patterns by showing the design of a data processing application that allows
a flexible choice of database, while avoiding code duplication. Using your
design, one should be able to add support for a new database with minimal
changes to the existing code.

Regardless of the database being used, the application must support a
single method called loadData() which connects to a database, executes a
database query, and disconnects from a database. All database systems
provide an API that supports these operations, but they differ in how they
implement them. Your solution should allow a flexible implementation of
these operations for each database system, i.e., a flexible connect()
method, an executeQuery() method, and a disconnect() method for each
database system.	

10 17-214

A	mini-puzzler…	

•  How	long	will	the	following	program	take	to	run?	
			public	static	void	main(String[]	args)	{	
							long	startTime	=	System.nanoTime();	
							for	(int	i	=	0;	i	<=	Integer.MAX_VALUE;	i++)	{	
		
							}	
							long	endTime	=	System.nanoTime();			
							long	millis	=	(endTime	-	startTime)	/	1_000_000;	
							System.out.println("The	program	took	"		
													+	millis	+	"	milliseconds.");	
			}	

11 17-214

A	mini-puzzler…	

•  How	long	will	the	following	program	take	to	run?	
			public	static	void	main(String[]	args)	{	
							long	startTime	=	System.nanoTime();	
							for	(int	i	=	0;	i	<=	Integer.MAX_VALUE;	i++)	{	
		
							}	
							long	endTime	=	System.nanoTime();			
							long	millis	=	(endTime	-	startTime)	/	1_000_000;	
							System.out.println("The	program	took	"		
													+	millis	+	"	milliseconds.");	
			}	

a) Faster than an eye-blink.
b) Get some coffee.
c) Go to lunch.
d) Something else…

12 17-214

Watch	it	go!	

13 17-214

An	int	is	always	<=	to	Integer.MAX_VALUE	

•  How	long	will	the	following	program	take	to	run?	
			public	static	void	main(String[]	args)	{	
							long	startTime	=	System.nanoTime();	
							for	(int	i	=	0;	i	<=	Integer.MAX_VALUE;	i++)	{	
		
							}	
							long	endTime	=	System.nanoTime();			
							long	millis	=	(endTime	-	startTime)	/	1_000_000;	
							System.out.println("The	program	took	"		
													+	millis	+	"	milliseconds.");	
			}	

a) Faster than an eye-blink.
b) Get some coffee.
c) Go to lunch.
d) Something else…

14 17-214

Home	on	the	range	preliminaries:		int	overflow	

/**	
*	Returns	an	immutable	list	consisting	of	consecutive	Integers	in	a	
*	specified	range	from	start	(inclusive)	to	stop	(exclusive).	The	
*	returned	list	logically	contains	(stop	-	start)	elements	(as		
*	reported	by	its	size	method)	but	its	memory	consumption	is	constant	
*	regardless	of	its	logical	size.	
*	
*	@param	start	the	(inclusive)	initial	value	of	the	range	
*	@param	stop	the	(exclusive)	upper	bound	of	the	range	
*	@throws	IllegalArgumentException	if	stop	<	start	or	if	
*	(stop	-	start)	would	be	greater	than	Integer.MAX_VALUE	
*/	
public	static	List<Integer>	range(int	start,	int	stop)	{	...	}	

15 17-214

Home	on	the	range	preliminaries:		int	overflow	

/**	
*	Returns	an	immutable	list	consisting	of	consecutive	Integers	in	a	
*	specified	range	from	start	(inclusive)	to	stop	(exclusive).	The	
*	returned	list	logically	contains	(stop	-	start)	elements	(as		
*	reported	by	its	size	method)	but	its	memory	consumption	is	constant	
*	regardless	of	its	logical	size.	
*	
*	@param	start	the	(inclusive)	initial	value	of	the	range	
*	@param	stop	the	(exclusive)	upper	bound	of	the	range	
*	@throws	IllegalArgumentException	if	stop	<	start	or	if	
*	(stop	-	start)	would	be	greater	than	Integer.MAX_VALUE	
*/	
public	static	List<Integer>	range(int	start,	int	stop)	{	
				if	(stop	<	start	||	(stop	–	start)	>	Integer.MAX_VALUE)	
				...		
}	

16 17-214

Home	on	the	range	preliminaries:		int	overflow	

/**	
*	Returns	an	immutable	list	consisting	of	consecutive	Integers	in	a	
*	specified	range	from	start	(inclusive)	to	stop	(exclusive).	The	
*	returned	list	logically	contains	(stop	-	start)	elements	(as		
*	reported	by	its	size	method)	but	its	memory	consumption	is	constant	
*	regardless	of	its	logical	size.	
*	
*	@param	start	the	(inclusive)	initial	value	of	the	range	
*	@param	stop	the	(exclusive)	upper	bound	of	the	range	
*	@throws	IllegalArgumentException	if	stop	<	start	or	if	
*	(stop	-	start)	would	be	greater	than	Integer.MAX_VALUE	
*/	
public	static	List<Integer>	range(int	start,	int	stop)	{	
				if	(stop	<	start	||	((long)	stop	–	start)	>	Integer.MAX_VALUE)	
				...		
}	

17 17-214

Home	on	the	range	preliminaries:		int	overflow	

/**	
*	Returns	an	immutable	list	consisting	of	consecutive	Integers	in	a	
*	specified	range	from	start	(inclusive)	to	stop	(exclusive).	The	
*	returned	list	logically	contains	(stop	-	start)	elements	(as		
*	reported	by	its	size	method)	but	its	memory	consumption	is	constant	
*	regardless	of	its	logical	size.	
*	
*	@param	start	the	(inclusive)	initial	value	of	the	range	
*	@param	stop	the	(exclusive)	upper	bound	of	the	range	
*	@throws	IllegalArgumentException	if	stop	<	start	or	if	
*	(stop	-	start)	would	be	greater	than	Integer.MAX_VALUE	
*/	
public	static	List<Integer>	range(int	start,	int	stop)	{	
				if	(stop	<	start	||	(stop	–	start)	<	0)	
				...		
}	

18 17-214

Home	on	the	range	preliminaries:		non-func9onal	spec	

/**	
*	Returns	an	immutable	list	consisting	of	consecutive	Integers	in	a	
*	specified	range	from	start	(inclusive)	to	stop	(exclusive).	The	
*	returned	list	logically	contains	(stop	-	start)	elements	(as		
*	reported	by	its	size	method)	but	its	memory	consumption	is	constant	
*	regardless	of	its	logical	size.	
*	
*	@param	start	the	(inclusive)	initial	value	of	the	range	
*	@param	stop	the	(exclusive)	upper	bound	of	the	range	
*	@throws	IllegalArgumentException	if	stop	<	start	or	if	
*	(stop	-	start)	would	be	greater	than	Integer.MAX_VALUE	
*/	
public	static	List<Integer>	range(int	start,	int	stop)	{	...	}	

19 17-214

Home	on	the	range	preliminaries:		non-func9onal	spec	

/**	
*	Returns	an	immutable	list	consisting	of	consecutive	Integers	in	a	
*	specified	range	from	start	(inclusive)	to	stop	(exclusive).	The	
*	returned	list	logically	contains	(stop	-	start)	elements	(as		
*	reported	by	its	size	method)	but	its	memory	consumption	is	constant	
*	regardless	of	its	logical	size.	
*	
*	@param	start	the	(inclusive)	initial	value	of	the	range	
*	@param	stop	the	(exclusive)	upper	bound	of	the	range	
*	@throws	IllegalArgumentException	if	stop	<	start	or	if	
*	(stop	-	start)	would	be	greater	than	Integer.MAX_VALUE	
*/	
public	static	List<Integer>	range(int	start,	int	stop)	{	
				if	(…)	{	throw	new	IllegalArgumentException();	}	
				List<Integer>	result	=	new	ArrayList<>();	
				for	(int	i	=	start;	i	<	stop;	i++)	{	
								result.add(i);	
				}	
				return	result;	
}	

20 17-214

Home	on	the	range	preliminaries:		non-func9onal	spec	

/**	
*	Returns	an	immutable	list	consisting	of	consecutive	Integers	in	a	
*	specified	range	from	start	(inclusive)	to	stop	(exclusive).	The	
*	returned	list	logically	contains	(stop	-	start)	elements	(as		
*	reported	by	its	size	method)	but	its	memory	consumption	is	constant	
*	regardless	of	its	logical	size.	
*	
*	@param	start	the	(inclusive)	initial	value	of	the	range	
*	@param	stop	the	(exclusive)	upper	bound	of	the	range	
*	@throws	IllegalArgumentException	if	stop	<	start	or	if	
*	(stop	-	start)	would	be	greater	than	Integer.MAX_VALUE	
*/	
public	static	List<Integer>	range(int	start,	int	stop)	{	
				if	(…)	{	throw	new	IllegalArgumentException();	}	
				int	values[]	=	new	int[Integer.MAX_VALUE];	
				for	(int	i	=	start;	i	<	stop;	i++)	{	
								values[start-i]	=	i;	
				}	
				…	
}	

21 17-214

Metrics	of	so3ware	quality,	i.e.,	design	goals	

Func9onal	
correctness	 Adherence	of	implementa9on	to	the	specifica9ons	

Robustness	 Ability	to	handle	anomalous	events	

Flexibility	 Ability	to	accommodate	changes	in	specifica9ons	

Reusability	 Ability	to	be	reused	in	another	applica9on	

Efficiency	 Sa9sfac9on	of	speed	and	storage	requirements	

Scalability	 Ability	to	serve	as	the	basis	of	a	larger	version	of	the	applica9on	

Security	 Level	of	considera9on	of	applica9on	security	

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

22 17-214

A	Collections	aside…	

/**	
*	Returns	an	immutable	list	consisting	of	consecutive	Integers	in	a	
*	specified	range	from	start	(inclusive)	to	stop	(exclusive).	The	
*	returned	list	logically	contains	(stop	-	start)	elements	(as		
*	reported	by	its	size	method)	but	its	memory	consumption	is	constant	
*	regardless	of	its	logical	size.	
*	
*	@param	start	the	(inclusive)	initial	value	of	the	range	
*	@param	stop	the	(exclusive)	upper	bound	of	the	range	
*	@throws	IllegalArgumentException	if	stop	<	start	or	if	
*	(stop	-	start)	would	be	greater	than	Integer.MAX_VALUE	
*/	
public	static	List<Integer>	range(int	start,	int	stop)	{	
				if	(…)	{	throw	new	IllegalArgumentException();	}	
				int	values[]	=	new	int[Integer.MAX_VALUE];	
				for	(int	i	=	start;	i	<	stop;	i++)	{	
								values[start-i]	=	i;	
				}	
				return	Collections.unmodifiableList(Arrays.asList(values));	
}	

23 17-214

•  A	generic	list	implementa9on	is	not	necessary	

Generic	asides…	

public	static	List<Integer>	range(int	start,	int	stop)	{	…	}	
	
	
class	RangeList	implements	AbstractList<Integer>	{	
				…	
}	
	

24 17-214

•  A	generic	list	implementa9on	is	not	necessary	

Generic	asides…	

public	static	List<Integer>	range(int	start,	int	stop)	{	…	}	
	
	
class	RangeList	implements	AbstractList<Integer>	{	
				…	
}	
	
class	RangeList<E>	implements	AbstractList<E>	{	
				…	
				public	E	get(int	index)	{	...;	return	???;	}	
}	

25 17-214

•  A	generic	list	implementa9on	is	not	necessary	

Generic	asides…	

public	static	List<Integer>	range(int	start,	int	stop)	{	…	}	
	
	
class	RangeList	implements	AbstractList<Integer>	{	
				…	
}	
	
class	RangeList<E>	implements	AbstractList<E>	{	
				…	
				public	E	get(int	index)	{	...;	return	???;	}	
}	
	
class	RangeList<E>	implements	AbstractList<Integer>	{	
				…	
}	
	

26 17-214

On	to	the	sample	solu9ons…	

27 17-214

Are	there	any	design	paUerns	in	my	solu9ons?	

28 17-214

Extending	AbstractList	is	the	template	method	paUern	

		abstract	E			get(int	i);														
		abstract	int	size();																		
		boolean						set(int	i,	E	e);									//	pseudo-abstract	
		boolean						add(E	e);																//	pseudo-abstract																
		boolean						remove(E	e);													//	pseudo-abstract	
		boolean						addAll(Collection<?	extends	E>	c);	
		boolean						removeAll(Collection<?>	c);	
		boolean						retainAll(Collection<?>	c);	
		boolean						contains(E	e);	
		boolean						containsAll(Collection<?>	c);	
		void									clear();	
		boolean						isEmpty();	
		Iterator<E>		iterator();	
		Object[]					toArray()	
		<T>	T[]						toArray(T[]	a);	
		…	
	

29 17-214

Tes9ng	the	range()	method	

•  You	must	test	both	range(…)	and	the	returned	list	

30 17-214

Today	

•  Midterm	exam	post-mortem	
•  Homeworks	2	and	3	post-mortem	

31 17-214

Enums	(review)	

•  Java	has	object-oriented	enums	
•  In	simple	form,	they	look	just	like	C	enums:	
							public	enum	Planet	{	MERCURY,	VENUS,	EARTH,	MARS,	
																												JUPITER,	SATURN,	URANUS,	NEPTUNE	}	

•  But	they	have	many	advantages	[EJ	Item	34]!	
–  Compile-9me	type	safety	
– Mul9ple	enum	types	can	share	value	names	
–  Can	add	or	reorder	without	breaking	constants	
–  High-quality	Object	methods	
–  Screaming	fast	collec9ons	(EnumSet,	EnumMap)	
–  Can	easily	iterate	over	all	constants	of	an	enum	

32 17-214

You	can	add	data	to	enums	

public	enum	Planet	{	
				MERCURY(3.302e+23,	2.439e6),	VENUS	(4.869e+24,	6.052e6),	
				EARTH(5.975e+24,	6.378e6),	MARS(6.419e+23,	3.393e6);	
	
				private	final	double	mass;			//	In	kg.	
				private	final	double	radius;	//	In	m.	
	
				private	static	final	double	G	=	6.67300E-11;	
	
				Planet(double	mass,	double	radius)	{	
								this.mass	=	mass;	
								this.radius	=	radius;	
				}	
	
				public	double	mass()			{	return	mass;	}	
				public	double	radius()	{	return	radius;	}	
				public	double	surfaceGravity()	{	
								return	G	*	mass	/	(radius	*	radius);		
				}	
}	

33 17-214

You	can	add	behavior	too	

public	enum	Planet	{	
			...	//	As	on	previous	slide	
	
				public	double	surfaceWeight(double	mass)	{	
								return	mass	*	surfaceGravity;	//	F	=	ma	
				}	

}	
	

34 17-214

Watch	it	go!	

public	static	void	main(String[]	args)	{	
			double	earthWeight	=	Double.parseDouble(args[0]);	
			double	mass	=	earthWeight	/	EARTH.surfaceGravity();	
	
			for	(Planet	p	:	Planet.values())	{	
						System.out.printf("Your	weight	on	%s	is	%f%n",	
																								p,	p.surfaceWeight(mass));	
			}	
}	
	
$	java	Planet	180	
Your	weight	on	MERCURY	is	68.023205	
Your	weight	on	VENUS	is	162.909181	
Your	weight	on	EARTH	is	180.000000	
Your	weight	on	MARS	is	68.328719	

35 17-214

You	can	even	add	constant-specific	behavior	

•  Each	constant	can	have	its	own	override	of	a	method	
–  Don't	do	this	unless	you	have	to	
–  If	adding	data	is	sufficient,	do	that	instead	
	
public	interface	Filter	{	
				Image	transform(Image	original);	
}	

		
public	enum	InstagramFilter	implements	Filter	{	

						EARLYBIRD	{public	Image	transform(Image	original)	{	...	}},	
						MAYFAIR			{public	Image	transform(Image	original)	{	...	}},	
						AMARO					{public	Image	transform(Image	original)	{	...	}},	
						RISE						{public	Image	transform(Image	original)	{	...	}};	

	}	
	

				See	Effec9ve	Java	Items	34	-	38	for	more	informa9on	

36 17-214

A	simple	solu9on	to	HW	2	and	3	

37 17-214

Lessons	(prac9cal)	

•  Choose	low	level	abstrac9ons	that	make	higher	level	tasks	easy	
•  When	you	want	to	represent	a	fixed	set	of	values	known	at	

compile	9me,	consider	enums	
•  If	users	need	to	extend	set	consider	emulated	extensible	enum	
•  Bit	twiddling	should	be	part	of	every	programmers	tool	set	

–  Don’t	overuse	it…	
–  But	do	consider	it	even	when	performance	doesn’t	demand	it	

38 17-214

Lessons	(philosophical)	

•  Good	habits	maUer	
–  “The	way	to	write	a	perfect	program	is	to	make	yourself	a	perfect	

programmer	and	then	just	program	naturally.”	–	WaUs		S.	Humphrey,	1994	

•  Don’t	just	hack	it	up	and	say	you’ll	fix	it	later	
–  You	probably	won’t	
–  but	you	will	get	into	the	habit	of	just	hacking	it	up	
–  Also	it’s	way	more	fun	to	work	on	nice,	well-structured	code	

•  Even	small	design	decisions	maUer	
–  If	your	code	is	geqng	ugly,	go	back	to	the	drawing	board	
–  “A	week	of	coding	can	o3en	save	a	whole	hour	of	thought.”	

•  Strive	for	clarity	
–  It’s	not	enough	to	be	merely	correct;	aim	for	clearly	correct	

	

