
1

 1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Version Control

Christian Kästner Charlie Garrod

 2 15-214

Learning Goals

• Understand the benefits and limitations of
version control (history, parallel development,
branching, etc)

• Ability to cooperate on a code base using
branching and merging; to resolve merge
conflicts

• Distinguish classes of version control systems
(local, central, distributed)

 3 15-214

HISTORY

3

 4 15-214

History

• Record relevant steps in the history of the project
• Supports partial undo
• Label cohesive development steps

– Allows understanding changes
– Explains rationale
– Traceability to other development artifacts (bug trackers, CVEs,

requirements, etc)

• Record who performed changes
• Implies a backup
• Early local systems: SCCS and RCS
• -> Version control systems useful even when used entirely

locally

4
 5 15-214

Eclipse's Local History

5
 6 15-214

Revision History

6

2

 7 15-214

Recording Rationale and Traceability

7
 8 15-214

Versioning entire projects

8
 9 15-214

Versioning and Tags

• Version numbers for files individually vs per
project

• Version numbers vs hashes

• Tags to name specific states

9

 10 15-214

While files to manage

• All code and noncode files

– Java code

– Build scripts

– Documentation

• Exclude generated files (.class, …)

• Most version control systems have a
mechanism to exclude files (e.g., .gitignore)

10
 11 15-214

COLLABORATION

11
 12 15-214

Collaborating on Files

Einführung in die

Softwaretechnik
12

• How to exchange files

– Sends changes per email

– Manual synchronization at project meeting

– All files on shared network directory

• Permission models

– Each file has an owner; only person allowed to change
it

– Everybody may change all files (collective ownership)

3

 13 15-214

Concurrent Modifications

• Allowing concurrent modifications is
challenging

• Conflicts (accidental overwriting) may occur

• Common strategies

– Locking to change

– Detecting conflicts (optimistic model)

13
 14 15-214

Change Conflicts

14
source „Version Control with Subversion“ 15 15-214

Locking Files

15

Practical problems of
locking model?

 16 15-214

Locking Problems

• How to lock?

– Central system vs announcement on mailing list

– Forgetting to unlock common

• Unnecesary sequentializing

– Cannot work on different concepts in same file

• False sense of security

– Changing dependant files can cause conflicts not
prevented by locking

16
 17 15-214

Merging (1/2)

17
 18 15-214

Merging (2/2)

18

4

 19 15-214

Example

19
 20 15-214

Example

20
 21 15-214

Example

Einführung in die

Softwaretechnik
21 System cannot decide order

 22 15-214

3-way merge

22

• File changed in two ways
– Overlapping changes -> conflicts
– Merge combines non-conflicting changes from both

• Merging not always automatic
– diff tool to show changes
– Manual resolution of conflicts during merge (potentially

requires additional communication)

• Automatic merge potentially dangerous
-> syntactic notion of conflicts

• Merging of binary files difficult
• In practice: most merges are conflict free

 23 15-214

BRANCHING

23
 24 15-214

Branching

• Parallel copies of the source tree
• Can be changed independently, versioned

separately, and merged later (or left separate)
• Often used for exploratory changes or to isolate

development activities
• Many usage patterns, common:

– Main branch for maintenance OR main development
– New branches for experimental features; merge when

successful
– New branches for nontrivial maintenance work
– Branches for maintenance of old versions

24

5

 25 15-214

Branches (Verzweigen)

Einführung in die

Softwaretechnik
25

• Kopie des Quelltext
• Wird getrennt versioniert
• Kann wieder zusammengefügt werden (merge)

• Typisches Vorgehen

– Hauptbranch für Wartung oder Hauptentwicklung
– Neuer Branch für experimentelle Funktionalität, wird

zusammengefügt wenn erfolgreich
– Neuer Branch für Wartungsaufgaben
– Teils neuer Branch für Varianten

 26 15-214

Release management with branches

 27 15-214

Variants and Revisions

• Revision replaces prior revision (temporal)

• Variant coexists with other variants

• Version describes both

• Release: Published and named version

V1.0 V2.0 V3.0 V1.1

Base system (Windows)

Extension for customer A

Extension for customer B

Linux variant

Server variant

X X X X

X X

X X

X X X

X

 28 15-214

Semantic Versioning for Releases

• Given a version number MAJOR.MINOR.PATCH,
increment the:
– MAJOR version when you make incompatible API

changes,
– MINOR version when you add functionality in a

backwards-compatible manner, and
– PATCH version when you make backwards-compatible

bug fixes.

• Additional labels for pre-release and build
metadata are available as extensions to the
MAJOR.MINOR.PATCH format.

28

http://semver.org/

 29 15-214

Variants and Revisions

[Staples&Hill, APSEC’04]

 30 15-214

Managing variants

Einführung in die

Softwaretechnik
30

• Branching for variants does not scale well
• Requires special planning or tooling

• Many solutions

– Configuration files
– Preprocessors
– Build systems
– DSLs
– Software product

lines
– …

6

 31 15-214

CENTRAL VERSION CONTROL
(E.G., SVN)

31
 32 15-214

Classes of version control systems

Einführung in die

Softwaretechnik
32

• Systems supporting merging and/or locking
• Local version control

– Local history of files: SCCS (1970s), RCS (1982)

• Central version control
– Versions stored on central master server
– Clients synchronize with server (update, commit)
– CVS (1990), SVN (2004), Perforce, Visual SourceSafe

• Distributed version control
– Many repositories; synchronization among

repositories (push, pull)
– Git (2005), Mercurial, Bitkeeper, ClearCase

 33 15-214
33

Server
(all versions)

Client
(version 5,
branch M)

Client
(version 5,
branch M)

Client
(revision 4,
branch B)

checkout/
update/
commit

access control

 34 15-214
Taentzer 34

Typical work cycle

• Once: Create local workspace

– svn checkout

• Update workspace:

– svn update

• Perform changes in workspace:

– svn add

– svn delete

– svn copy

– svn move

• Show workspace changes:

– svn status

– svn diff

• Revert changes in workspace:

– svn revert

• Update and merge conflicts:

– svn update

– svn resolved

• Push workspace changes to
server:

– svn commit

 35 15-214

CVS vs. SVN

CVS SVN

35

• Improvement over RCS in
tracking entire directories

• Revision number per file

• Text files (binary files
possible)

• Revision numbers for
project

• Atomic commits (commiting
multiple files at once)

• Tracking files and directories

• Support renaming

• Tracking of Metadata

 36 15-214

DISTRIBUTED VERSION CONTROL
(E.G., GIT)

36

7

 37 15-214

Git

37

• Distributed version control

• No central server necessary (but possible)

• Local copies of repositories (containing all history)
– Locally SVN like functionality: checkout, update, commit,

branch, diff

• Nonlinear development: each local copy can evolve
independently

• Synchronization among repositories (push/fetch/pull)

• Fast local operations (branch, commit, diff, ...)

 38 15-214

Overview

38

GH

M2 M1

clone, push, pull checkout / update

commit

M3

 39 15-214

Distributed Versions

39

• Versions not globally coordinated/sorted
• Unique IDs through hashes, relationships tracked in successor graph

– e.g., 52a0ff44aba8599f43a5d821c421af316cb7305
– Possible to merge select changes (cherry picking)
– Possible to rewrite the history as long as not shared remotely (git

rebase etc)

• Cloning creates copy of repository (including all versions)
– Tracks latest state when cloned, relevant for updating and merging
– Normal checkout and commit operations locally
– Commits don't change original repository

• Fetch and pull get missing versions from remote repository (one or
more)

• Push operations sends local changes to remote repository (one or
more), given access rights

 40 15-214

Example workflow

40

Linux

Linux

Kernel developer

clone / pull

checkout / update

commit
push

Linux

New developer

clone
checkout

commit

edit

edit

pull & merge

 41 15-214

Pull Requests

41

Linux

Linux

Kernel developer

clone / pull

checkout / update

commit
push

Linux

New developer

clone
checkout

commit

edit

edit

pull & merge

Pull request: Github feature to ask developer to pull a specific
change (alternative to sending email); integration with Travis CI

 42 15-214

Forks

42

Linux
(GH)

Linux
(local)

Kernel developer

clone / pull

checkout / update

commit

push

Linux
(local)

New developer

clone checkout

commit

edit

edit

pull & merge

Fork: Github feature to clone repository on Github (own copy
with full rights)

Linux
fork
(GH)

fork

push

pull & merge

8

 43 15-214

Forks

43

Linux
(GH)

Linux
(local)

Kernel developer

clone / pull

checkout / update

commit

push

Linux
(local)

New developer

clone checkout

commit

edit

edit

pull & merge

Fork: Github feature to clone repository on Github (own copy
with full rights)

Linux
fork
(GH)

fork

push

pull & merge

Caution:
Please to not fork 214 repositories.

214 Collaboration Policy: "Here are some examples of behavior that are
inappropriate: Making your work publicly available in a way that other
students (current or future) can access your solutions, even if others’
access is accidental or incidental to your goals."

 44 15-214

Repositories in mustache.js

44
 45 15-214

Git History

45

 46 15-214

Git and Central Repositories

46

© Scott Chacon “Pro Git”

 47 15-214

Social Coding

47

Awareness/
News Feeds

 48 15-214

Git Internals

48

© Scott Chacon “Pro Git”

9

 49 15-214

Git Internals

49

© Scott Chacon “Pro Git”

 50 15-214

Git Internals

50

© Scott Chacon “Pro Git”

 51 15-214

Git Internals

51

© Scott Chacon “Pro Git”

 52 15-214

Summary

• Version control has many advantages

– History, traceability, versioning

– Collaborative and parallel development

• Locking vs merging and merge conflicts

• Collaboration with branches

• From local to central to distributed version
control

52

