Principles of Software Construction

MapReduce

Josh Bloch Charlie Garrod
Administrivia

- Homework 5c due tonight
- Homework 6 coming soon
Key concepts from Thursday
TCP, networking in Java

• The java.net.InetAddress:
 static InetAddress getByName(String host);
 static InetAddress getByAddress(byte[] b);
 static InetAddress getLocalHost();

• The java.net.Socket:
 Socket(InetAddress addr, int port);
 boolean isConnected();
 boolean isClosed();
 void close();
 InputStream getInputStream();
 OutputStream getOutputStream();

• The java.net.ServerSocket:
 ServerSocket(int port);
 Socket accept();
 void close();
 ...
Our destination: Distributed systems

- Multiple system components (computers) communicating via some medium (the network)

- Challenges:
 - Scale
 - Concurrency
 - Heterogeneity
 - Geography
 - Failures
 - Security

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf)
Metrics of success

• Reliability
 – Often in terms of availability: fraction of time system is working
 • 99.999% available is "5 nines of availability"

• Scalability
 – Ability to handle workload growth
Today: Distributed system design

- MapReduce: A robust, scalable framework for distributed computation...
 - ...on replicated, partitioned data
Map from a functional perspective

• map(f, x[0...n-1])
 • Apply the function f to each element of list x

• E.g., in Python:
 def square(x): return x*x
 map(square, [1, 2, 3, 4]) would return [1, 4, 9, 16]

• Parallel map implementation is trivial
 – What is the work? What is the depth?
Reduce from a functional perspective

- **reduce**\((f, x[0\ldots n-1])\)
 - Repeatedly apply binary function \(f\) to pairs of items in \(x\), replacing the pair of items with the result until only one item remains
 - One sequential Python implementation:
    ```python
    def reduce(f, x):
        if len(x) == 1: return x[0]
        return reduce(f, [f(x[0], x[1])] + x[2:])
    ```
 - e.g., in Python:
    ```python
    def add(x, y): return x+y
    reduce(add, [1, 2, 3, 4])
    ```
 would return 10 as
    ```plaintext
    reduce(add, [1, 2, 3, 4])
    reduce(add, [3, 3, 4])
    reduce(add, [6, 4])
    reduce(add, [10]) -> 10
    ```
Reduce with an associative binary function

• If the function ξ is associative, the order ξ is applied does not affect the result

\[
1 + ((2+3) + 4) \quad 1 + (2 + (3+4)) \quad (1+2) + (3+4)
\]

• Parallel reduce implementation is also easy
 – What is the work? What is the depth?
Distributed MapReduce

- Distributed MapReduce is similar to (but not the same as!):
 \[
 \text{reduce}(f2, \text{map}(f1, x))
 \]
- Key idea: "data-centric" architecture
 - Send function \(f1 \) directly to the data
 - Execute it concurrently
 - Then merge results with \(\text{reduce} \)
 - Also concurrently

![Diagram](image-url)
MapReduce with key/value pairs (Google style)

- Master
 - Assign tasks to workers
 - Ping workers to test for failures

- Map workers
 - Map for each key/value pair
 - Emit intermediate key/value pairs

- Reduce workers
 - Sort data by intermediate key and aggregate by key
 - Reduce for each key
MapReduce with key/value pairs (Google style)

- E.g., for each word on the Web, count the number of times that word occurs
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is a word, values is a list of the number of counts of that word

```java
f1(String key1, String value):
    for each word w in value:
        EmitIntermediate(w, 1);
```

```java
f2(String key2, Iterator values):
    int result = 0;
    for each v in values:
        result += v;
    Emit(key2, result);
```

Map: (key1, v1) \(\rightarrow\) (key2, v2)*
Reduce: (key2, v2*) \(\rightarrow\) (key3, v3)*
MapReduce: (key1, v1)* \(\rightarrow\) (key3, v3)*

MapReduce: (docName, docText)* \(\rightarrow\) (word, wordCount)*
MapReduce architectural details

• Usually integrated with a distributed storage system
 – Map worker executes function on its share of the data

• Map output usually written to worker's local disk
 – Shuffle: reduce worker often pulls intermediate data from map worker's local disk

• Reduce output usually written back to distributed storage system
Handling server failures with MapReduce

- **Map worker failure:**
 - Re-map using replica of the storage system data

- **Reduce worker failure:**
 - New reduce worker can pull intermediate data from map worker's local disk, re-reduce

- **Master failure:**
 - Options:
 - Restart system using new master
 - Replicate master
 - ...
The beauty of MapReduce

• Low communication costs (usually)
 – The shuffle (between map and reduce) can be expensive?

• MapReduce can be iterated
 – Input to MapReduce: key/value pairs in the distributed storage system
 – Output from MapReduce: key/value pairs in the distributed storage system
MapReduce to count mutual friends

- E.g., for person in a social network graph, output the number of mutual friends they have
 - For Map: key1 is a person, value is the list of her friends
 - For Reduce: key2 is ???, values is a list of ???

\[
\text{f1(String key1, String value):}
\]

\[
\text{f2(String key2, Iterator values):}
\]

MapReduce: \((\text{person, friends})^* \rightarrow (\text{pair of people, count of mutual friends})^*\)
MapReduce to count mutual friends

- E.g., for person in a social network graph, output the number of mutual friends they have
 - For Map: key1 is a person, value is the list of her friends
 - For Reduce: key2 is a pair of people, values is a list of 1s, for each mutual friend that pair has

\[
\text{MapReduce: } (\text{person, friends})^* \rightarrow (\text{pair of people, count of mutual friends})^*
\]

\[
\begin{align*}
\text{f1}(\text{String key1, String value}): & \\
\text{for each pair of friends in value:} & \\
\text{EmitIntermediate(pair, 1);}
\end{align*}
\]

\[
\begin{align*}
\text{f2}(\text{String key2, Iterator values}): & \\
\text{int result = 0;} & \\
\text{for each v in values:} & \\
\text{result += v;} & \\
\text{Emit(key2, result);}
\end{align*}
\]
MapReduce to count incoming links

- E.g., for each page on the Web, count the number of pages that link to it
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is ???, values is a list of ???

f1(String key1, String value):

f2(String key2, Iterator values):

MapReduce: (docName, docText)* → (docName, number of incoming links)*
MapReduce to count incoming links

- E.g., for each page on the Web, count the number of pages that link to it
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is link, values is a list of 1s

\[
\begin{align*}
\text{f1(String key1, String value):} & \\
& \text{for each link in value:} \\
& \quad \text{EmitIntermediate(link, 1)}
\end{align*}
\]

\[
\begin{align*}
\text{f2(String key2, Iterator values):} & \\
& \text{int result = 0;} \\
& \text{for each v in values:} \\
& \quad \text{result += v;} \\
& \quad \text{Emit(key2, result);} \\
\end{align*}
\]

MapReduce: \((\text{docName, docText})* \rightarrow (\text{docName, number of incoming links})*\)
MapReduce to create an inverted index

- E.g., for each page on the Web, create a list of the pages that link to it
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is ???, values is a list of ???

\[
\text{MapReduce: } (\text{docName, docText})^* \rightarrow (\text{docName, list of incoming links})^*
\]
List the mutual friends

• E.g., for each pair in a social network graph, list the mutual friends they have
 ▪ For Map: key1 is a person, value is the list of her friends
 ▪ For Reduce: key2 is ???, values is a list of ???

\[\text{f1(String key1, String value):} \quad \text{f2(String key2, Iterator values):} \]

MapReduce: \((\text{person, friends})^* \rightarrow (\text{pair of people, list of mutual friends})^*\)
List the mutual friends

• E.g., for each pair in a social network graph, list the mutual friends they have
 ▪ For Map: key1 is a person, value is the list of her friends
 ▪ For Reduce: key2 is a pair of people, values is a list of their mutual friends

f1(String key1, String value):
 for each pair of friends in value:
 EmitIntermediate(pair, key1);

f2(String key2, Iterator values):
 Emit(key2, values)

MapReduce: (person, friends)* → (pair of people, list of mutual friends)*
Count friends + friends of friends

- E.g., for each person in a social network graph, count their friends and friends of friends
 - For Map: key1 is a person, value is the list of her friends
 - For Reduce: key2 is ???, values is a list of ???

\[
f_1(\text{String key1, String value}): \quad f_2(\text{String key2, Iterator values}):\]

MapReduce: (person, friends)* \rightarrow (person, count of f + fof)*
Count friends + friends of friends

• E.g., for each person in a social network graph, count their friends and friends of friends
 ▪ For Map: key1 is a person, value is the list of her friends
 ▪ For Reduce: key2 is ???, values is a list of ???

f1(String key1, String value):
 for each friend1 in value:
 EmitIntermediate(friend1, key1)
 for each friend2 in value:
 EmitIntermediate(friend1, friend2);

f2(String key2, Iterator values):
 distinct_values = {}
 for each v in values:
 if not v in distinct_values:
 distinct_values.insert(v)
 Emit(key2, len(distinct_values))

MapReduce: (person, friends)* → (person, count of f + fof)*
Friends + friends of friends + friends of friends of friends of friends

- E.g., for each person in a social network graph, count their friends and friends of friends and friends of friends of friends of friends
 - For Map: key1 is a person, value is the list of her friends
 - For Reduce: key2 is ???, values is a list of ???

\[
\begin{align*}
f_1(\text{String key1, String value}): & \quad f_2(\text{String key2, Iterator values}): \\
\text{MapReduce: (person, friends)}^* & \rightarrow \text{(person, count of f + fofof)}^*
\end{align*}
\]
Problem: How to reach distance 3 nodes?

• Solution: Iterative MapReduce
 – Use MapReduce to get distance 1 and distance 2 nodes
 – Feed results as input to a second MapReduce process

• Also consider:
 – Breadth-first search
 – PageRank
 – ...

Dataflow processing

- High-level languages and systems for complex MapReduce-like processing
 - Yahoo Pig, Hive
 - Microsoft Dryad, Naiad
- MapReduce generalizations...
MapReduce summary

• "Data-centric" architecture allows efficient computation on large data sets
• Framework allows programmer to focus on the computation
 – Internally allocates work
 – Internally handles failures
Next time...