Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to Java

Josh Bloch Charlie Garrod Darya Melicher

g&u‘nogiv Mellon University
School of Computer Science
[J
institute for
I S SOFTWARE
RESEARCH

[)
institute ror
-/ 4 12 BRIl SOFTWARE
17-214 O | S [Eyis

Administrivia

* Homework 1 due next Thursday 11:59 p.m.
— Everyone must read and sign our collaboration
policy
* First reading assighment due Tuesday
— Effective Java Items 15 and 16

[)
institute ror
-/ V44 o5 BRIl SOFTWARE
17-214 I | S [RSas:

Outline

“Hello World!” explained
l. The type system
Il. Quick ‘n’ dirty 1/0
V. Collections

V. Methods common to all Objects

- institute for
17-214 | S [

The “simplest” Java Program

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

°
institute for

- SOFTWARE
17 214 4 RESEAI;\CH

CULTTMIILA LIV L. YUU TTTUOL UOT d Lldoo

even if you aren’t doing OO
programming

public static void main(String[] args) {
System.out.println("Hello world!");

}

°

institute for

- SOFTWARE
17-214 5

Complication 2: main must be public

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

°
institute for

- SOFTWARE
17-214 6

Complication 3: main must be static

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

°
institute for

- SOFTWARE
17-214 7

Complication 4: malin must return voild

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}

°
institute for

- SOFTWARE
17-214 8

Complication 5: main must declare
command line arguments even if unused

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}
}

[)
institute ror
-/ 14 O ISl SOFTWARE
17-214 CI | S [yt

Complication 6: standard 1/O requires
use of static field of System

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello world!");

}
}

o
institute ror
17-214 10 [RYf o

Execution is a bit complicated

* First you compile the source file
—javac HelloWorld. java
— Produces class file HelloWorld.class

 Then you launch the program
— java HelloWorld
— Java Virtual Machine (JVM) executes main method

o
institute ror
17-214 ER | S [o

On the bright side...

* Has many good points to balance shortcomings
 Some verbosity is not a bad thing

— Can reduce errors and increase readability
* Modern IDEs eliminate much of the pain

— Type psvminstead of public static void main
* Managed runtime has many advantages

— Safe, flexible, enables garbage collection

* |t may not be best language for Hello World...

— But Java is very good for large-scale programming!

o
institute ror
17-214 12 [NYf o

Outline

“Hello World!” explained
|. The type system
Il. Quick ‘n’ dirty 1/0
V. Collections

V. Methods common to all Objects

- institute for
17-214 | S [

Java type system has two parts

Primitives____ Object Reference Types

int, long, byte, short, char, Classes, interfaces, arrays, enumes,

float, double, boolean annotations
No identity except their value Have identity distinct from value
Immutable Some mutable, some not

On stack, exist only when in use On heap, garbage collected
Can’t achieve unity of expression Unity of expression with generics

Dirt cheap More costly

o
institute for
17-214 14 SO

Programming with primitives

A lot like C!

public class TrailingZeros {
public static void main(String[] args) {
int i = Integer.parselnt(args[@]);
System.out.println(trailingZerosInFactorial(i));

}

static int trailingZerosInFactorial(int i) {
int result = @; // Conventional name for return value

while (i >= 5) {
i /= 5; // Same as i = 1 / 5; Remainder discarded
result += 1i;

}

return result;

institute for
17-214 15 SO

Primitive type summary

e Int

* long

* byte

e short
e char

e float
 double

 boolean

17-214

32-bit signed integer
64-bit sighed integer
8-bit signed integer

16-
16-
32-
64-

oit signed integer
oit unsigned integer/character
nit IEEE 754 floating point number

nit IEEE 754 floating point number

Boolean value: true or false

Deficient primitive types

* byte, short - use int instead!
— byte is broken - should have been unsigned

e float - use double instead!
— Provides too little precision

* Only compelling use case is large arrays,
especially in resource-constrained environments

o
institute ror
17-214 PR | S [Hou:

The class hierarchy

 The root is Object (all non-primitives are objects)
* All classes except Object have one parent class

— Specified with an extends clause
class Guitar extends Instrument { ... }

— If extends clause omitted, defaults to Object
 Aclassis an instance of all its superclasses

Object

Instrument

(u itar O (Yoyo)

nstitute for
17-214 18 SO

Implementation inheritance

* Aclass:
— Inherits visible fields and methods from its superclasses
— Can override methods to change their behavior

* Overriding method implementation must obey
contract(s) of its superclass(es)

— Ensures subclass can be used anywhere superclass can
— Liskov Substitution Principle (LSP)

17-214 19 SO

Interface types

* Defines a type without an implementation
 Much more flexible than class types

— An interface can extend one or more others
— A class can implement multiple interfaces

interface Comparable<T> {
/**
* Returns a negative number, O, or a positive number as this
* object is less than, equal to, or greater than other.
*/

int compareTo(T other);

[J
institute for
17-214 20 SO

Enum types

* Java has object-oriented enums

* Insimple form, they look just like C enums:

enum Planet { MERCURY, VENUS, EARTH, MARS,
JUPITER, SATURN, URANUS, NEPTUNE }

* But they have many advantages!
— Compile-time type safety
— Multiple enum types can share value names
— Can add or reorder without breaking existing uses
— High-quality Object methods are provided
— Screaming fast collections (EnumSet, EnumMap)
— Can iterate over all constants of an enum

[J
institute for
17-214 21 SO

Boxed primitives

* Immutable containers for primitive types

* Boolean, Integer, Short, Long, Character,
Float, Double

e Lets you “use” primitives in contexts requiring objects
* Canonical use case is collections
* Don’t use boxed primitives unless you have to!

* Language does autoboxing and auto-unboxing
— Blurs but does not eliminate distinction
— There be dragons!

- institute ror
17-214 22 [BYf sormse

Pop Quiz!

institute f
23 sk
17_214 RESEARCH

What does this fragment print?

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int 1i;

int suml = 9O;

for (1 = 0; 1 < a.length; i++) {
suml += a[i];

int j;

int sum2 = 9;

for (j = 0; i < a.length; j++) {
sum2 += al[j];

}

System.out.println(suml - sum2);

[J
institute for
17-214 24 SO

Maybe not what you expect!

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int 1i;

int suml = 9O;

for (i = 0; i < a.length; i++) {
suml += a[i];

}

int j;

int sum2 =

for (j = ©; i < a.length; j++) { // Copy/paste error!
sum2 += a[j];

}

System.out.println(suml - sum2);

You might expect it to print O, but it prints 55

[J
institute for
17-214 25 SO

You could fix it like this...

int[] a = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int i,

int suml = 9O;

for (i = 0; i < a.length; i++) {
suml += a[i];

int j;

int sum2 = 0;

for (j = 9; j < a.length; j++) {
sum2 += al[j];

}

System.out.println(suml - sum2); // Now prints @, as expected

[J
institute for
17-214 26 SO

But this fix is far better...

int suml = ©;

for (int 1 = 0; 1 < a.length; i++) {
suml += a[i];

}

int sum2 = 0;
for (int i = 0; i < a.length; i++) {
sum2 += a[i];

}

System.out.println(suml - sum2); // Prints ©

* Reduces scope of index variable to loop
* Shorter and less error prone

[J
institute for
17-214 27 SO

This fix is better still!

int suml = ©;
for (int x : a) {
suml += X;

}

int sum2 = 0;
for (int x : a) {
sum2 += X;

}

System.out.println(suml - sum2); // Prints ©

* Eliminates scope of index variable entirely!
* Even shorter and less error prone

[J
institute for
17-214 28 SO

Lessons from the quiz

* Minimize scope of local variables [EJ [tem 57]
— Declare variables at point of use

e |nitialize variables in declaration

e Use common idioms
e Watch out for bad smells in code

— Such as index variable declared outside loop

- institute ror
17-214 20 [BYf sormse

Outline

“Hello World!” explained
l. The type system
Il. Quick ‘n’ dirty I/0
V. Collections

V. Methods common to all Objects

- institute for
17-214 | S [

Output

e Unformatted

System.
System.
System.
System.
System.

out
out
out
out
out

.println("Hello World");
.println("Radius: " + r);
.println(r * Math.cos(theta));
.println();

.print("*");

e Formatted

System.out.printf("%d * %d = %d%n", a, b,

17-214

a * b); // Varargs

31

institute for
SOFTWARE
RESEARCH

Command line input example

Echos all command line arguments

class Echo {
public static void main(String[] args) {
for (String arg : args) {
System.out.print(arg + " ");
}

¥

$ java Echo Woke up this morning, had them weary blues
Woke up this morning, had them weary blues

[J
institute for
17-214 32 SO

Command line input with parsing

Prints GCD of two command line arguments

class Gcd {
public static void main(String[] args) {
int i = Integer.parselnt(args[0]);
int j = Integer.parselnt(args[1l]);
System.out.println(gcd(i, j));

¥

static int gcd(int i, int j) {
return 1 == 0 ? j : gcd(J % i, 1);
}
}

$ java Gcd 11322 35298
666

[J
institute for
17-214 33 SO

Scanner input

Counts the words on standard input

class Wc {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long result = 0;
while (sc.hasNext()) {
sc.next(); // Swallow token

result++;
}
System.out.println(result);
}
}
$ java Wc < Wc.java
32

[J
institute for
17-214 34 SO

Outline

“Hello World!” explained
l. The type system
Il. Quick ‘n’ dirty 1/0
V. Collections

V. Methods common to all Objects

- institute for
17-214 | S [

Primary collection interfaces

- institute ror
17-214 36 [YN sormse

Primary collection implementations

Interface_____Implementation

Set HashSet
List ArraylList
Queue ArrayDeque
Deque ArrayDeque
[stack] ArrayDeque

Map HashMap

o
institute ror
17-214 37 [SYN sormve

Other noteworthy collection impls

Interface_____|Implementation(s)

Set LinkedHashSet
TreeSet
EnumSet

Queue PriorityQueue

Map LinkedHashMap
TreeMap
EnumMap

- institute ror
17-214 38 [SYN sorme

Collections usage example 1

Squeeze duplicate words out of command line

public class Squeeze {
public static void main(String[] args) {
Set<String> s = new LinkedHashSet<>();

for (String word : args)
s.add(word);
System.out.println(s);

¥
}

$ java Squeeze I came I saw I conquered
[I, came, saw, conquered]

[J
institute for
17-214 39 SO

Collections usage example 2

Print unique words in lexicographic order

public class Lexicon {
public static void main(String[] args) {
Set<String> s = new TreeSet<>();
for (String word : args)
s.add(word);
System.out.println(s);

¥
}

$ java Lexicon I came I saw I conquered
[I, came, conquered, saw]

[J
institute for
17-214 a0 SO

Collections usage example 3

Print index of first occurrence of each word

class Index {
public static void main(String[] args) {
Map<String, Integer> index = new TreeMap<>();

// Iterate backwards so first occurrence wins

for (int i = args.length - 1; 1 >=0; i--) {
index.put(args[i], 1);

}

System.out.println(index);

}

$ java java Index if it is to be it is up to me to do it
{be=4, do=11, if=0, is=2, it=1, me=9, to=3, up=7}

[J
institute for
17-214 a1 SO

More information on collections

 For much more information on collections,
see the annotated outline:

https://docs.oracle.com/javase/8/docs/technotes
/guides/collections/reference.html

* For more info on any library class, see javadoc
— Search web for <fully qualified class name> 8

—e.g.,, Java.util.scanner 8

[J
institute for
17-214 42 SO

What about arrays?

* Arrays aren’t really a part of the collections framework
e Butthereis an adapter: Arrays.aslList
* Arrays and collections don’t mix

— Arrays are covariant and reified

— Generics are nonvariant and erased

* If you try to mix them and get compiler warnings, take
them seriously

* Generally speaking, prefer collections to arrays
* See Effective Java Item 28 for details

17-214 a3 SO

Outline

“Hello World!” explained
l. The type system
Il. Quick ‘n’ dirty 1/0
V. Collections

V. Methods common to all Objects

- institute for
17-214 | S [

Methods common to all objects

* How do collections know how to test objects for equality?
* How do they know how to hash and print them?
* The relevant methods are all present on Object

— equals - returns true if the two objects are “equal”

— hashCode - returns an int that must be equal for equal
objects, and is likely to differ on unequal objects

— toString - returns a printable string representation

[J
institute for
17-214 as SO

Object implementations

* Provide identity semantics

—equals(Object o) -returns true if o refers to
this object

—hashCode() - returns a near-random int that
never changes over the object lifetime

—toString() - returns a nasty looking string
consisting of the type and hash code

* For example: java.lang.0Object@659e0bfd

o
institute ror
17-214 a6 [SY sormvse

Overriding Object implementations

* No need to override equals and hashCode if
you want identity semantics

— When in doubt, don’t override them
— It’s easy to get it wrong

* Nearly always override toString
— printlninvokes it automatically
— Why settle for ugly?

o
institute ror
17-214 a7 DY sormvse

Overriding toString

Overriding toString is easy and beneficial

final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

@Override public String toString() {
return String.format("%03d-%03d-%04d",
areaCode, prefix, lineNumber);

}

Number jenny = ...;
System.out.println(jenny);
Prints: 707-867-5309

institute for
17-214 a8 SO

Overriding equals

* Overriding equals is tricky — here’s the contract

The equals method implements an equivalence relation. It is:
— Reflexive: For any non-null reference value x, x.equals(x) must return true.

— Symmetric: For any non-null reference values x and y, x.equals(y) must return
true if and only if y.equals(x) returns true.

— Transitive: For any non-null reference values x, v, z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) must return true.

— Consistent: For any non-null reference values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false, provided no
information used in equals comparisons on the objects is modified.

— For any non-null reference value x, x.equals(null) must return false.

institute for
17-214 a9 SO

Overriding hashCode

* Overriding hashCode also tricky — here’s contract

Whenever it is invoked on the same object more than once during an execution
of an application, the hashCode method must consistently return the

same integer, provided no information used in equals comparisons on the
object is modified. This integer need not remain consistent from one execution
of an application to another execution of the same application.

17-214

If two objects are equal according to the equals(Object) method, then calling the
hashCode method on each of the two objects must produce the same integer
result.

It is not required that if two objects are unequal according to the equals(Object)
method, then calling the hashCode method on each of the two objects must
produce distinct integer results. However, the programmer should be aware that
producing distinct integer results for unequal objects may improve the
performance of hash tables.

- S institute for
SOFTWARE
50 RESEARCH

Why the contracts matter

* No class is an island

* If you put an object with a broken equals or
hashCode into a collection, the collection breaks!

* Arbitrary behavior may result!
— System may generate incorrect results or crash

* To build a new value type, you must override
equals and hashCode

— Next lecture we’ll show you how

o
institute ror
17-214 s1 YR sormse

Summary

* Java is well suited to large programs; small ones
may seem a bit verbose

* Bipartite type system — primitives & object refs
— Single implementation inheritance

— Multiple interface inheritance
* A few simple I/O techniques will get you started
* Collections framework is powerful & easy to use

- institute ror
17-214 52 [Yf sormse

