Principles of Software Construction: Objects, Design, and

Concurrency
Part 6: Concurrency and distributed systems

Abstractions of State

Christian Kastner Charlie Garrod

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
te‘f

- institute for
- SOFTWARE
15-214 v | S [Rsaass

Administrivia

* Homework 6...
* Final exam Tuesday, May 5", 1 —4 p.m. DH 2210

— Final exam review session Sunday, May 39, 4 — 6:30 p.m., Hamburg 1000

ite f

-
InstitL or
15-214 2 ol

Key concepts from Tuesday

ite f

stite for
- ‘A
15 214 3 S RESEARCH

Data consistency

* Suppose D is the database for some application and @ is a
function from database states to {true, false}

— We call @ an integrity constraint for the application if (D) is true if the
state Dis "good"

— We say a database state D is consistent if @(‘D) is true for all integrity
constraints @

— We say D is inconsistent if (‘D) is false for any integrity constraint ¢

* Transaction ACID properties:

— Atomicity: All or nothing

— Consistency: Application-dependent as before

— lIsolation: Each transaction runs as if alone

— Durability: Database will not abort or undo work of

a transaction after it confirms the commit

-
institute for
15-214 a ol

Concurrent transactions and serializability

* For good performance, database interleaves operations of
concurrent transactions

* Problems to avoid:

— Lost updates
* Another transaction overwrites your update, based on old data

— Inconsistent retrievals
* Reading partial writes by another transaction
* Reading writes by another transaction that subsequently aborts

* A schedule of transaction operations is serializable if it is
equivalent to some serial ordering of the transactions

-
institute for
15-214 5 ol

2PC sequence of events for a successful commit

Coordinator: Participants:
“prepared” _
canCommit? “prepared”
\. (persistently)
yes
“uncertain”

“committed” (objects still

(persistently) doC\mmit‘ locked)
confirmed “committed”

“done”

ite f

-
InstitL or
15-214 6 ot

Problems with two-phase commit?

te f

)
Institute ror
15-214 7 SOt

Problems with two-phase commit?

* Failure assumptions are too strong
— Real servers can fail permanently
— Persistent storage can fail permanently

 Temporary failures can arbitrarily delay a commit
* Poor performance

— Many round-trip messages

ite f

-
InstitL or
15-214 8 ol

Aside: The CAP theorem for distributed systems

* For any distributed system you want...
— Consistency
— Availability
— tolerance of network Partitions

e ...but you can support at most two of the three

ite f

-
InstitL or
15-214 o ol

Today: Abstractions of state

» State-based models of computation
— Finite state machines (FSMs)

* The State design pattern
* Adistributed application: The actor model

= Institute fur
15-214 10 SOt

An aside: | need two volunteers...

ite f

15-214 11

Memorize the following number:

4 2

ite f

15-214 12 ol

What was the number?

151 R
A
15-214 13 IS RESEARCH

Memorize the following number:

4 2 9 7

ite f

15-214 14 ol

What was the number?

151 R
A
15-214 15 IS RESEARCH

Memorize the following number:

49 297 2 8

15-214 16 [0 e

What was the number?

151 R
A
15-214 17 IS RESEARCH

Memorize the following number:

MOMOST 0O
ANNOWOUNO
- OMw=wOONAN
OWOMNNRON =N
OITNOONND
NOOWOWWOWOOUV
NANOO™ O i
AO=-ANOGOLIN O
N=ONMO N
TAHAOOMOMANMN

15-214

= institute for
15-214 19 sorTiss

Memorize the following number:

NANANANNANGN

T TTES
NANNNNNN

T TTES
NANNNNNN

TS TS
NANNNNNN

T TTES
NANNNNNN

TS TS

15-214

An aside's aside: Run-length encodings

4 2 (5*7 times)

M institute for
15-214 21 ol

What causes programming errors?

ite f

15-214 22

What causes programming errors?

 Knowledge problems: Inadequate, inert,
heuristic, oversimplified, or interfering
content or organization

e Attentional problems: Fixation, loss of
situational awareness, or working memory

strain

» Strategic problems: Unforeseen interactions
from goal conflict resolution or bounded
rationality

Recommended: A. Ko and B. Myers, "Development and
Evaluation of a Model of Programming Errors". HCC 2003.

e Institute For
15-214 23 SOt

What causes programming errors?

 Knowledge problems: Inadequate, inert,
heuristic, oversimplified, or interfering
content or organization

e Attentional problems: Fixation, loss of
situational awareness, or working memory

strain

» Strategic problems: Unforeseen interactions
from goal conflict resolution or bounded
rationality

A goal: Eliminate complexity

Recommended: A. Ko and B. Myers, "Development and
Evaluation of a Model of Programming Errors". HCC 2003.

e Institute For
15-214 24 SOt

Today: Abstractions of state

» State-based models of computation
— Finite state machines (FSMs)

* The State design pattern
* Adistributed application: The actor model

= Institute fur
15-214 25 SOt

Related: Deterministic Finite Automata (DFAs)

* Asimple model of computation in which input is accepted or
rejected by a finite state machine

— e.g. A DFA that accepts the input 42:

- nsite for
15-214 26 [SYf o

Related: Deterministic Finite Automata (DFAs)

* Asimple model of computation in which input is accepted or
rejected by a finite state machine

— e.g. A DFA that accepts the input 42:

- nsite for
15-214 27 [H] o

Related: Deterministic Finite Automata (DFAs)

* Asimple model of computation in which input is accepted or
rejected by a finite state machine

— e.g. A DFA that accepts the input 42:

- nsite for
15-214 28 [S)f o

Related: Deterministic Finite Automata (DFAs)

* Asimple model of computation in which input is accepted or
rejected by a finite state machine

— e.g. A DFA that accepts the input 42:

- nsite for
15-214 29 [SYf o

Related: Turing Machines

slightly more complex
* A sirapte model of computation in which input is accepted or
rejected by a finite state machine

— Essentially a DFA with an infinite memory tape

= institute for
15-214 30 sorTiss

Finite state machines (FSMs)

"states"”

N\
“ —)

0,1,3-S
0-3,5-9 5.9

"transition
function” 0-9 "states"

= institute for
15-214 31 sorTiss

FSMs simply represent system behavior

 E.g., a4-function calculator

ite f

15-214 32 ol

FSMs simply represent system behavior

 E.g., a4-function calculator
* E.g., the traffic light at Forbes and Morewood

= Institute for
15-214 33 SOt

FSMs enable precise communication

 E.g., the Transmission
Control Protocol (TCP)

15-214

timeout
send:

starting point
CLOSED

]

|
|
appl: passive open :
send: <nothing> :

RST

recv: SYN

send: SYN, ACK
N simultaneous open
A
Son %
TN,
%, (3\ S}ﬁ
ZNN
SN

recv: FIN

send: ACK

appl:
send:
data transfer state

3 7
simultaneous close

I
|
|
I
I
I
|
I
I
I
I
I

appl: : close
send: : FIN

LAST_ACK 3

CLOSE_WAIT j

|
|
|
|
|
|
|
|
|
|
|

appl: close
or timeout

|
: I
ANCWATL] ZenEACK ™\ CEOHNG) : 'send: <nothin§>—
| o o J
[passive close
recv:|ACK recv: | ACK :
send: | <nothing> :|<nothing>
|
|
' I
% : FIN
FIN_WAIT_2 = » TIME_WAIT }—.
end: ACK S i S
2MSL timeout !
___________ active close
= institute for
SOFTWARE
34 RESEARCH

UML state diagrams enable richer communication

* Conditional transitions
* |Independent events/actions

/ key_count = 1000;

4
/ default ™\ CAPS_LOCK caps_locked ™
CAPS_LOCK l)
/—’L | J‘ - o |
ANY_KEY / --key_count; ANY_KEY / --key_count;
choice guard
pseudostate conditions
g /// S
\ 7 o -~ ~ o ‘/
[else] [key_count == 0]—>@<—[key_count =0 [else]

(example from Wikipedia...)
15-214 s [H

FSMs can help organize the implementation

* See StateMachineCalculator.java

ite f

15-214 36 ol

FSMs can help organize the implementation

* See StateMachineCalculator.java

— Warning: The StateMachineCalculator intentionally demonstrates poor
design.

ite f

15-214 37 ol

A calculator with the State design pattern

Calculatorimpl <<interface>>
CalculatorState

-state 1| + handleOperator(operator) : CalculatorState
+ handleOperator(operator) ‘ + handleDigit(digit:int) : CalculatorState
+ handleDigit(digit:int) + handleEquals() : CalculatorState
+ handleEquals() + getDisplayValue() : int

+ getDisplayValue() : int

__________________ D
I I
I I
| I
, | |
BuildLhsState NeedRhsState
-lhs :int - lhs :int
QAL - op : Operator
+ handleOperator(operator) : CalculatorState
+ handleDigit(digit:int) : CalculatorState + handleOperator(cperator) : CalculatorState
+ handleEquals() : CalculatorState + handleDigit(digit:int) : CalculatorState
+ getDisplayValue() : int + handleEquals() : CalculatorState
. - + getDisplayValue() : int

e See StatePatternCalculator.java

institute for
15-214 38 sortvs

The State design pattern

State

e Applicability: Context | sae
— An object's behavior depends +Request()
on its state, and it must change i
its behavior at run-time based !
on that state [j
state Handle()
— Transition function between

states is highly state-dependent
and complex
* Consequences:

— State-specific behavior is
partitioned, localized, and
cohesive

— State transitions are explicit
— State objects can be shared

15-214

+Handle()

A

ConcreteStateA

+Handle()

30 [Hik

ConcreteStateB

+Handle()

titute for
SOFTWARE
RESEARCH

Recall a problem of concurrency: Shared state

15-214 40

MapReduce's approach to shared state

e E.g., for each word on the Web, count the number of times

that word occurs
= For Map: keyl is a document name, value is the contents of that

document
= For Reduce: key2 isaword, values is a list of the number of counts
of that word
fl1(String keyl, String value): f2(String key2, Iterator values):
for each word w in value: int result = 0;
EmitIntermediate(w, 1); for each v in values:
result += v;
Emit (key2, result);
Map: (keyl, vl1) = (key2, v2)* Reduce: (key2, v2*) > (key3, v3)*

MapReduce: (keyl, vl1)* > (key3, v3)*

MapReduce: (docName, docText)* - (word, wordCount)*
15-214 a1 s

Transactional approach to shared state

* For good performance, database interleaves operations of
concurrent transactions

* Problems to avoid:
— Lost updates
* Another transaction overwrites your update, based on old data
— Inconsistent retrievals
* Reading partial writes by another transaction
* Reading writes by another transaction that subsequently aborts

* A schedule of transaction operations is serializable if it is
equivalent to some serial ordering of the transactions

ite f

15-214 a2 ol

Models of concurrency and parallelism

* Explicit concurrency: threads and locking

* Functional programming

* Transactions and serializability

 MapReduce and other data-centric architectures
e SIMD and data parallelism

* Communicating sequential processes
— Message passing
— Channels
— The actor model

ite f

15-214 a3 ol

The actor model

* System is composed of independent actors that communicate
via asynchronous messages

,T‘

sequential,

i.e. concurrent function calls no shared state

without return values

e Institute For
15-214 a4 SO

The actor model

e System is composed of independent actors that communicate
via asynchronous messages

* Properties of actors:

15-214

Sequential and non-blocking
Non-shared, mutable state
Queue for incoming

messages Mailbox
Inherently concurrent Actor
Extremely lightweight
Distributed by default

Isolated
State

while true:
process next message

ite f

-
institL or
SOFTWARE
45 RESEARCH

Implementations of the actor model

* Frameworks:
— Java: Akka
— Python: Pykka
— C++: CAF (C++ Actor Framework)
* Languages:
— Scala
— Scratch
— Erlang
— Elixer
e Typically provide:
— Communication between actors
— Distribution among servers
— Supervisory relationships between actors

— Lightweight management and scheduling

15-214

46

institute for
SOFTWARE
RESEARCH

Processing messages

* An actor may:
— Change its internal state
— Send one or more messages to other actors

— Create one or more new actors

ite f

15-214 a7 ol

Processing messages

* An actor may:
— Change its internal state
— Send one or more messages to other actors
— Create one or more new actors

* Defines a hierarchy of actors

D Supervisor

(LA é) N e

(source: Seven Concurrency Models in Seven Weeks by Paul Butcher.

Institute Fo
15-214 a8 SO

Recall an advantage of Exceptions

* Separates normal and exceptional control flow

try {
FileInputStream fileInput = new FileInputStream(filename);

DataInput dataInput = new DataInputStream(fileInput);
int i = datalInput.readInt();
fileInput.close();

return 1i;
} catch (FileNotFoundException e) {
System.out.println("Could not open file " + filename);

return -1;

} catch (IOException e) {
System.out.println("Error reading binary data from file

+ filename);

return -1;

Institute for
15-214 a9 SOt

Error handling in the actor model

e "Letitcrash"
— Resume or restart failed actors
— Escalate errors to higher level

[:] Supervisor
O Worker

I
TS50

(source: Seven Concurrency Models in Seven Weeks by Paul Butcher.

e Institute For
15-214 50 SOt

Trade-offs of the actor model

* Strengths:
— Strong encapsulation via isolation and messaging
— Fault tolerance
— Inherently distributed and concurrent

 Weaknesses:
— Messages expensive compared to shared, local memory
— Subtle systemic problems, e.g. overflowing mailboxes

ite f

15-214 51 ol

Next time...

* Version control systems

gl b
- ‘A
15 214 52 S RESEARCH

