Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Class-level design

'tis a gift to be simple, or Cleanliness is next to godliness

Josh Bloch Charlie Garrod Darya Melicher

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

°
institute for

- SOFTWARE
17 214 1 RESEAI;\CH

Administrivia

 Reading due today: none!
e Homework 4a due Thursday at 11:59 p.m.

— Mandatory design review meeting before the homework deadline

* PA voter registration deadline: Tuesday, October 9t

°

institute for

- SOFTWARE
17-214 2

Key concepts from last Tuesday

°
institute for

- SOFTWARE
17 214 3 RESEAI;\CH

Assign object responsibility using interaction diagrams

* For a given system-level operation, create an object interaction
diagram at the implementation-level of abstraction

* Implementation-level concepts:

— Implementation-like method names
— Programming types

— Helper methods or classes

— Artifacts of design patterns

°
institute for

- SOFTWARE
17-214 a

Heuristics for responsibility assignment

 Controller heuristic
* Information expert heuristic
e Creator heuristic

°
institute for

- SOFTWARE
17 214 5 RESEAI;\CH

Object-level artifacts of this design process

* Object interaction diagrams add methods to objects
— Can infer additional data responsibilities
— Can infer additional data types and architectural patterns

* Object model aggregates important design decisions
— Is an implementation guide

°
institute for

- SOFTWARE
17 214 6 RESEAI;\CH

Today

* Midterm exam post-mortem
e Homeworks 2 and 3 post-mortem

°
institute for

- SOFTWARE
17 214 7 RESEAI;\CH

Midterm exam results

* Average: 45 out of 74
e Standard deviation: 10

17-214

20
10
0
Q N Q Q Q QO QO QO Q QO O N Q Q O N

°
institute for
8 I S SOFTWARE
RESEARCH

Not so big data

In this problem, you will demonstrate your understanding of two design
patterns by showing the design of a data processing application that allows
a flexible choice of database, while avoiding code duplication. Using your
design, one should be able to add support for a new database with minimal
changes to the existing code.

Regardless of the database being used, the application must support a
single method called loadData() which connects to a database, executes a
database query, and disconnects from a database. All database systems
provide an API that supports these operations, but they differ in how they
implement them. Your solution should allow a flexible implementation of
these operations for each database system, i.e., a flexible connect()

method, an executeQuery() method, and a disconnect() method for each
database system.

[J
institute for
17-214 o SO

A mini-puzzler...

 How long will the following program take to run?

public static void main(String[] args) {
long startTime = System.nanoTime();
for (int i = @; i <= Integer.MAX_VALUE; i++) {

}

long endTime = System.nanoTime();
long millis = (endTime - startTime) / 1 000 000;
System.out.println("The program took "

milliseconds.");

+ millis +

17-214 10

institute for
SOFTWARE
RESEARCH

A mini-puzzler...

 How long will the following program take to run?

public static void main(String[] args) {
long startTime = System.nanoTime();
for (int i = @; i <= Integer.MAX_VALUE; i++) {

}

long endTime = System.nanoTime();
long millis = (endTime - startTime) / 1 000 000;
System.out.println("The program took "

+ millis + " milliseconds.");

a) Faster than an eye-blink.
b) Get some coffee.

c) Go to lunch.

d) Something else...

[J
institute for
17-214 11 SO

Watch it go!

institute for
17-214 12 SO

An int is always <=to Integer.MAX VALUE

 How long will the following program take to run?
public static void main(String[] args) {

17-214

long startTime = System.nanoTime();
for (int i = @; i <= Integer.MAX VALUE; i++) {

}

long endTime = System.nanoTime();
long millis = (endTime - startTime) / 1 000 000;
System.out.println("The program took "

+ millis + " milliseconds.");

a) Faster than an eye-blink.
b) Get some coffee.

c) Go to lunch.

d) Something else...

°
- S institute for
SOFTWARE

1 3 RESEARCH

Home on the range preliminaries: int overflow

/**

Returns an immutable list consisting of consecutive Integers in a
specified range from start (inclusive) to stop (exclusive). The
returned list logically contains (stop - start) elements (as
reported by its size method) but its memory consumption is constant
regardless of its logical size.

@param start the (inclusive) initial value of the range
@param stop the (exclusive) upper bound of the range
@throws IllegalArgumentException if stop < start or if
(stop - start) would be greater than Integer.MAX VALUE

X ¥ X X X X ¥ X * X

*/
public static List<Integer> range(int start, int stop) { ... }

institute for
17-214 14 SO

Home on the range preliminaries: int overflow

/**

Returns an immutable list consisting of consecutive Integers in a
specified range from start (inclusive) to stop (exclusive). The
returned list logically contains (stop - start) elements (as
reported by its size method) but its memory consumption is constant
regardless of its logical size.

@param start the (inclusive) initial value of the range
@param stop the (exclusive) upper bound of the range
@throws IllegalArgumentException if stop < start or if
(stop - start) would be greater than Integer.MAX VALUE

X ¥ X X X X ¥ X * X

*/
public static List<Integer> range(int start, int stop) {
if (stop < start || (stop - start) > Integer.MAX VALUE)

institute for
17-214 15 SO

Home on the range preliminaries: int overflow

/**

Returns an immutable list consisting of consecutive Integers in a
specified range from start (inclusive) to stop (exclusive). The
returned list logically contains (stop - start) elements (as
reported by its size method) but its memory consumption is constant
regardless of its logical size.

@param start the (inclusive) initial value of the range
@param stop the (exclusive) upper bound of the range
@throws IllegalArgumentException if stop < start or if
(stop - start) would be greater than Integer.MAX VALUE

X ¥ X X X X ¥ X * X

*/
public static List<Integer> range(int start, int stop) {
if (stop < start || ((long) stop - start) > Integer.MAX VALUE)

institute for
17-214 16 SO

Home on the range preliminaries: int overflow

/**

Returns an immutable list consisting of consecutive Integers in a
specified range from start (inclusive) to stop (exclusive). The
returned list logically contains (stop - start) elements (as
reported by its size method) but its memory consumption is constant
regardless of its logical size.

@param start the (inclusive) initial value of the range
@param stop the (exclusive) upper bound of the range
@throws IllegalArgumentException if stop < start or if
(stop - start) would be greater than Integer.MAX VALUE

X ¥ X X X X ¥ X * X

*/
public static List<Integer> range(int start, int stop) {
if (stop < start || (stop - start) < 0)

institute for
17-214 17 SO

Home on the range preliminaries: non-functional spec

/**

* Returns an immutable list consisting of consecutive Integers in a

* specified range from start (inclusive) to stop (exclusive). The

* returned list logically contains (stop - start) elements (as

* reported by its size method) but its memory consumption is constant
* regardless of its logical size.

k

* @param start the (inclusive) initial value of the range

* @param stop the (exclusive) upper bound of the range

* @throws IllegalArgumentException if stop < start or if

* (stop - start) would be greater than Integer.MAX_ VALUE

*/

public static List<Integer> range(int start, int stop) { ... }

institute for
17-214 18 SO

Home on the range preliminaries: non-functional spec

/**

Returns an immutable list consisting of consecutive Integers in a
specified range from start (inclusive) to stop (exclusive). The
returned list logically contains (stop - start) elements (as
reported by its size method) but its memory consumption is constant
regardless of its logical size.

@param start the (inclusive) initial value of the range
@param stop the (exclusive) upper bound of the range
@throws IllegalArgumentException if stop < start or if
(stop - start) would be greater than Integer.MAX VALUE

X ¥ X X X X ¥ X * X

*/
public static List<Integer> range(int start, int stop) {
if (..) { throw new IllegalArgumentException(); }
List<Integer> result = new ArraylList<>();
for (int i = start; i < stop; i++) {
result.add(i);
}
return result;
} :
17-214 o [B

Home on the range preliminaries: non-functional spec

/**

* Returns an immutable list consisting of consecutive Integers in a

* specified range from start (inclusive) to stop (exclusive). The

* returned list logically contains (stop - start) elements (as

* reported by its size method) but its memory consumption is constant
* regardless of its logical size.

k

* @param start the (inclusive) initial value of the range
* @param stop the (exclusive) upper bound of the range
* @throws IllegalArgumentException if stop < start or if
* (stop - start) would be greater than Integer.MAX_ VALUE
*/
public static List<Integer> range(int start, int stop) {

if (..) { throw new IllegalArgumentException(); }

int values[] = new int[Integer.MAX VALUE];

for (int i = start; i < stop; i++) {

values[start-i] = 1i;

}

institute for
17-214 20 SO

Metrics of software quality, i.e., design goals

Functional
correctness

Robustness
Flexibility
Reusability
Efficiency
Scalability

Security

17-214

Adherence of implementation to the specifications

Ability to handle anomalous events

Ability to accommodate changes in specifications

Ability to be reused in another application

Satisfaction of speed and storage requirements

Ability to serve as the basis of a larger version of the application

Level of consideration of application security

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

°
- S institute for
SOFTWARE

2 1 RESEARCH

A Collections aside...

/**

Returns an immutable list consisting of consecutive Integers in a
specified range from start (inclusive) to stop (exclusive). The
returned list logically contains (stop - start) elements (as
reported by its size method) but its memory consumption is constant
regardless of its logical size.

@param start the (inclusive) initial value of the range
@param stop the (exclusive) upper bound of the range
@throws IllegalArgumentException if stop < start or if
(stop - start) would be greater than Integer.MAX VALUE

X ¥ X X X X ¥ X * X

*/
public static List<Integer> range(int start, int stop) {
if (..) { throw new IllegalArgumentException(); }
int values[] = new int[Integer.MAX VALUE];
for (int i = start; i < stop; i++) {
values[start-i] = 1i;
}

return Collections.unmodifiablelList(Arrays.asList(values));

- institute for
17-214 22

Generic asides...

* A generic list implementation is not necessary

public static List<Integer> range(int start, int stop) { .. }

class RangelList implements AbstractList<Integer> {

}

institute for
17-214 23 SO

Generic asides...

* A generic list implementation is not necessary

public static List<Integer> range(int start, int stop) { .. }

class RangelList implements AbstractList<Integer> {

}

class RangelList<E> implements AbstractList<E> {

public E get(int index) { ...; return ???; }

institute for
17-214 24 SO

Generic asides...

* A generic list implementation is not necessary

public static List<Integer> range(int start, int stop) { .. }

class RangelList implements AbstractList<Integer> {
}
class RangelList<E> implements AbstractList<E> {

public E get(int index) { ...; return ???; }

}

class RangelList<E> implements AbstractList<Integer> {

}

institute for
17-214 25 SO

On to the sample solutions...

[J
institute for
17-214 26 SO

Are there any design patterns in my solutions?

[J
institute for
17-214 27 SO

Extending AbstractList is the template method pattern

abstract E get(int i);
abstract int size();

boolean set(int i, E e); // pseudo-abstract
boolean add(E e); // pseudo-abstract
boolean remove(E e); // pseudo-abstract
boolean addAll(Collection<? extends E> c);

boolean removeAll(Collection<?> c);

boolean retainAll(Collection<?> c);

boolean contains(E e);

boolean containsAll(Collection<?> c¢);

void clear();

boolean isEmpty();

Iterator<E> iterator();

Object[] toArray()

<T> T[] toArray (T[] a);

[J
institute for
17-214 28 SO

Testing the range () method

* You must test both range(...) and the returned list

[J
institute for
17-214 29 SO

Today

* Midterm exam post-mortem
e Homeworks 2 and 3 post-mortem

institute for
17-214 30 SO

Enums (review)

e Java has object-oriented enums

* Insimple form, they look just like C enums:

public enum Planet { MERCURY, VENUS, EARTH, MARS,
JUPITER, SATURN, URANUS, NEPTUNE }

e But they have many advantages [EJ [tem 34]!
— Compile-time type safety
— Multiple enum types can share value names
— Can add or reorder without breaking constants
— High-quality Object methods
— Screaming fast collections (EnumSet, EnumMap)
— Can easily iterate over all constants of an enum

[J
institute for
17-214 31 SO

You can add data to enums

public enum Planet {
MERCURY(3.302e+23, 2.439e6), VENUS (4.869e+24, 6.052e6),

EARTH(5.975e+24, 6.378e6), MARS(6.419e+23, 3.393e6);

private final double mass; // In kg.
private final double radius; // In m.

private static final double G = 6.67300E-11;

Planet(double mass, double radius) {
this.mass = mass;
this.radius = radius;

¥

public double mass() { return mass; }
public double radius() { return radius; }
public double surfaceGravity() {

return G * mass / (radius * radius);

}

[J
institute for
17-214 32 SO

You can add behavior too

public enum Planet {
... // As on previous slide

public double surfaceWeight(double mass) {
return mass * surfaceGravity; // F = ma

institute for
17-214 33 SO

Watch it go!

public static void main(String[] args) {
double earthWeight = Double.parseDouble(args[@]);
double mass = earthWeight / EARTH.surfaceGravity();

for (Planet p : Planet.values()) {
System.out.printf("Your weight on %s is %f%n",
p, p.surfaceWeight(mass));

$ java Planet 180

Your weight on MERCURY is 68.023205
Your weight on VENUS is 162.909181
Your weight on EARTH is 1860.000000
Your weight on MARS is 68.328719

17-214 34

institute for
SOFTWARE
RESEARCH

You can even add constant-specific behavior

e Each constant can have its own override of a method
— Don't do this unless you have to
— If adding data is sufficient, do that instead

public interface Filter {
Image transform(Image original);

¥

public enum InstagramFilter implements Filter {

}

EARLYBIRD {public
MAYFAIR {public
AMARO {public
RISE {public

Image
Image
Image
Image

transform(Image
transform(Image
transform(Image
transform(Image

original) { .
original) { .
original) { .
original) { .

See Effective Java Items 34 - 38 for more information

17-214

35

bl }})
b }}J
«o 11
N S 5

institute for
I S SOFTWARE
RESEARCH

A simple solution to HW 2 and 3

institute for

17-214 36 SO

Lessons (practical)

* Choose low level abstractions that make higher level tasks easy

* When you want to represent a fixed set of values known at
compile time, consider enums

 |f users need to extend set consider emulated extensible enum

e Bit twiddling should be part of every programmers tool set
— Don’t overuse it...

— But do consider it even when performance doesn’t demand it

[J
institute for
17-214 37 SO

Lessons (philosophical)

Good habits matter

— “The way to write a perfect program is to make yourself a perfect
programmer and then just program naturally.” — Watts S. Humphrey, 1994

Don’t just hack it up and say you’'ll fix it later

— You probably won’t

— but you will get into the habit of just hacking it up

— Also it’s way more fun to work on nice, well-structured code

Even small design decisions matter

— If your code is getting ugly, go back to the drawing board
— “A week of coding can often save a whole hour of thought.”

Strive for clarity
— It's not enough to be merely correct; aim for clearly correct

[J
institute for
17-214 38 SO

