Principles of Software Construction: Objects, Design, and
Concurrency
Part 6: Concurrency and distributed systems

Transactions and Serializability

Christian Kastner Charlie Garrod

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
1[&‘F

-
InstitL or
15-214 1 SOt

Administrivia

* Homework 6...
* Final exam Tuesday, May 5", 1 —4 p.m. DH 2210

— Final exam review session Sunday, May 39, 4 — 6:30 p.m., Hamburg 1000

ite f

-
InstitL or
15-214 2 ol

Key concepts from last Tuesday

ite f

ok
- A
15 214 3 S RESEARCH

MapReduce with key/value pairs (Google style)

* Master
— Assign tasks to workers
— Ping workers to test for failures

° Map workers Node 1 Node 2 Node 3

— Map for each key/value pair QQQQQQ; @9@9??9 QQQQQQQ

Mapp ng process Mapp ng process Mapp ng process

— Emit intermediate key/value pairs iiﬁﬁﬁ ﬁﬁﬁﬁﬁ ﬁﬁﬁﬁﬁ

the shuffle: m

Node 1 Node 2 Node 3

* Reduce workers @@@@ Q@@@w @@@@@

— Sort data by intermediate key and | [Reduingpro | Reducing pro [Reducing pro

aggregate by key ﬁ ﬁ ﬁ

— Reduce for each key

= ute for
15-214 4 sormiags

MapReduce with key/value pairs (Google style)

e E.g., for each word on the Web, count the number of times

that word occurs
= For Map: keyl is a document name, value is the contents of that

document
= For Reduce: key2 isaword, values is a list of the number of counts
of that word
fl1(String keyl, String value): f2(String key2, Iterator values):
for each word w in value: int result = 0;
EmitIntermediate(w, 1); for each v in values:
result += v;
Emit (key2, result);
Map: (keyl, vl1) = (key2, v2)* Reduce: (key2, v2*) > (key3, v3)*

MapReduce: (keyl, vl1)* > (key3, v3)*

MapReduce: (docName, docText)* - (word, wordCount)*
15-214 5 s

Dataflow processing

* High-level languages and systems for complex MapReduce-like
processing

— Yahoo Pig, Hive ? P P Q@ inousies
— Microsoft Dryad, Naiad 0 00 @9 @ ;.

e MapReduce generalizations... x) 00) x) (00 Ox
P & N o< o< —
>~ [—

Channels Vertices

M \V/
{processes)
Output files ; {

it o
- ‘A
15 214 6 S RESEARCH

MapReduce with key/value pairs (Google style)

e E.g., for each word on the Web, count the number of times

that word occurs
= For Map: keyl is a document name, value is the contents of that

document
= For Reduce: key2 isaword, values is a list of the number of counts
of that word
fl1(String keyl, String value): f2(String key2, Iterator values):
for each word w in value: int result = 0;
EmitIntermediate(w, 1); for each v in values:
result += v;
Emit (key2, result);
Map: (keyl, vl1) = (key2, v2)* Reduce: (key2, v2*) > (key3, v3)*

MapReduce: (keyl, vl1)* > (key3, v3)*

MapReduce: (docName, docText)* - (word, wordCount)*
15-214 7 s

Today: Transactions and serializability

* A formal definition of consistency
* Introduction to transactions

* Concurrency control

* Distributed concurrency control

— Two-phase commit

ite f

-
InstitL or
15-214 8 ol

An aside: Double-entry bookkeeping

* A style of accounting where every event consists of two separate
entries: a credit and a debit

void transfer(Account fromAcct, Account toAcct, int val) {
fromAccount.debit(val);
toAccount.credit(val);

}

static final Account BANK LIABILITIES = ..;

void deposit(Account toAcct, int val) {
transfer(BANK LIABILITIES, toAcct, val);
}

boolean withdraw(Account fromAcct, int val) {
if (fromAcct.getBalance() < val) return false;
transfer(fromAcct, BANK LIABILITIES, val);
return true;

-
institute for
15-214 o ol

Some properties of double-entry bookkeeping

 Redundancy!

e Sum of all accounts is static
— CanbeO

ite f

15-214 w0 [0

Data consistency of an application

* Suppose Dis the database for some application and @ is a
function from database states to {true, false}

— We call @ an integrity constraint for the application if ¢(D)is
true if the state D is "good"

— We say a database state D is consistent if (D) is true for all integrity
constraints @

— We say D is inconsistent if @(‘D) is false for any integrity constraint ¢

ite f

15-214 11 ol

Data consistency of an application

* Suppose D is the database for some application and ¢ is a
function from database states to {true, false}

— We call @ an integrity constraint for the application if ¢(D)is
true if the state D is "good"

— We say a database state D is consistent if (D) is true for all integrity
constraints @

— We say D is inconsistent if @(‘D) is false for any integrity constraint ¢

 E.g., for a bank using double-entry bookkeeping one possible
integrity constraint is:

def IsConsistent(D):
If sum(all account balances in D) == 0:
Return True
Else:
Return False

ite f

15-214 12 ol

Database transactions

* A transaction is an atomic sequence of read and write

operations (along with any computational steps) that takes a
database from one state to another

— "Atomic" ~ indivisible

* Transactions always terminate with either:
— Commit: complete transaction's changes successfully
— Abort: undo any partial work of the transaction

ite f

15-214 13 ol

Database transactions

* A transaction is an atomic sequence of read and write
operations (along with any computational steps) that takes a
database from one state to another

— "Atomic" ~ indivisible

* Transactions always terminate with either:
— Commit: complete transaction's changes successfully

— Abort: undo any partial work of the transaction
boolean withdraw(Account fromAcct, int val) {
begin transaction();
if (fromAcct.getBalance() < val) {
abort_transaction();
return false;
}
transfer(fromAcct, BANK LIABILITIES, val);
commit _transaction();
return true;

= institute for
15-214 14 ol

A functional view of transactions

A transaction T is a function that takes the database from one
state D to another state T(D)

In a correct application, if D is consistent then T(D) is
consistent for all transactions ‘T

= Institute fur
15-214 15 SOt

A functional view of transactions

A transaction T is a function that takes the database from one
state D to another state T(D)

In a correct application, if D is consistent then T(D) is
consistent for all transactions ‘T

— E.g., in a correct application any serial execution of multiple transactions
takes the database from one consistent state to another consistent state

15-214

ite f

-
institute for
SOFTWARE
16 RESEARCH

Database transactions in practice

* The application requests commit or abort, but the database
may arbitrarily abort any transaction

— Application can restart an aborted transaction

* Transaction ACID properties:
— Atomicity: All or nothing
— Consistency: Application-dependent as before
— lIsolation: Each transaction runs as if alone

— Durability: Database will not abort or undo work of
a transaction after it confirms the commit

ite f

15-214 17 ol

Concurrent transactions and serializability

* For good performance, database interleaves operations of
concurrent transactions

ite f

15-214 o [0

Concurrent transactions and serializability

* For good performance, database interleaves operations of
concurrent transactions

* Problems to avoid:

— Lost updates
* Another transaction overwrites your update, based on old data

— Inconsistent retrievals
* Reading partial writes by another transaction
* Reading writes by another transaction that subsequently aborts

* A schedule of transaction operations is serializable if it is
equivalent to some serial ordering of the transactions

M institute for
15-214 19 ol

Concurrency control for a database

 Two-phase locking (2PL)
— Phase 1: acquire locks
— Phase 2: release locks
* Eg,
— Lock an object before reading or writing it
— Don't release any locks until commit or abort

ite f

15-214 20 ol

Concurrency control for a distributed database

e Distributed two-phase locking
— Phase 1: acquire locks
— Phase 2: release locks
* Eg,
— Lock all copies of an object before reading or writing it
— Don't release any locks until commit or abort

* Two new problems:

— Distributed deadlocks are possible
— All participants must agree on whether each transaction commits or
aborts

= Institute for
15-214 21 SOt

Two-phase commit (2PC)

e Two roles:

— Coordinator: for each transaction there is a unique server
coordinating the 2PC protocol

— Participants: any server storing data locked by the
transaction
* Two phases:
— Phase 1: Voting (or Prepare) phase
— Phase 2: Commit phase

* Failure model:
— Unreliable network:
* Messages may be delayed or lost
— Unreliable servers with reliable storage:
» Servers may fail, but will eventually recover persistently-stored state

ite f

15-214 22 ol

The 2PC voting phase

* Coordinator sends canCommit? (’f) message to each
participant
— Messages re-sent as needed
* Each participant replies yes or no
— May not change vote after voting
* Must log vote to persistent storage
* If vote is yes:
— Objects must be strictly locked to prevent new conflicts
— Must log any information needed to successfully commit

« Coordinator collects replies from participants

ite f

15-214 23 ol

The 2PC commit phase

e If participants unanimously voted yes
— Coordinator logs commit (T) message to persistent storage
— Coordinator sends doCommit (T) message to all participants
e Participants confirm, messages re-sent as needed

* If any participant votes no
— Coordinator sends doAbort (T) message to all participants
* Participants confirm, messages re-sent as needed

ite f

15-214 24 ol

2PC sequence of events for a successful commit

Coordinator: Participants:
“prepared” _
canCommit? “prepared”
\. (persistently)
yes
“uncertain”

“committed” (objects still

(persistently) doC\mmit‘ locked)
confirmed “committed”

“done”

ite f

15-214 25 ol

Problems with two-phase commit?

te f

15-214 26 ol

Problems with two-phase commit?

* Failure assumptions are too strong
— Real servers can fail permanently
— Persistent storage can fail permanently

 Temporary failures can arbitrarily delay a commit
* Poor performance

— Many round-trip messages

ite f

15-214 27 ol

The CAP theorem for distributed systems

* For any distributed system you want...
— Consistency
— Availability
— tolerance of network Partitions

e ...but you can support at most two of the three

ite f

15-214 o [0

Next time...

 Models for distributed computation

te f

15-214 29 ol

