Principles of Software Construction: Objects, Design, and Concurrency

Part 6: Concurrency and distributed systems

Transactions and Serializability

Christian Kästner Charlie Garrod

Administrivia

- Homework 6...
- Final exam Tuesday, May 5th, 1 4 p.m. DH 2210
 - Final exam review session Sunday, May 3rd, 4 6:30 p.m., Hamburg 1000

Key concepts from last Tuesday

MapReduce with key/value pairs (Google style)

- Master
 - Assign tasks to workers
 - Ping workers to test for failures
- Map workers
 - Map for each key/value pair
 - Emit intermediate key/value pairs

the shuffle:

Node 1

Reducing process

Reducing process

Reducing process

Reducing process

Node 2

Node 1

Reduce workers

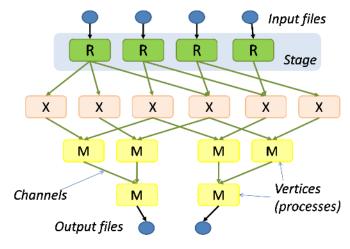
- Sort data by intermediate key and aggregate by key
- Reduce for each key

Node 3

MapReduce with key/value pairs (Google style)

- E.g., for each word on the Web, count the number of times that word occurs
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is a word, values is a list of the number of counts of that word

```
f1(String key1, String value):
  for each word w in value:
    EmitIntermediate(w, 1);
```


```
f2(String key2, Iterator values):
  int result = 0;
  for each v in values:
    result += v;
  Emit(key2, result);
```

```
Map: (\text{key1, v1}) \rightarrow (\text{key2, v2})^* Reduce: (\text{key2, v2*}) \rightarrow (\text{key3, v3})^* MapReduce: (\text{key1, v1})^* \rightarrow (\text{key3, v3})^*
```

MapReduce: (docName, docText)* → (word, wordCount)*

Dataflow processing

- High-level languages and systems for complex MapReduce-like processing
 - Yahoo Pig, Hive
 - Microsoft Dryad, Naiad
- MapReduce generalizations...

MapReduce with key/value pairs (Google style)

- E.g., for each word on the Web, count the number of times that word occurs
 - For Map: key1 is a document name, value is the contents of that document
 - For Reduce: key2 is a word, values is a list of the number of counts of that word

```
f1(String key1, String value):
  for each word w in value:
    EmitIntermediate(w, 1);
```

```
f2(String key2, Iterator values):
  int result = 0;
  for each v in values:
    result += v;
  Emit(key2, result);
```

```
Map: (\text{key1, v1}) \rightarrow (\text{key2, v2})^* Reduce: (\text{key2, v2*}) \rightarrow (\text{key3, v3})^* MapReduce: (\text{key1, v1})^* \rightarrow (\text{key3, v3})^*
```

MapReduce: (docName, docText)* → (word, wordCount)*

Today: Transactions and serializability

- A formal definition of consistency
- Introduction to transactions
- Concurrency control
- Distributed concurrency control
 - Two-phase commit

An aside: Double-entry bookkeeping

 A style of accounting where every event consists of two separate entries: a credit and a debit

```
void transfer(Account fromAcct, Account toAcct, int val) {
    fromAccount.debit(val);
    toAccount.credit(val);
}
static final Account BANK LIABILITIES = ...;
void deposit(Account toAcct, int val) {
    transfer(BANK LIABILITIES, toAcct, val);
}
boolean withdraw(Account fromAcct, int val) {
    if (fromAcct.getBalance() < val) return false;</pre>
    transfer(fromAcct, BANK_LIABILITIES, val);
    return true;
}
```

Some properties of double-entry bookkeeping

- Redundancy!
- Sum of all accounts is static
 - Can be 0

Data consistency of an application

- Suppose $\mathcal D$ is the database for some application and ϕ is a function from database states to {true, false}
 - We call ϕ an *integrity constraint* for the application if $\phi(\mathcal{D})$ is true if the state \mathcal{D} is "good"
 - We say a database state D is consistent if φ(D) is true for all integrity constraints φ
 - We say \mathcal{D} is inconsistent if $\varphi(\mathcal{D})$ is false for any integrity constraint φ

Data consistency of an application

- Suppose \mathcal{D} is the database for some application and ϕ is a function from database states to {true, false}
 - We call ϕ an *integrity constraint* for the application if $\phi(\mathcal{D})$ is true if the state \mathcal{D} is "good"
 - We say a database state $\mathcal D$ is *consistent* if $\phi(\mathcal D)$ is true for all integrity constraints ϕ
 - We say \mathcal{D} is inconsistent if $\varphi(\mathcal{D})$ is false for any integrity constraint φ
- E.g., for a bank using double-entry bookkeeping one possible integrity constraint is:

```
def IsConsistent(D):
    If sum(all account balances in D) == 0:
        Return True
    Else:
        Return False
```

Database transactions

- A transaction is an atomic sequence of read and write operations (along with any computational steps) that takes a database from one state to another
 - "Atomic" ~ indivisible
- Transactions always terminate with either:
 - Commit: complete transaction's changes successfully
 - Abort: undo any partial work of the transaction

institute for SOFTWARE RESEARCH

Database transactions

- A transaction is an atomic sequence of read and write operations (along with any computational steps) that takes a database from one state to another
 - "Atomic" ~ indivisible
- Transactions always terminate with either:
 - Commit: complete transaction's changes successfully

```
- Abort: undo any partial work of the transaction
boolean withdraw(Account fromAcct, int val) {
    begin_transaction();
    if (fromAcct.getBalance() < val) {
        abort_transaction();
        return false;
    }
    transfer(fromAcct, BANK_LIABILITIES, val);
    commit_transaction();
    return true;
}</pre>
```

A functional view of transactions

- A transaction $\mathcal T$ is a function that takes the database from one state $\mathcal D$ to another state $\mathcal T(\mathcal D)$
- In a correct application, if $\mathcal D$ is consistent then $\mathcal T(\mathcal D)$ is consistent for all transactions $\mathcal T$

A functional view of transactions

- A transaction \mathcal{T} is a function that takes the database from one state \mathcal{D} to another state $\mathcal{T}(\mathcal{D})$
- In a correct application, if $\mathcal D$ is consistent then $\mathcal T(\mathcal D)$ is consistent for all transactions $\mathcal T$
 - E.g., in a correct application any serial execution of multiple transactions takes the database from one consistent state to another consistent state

Database transactions in practice

- The application requests commit or abort, but the database may arbitrarily abort any transaction
 - Application can restart an aborted transaction
- Transaction ACID properties:
 - Atomicity: All or nothing
 - Consistency: Application-dependent as before
 - Isolation: Each transaction runs as if alone
 - Durability: Database will not abort or undo work of
 - a transaction after it confirms the commit

Concurrent transactions and serializability

 For good performance, database interleaves operations of concurrent transactions

Concurrent transactions and serializability

- For good performance, database interleaves operations of concurrent transactions
- Problems to avoid:
 - Lost updates
 - Another transaction overwrites your update, based on old data
 - Inconsistent retrievals
 - Reading partial writes by another transaction
 - Reading writes by another transaction that subsequently aborts
- A schedule of transaction operations is serializable if it is equivalent to some serial ordering of the transactions

institute for SOFTWARE RESEARCH

Concurrency control for a database

- Two-phase locking (2PL)
 - Phase 1: acquire locks
 - Phase 2: release locks
- E.g.,
 - Lock an object before reading or writing it
 - Don't release any locks until commit or abort

Concurrency control for a distributed database

- Distributed two-phase locking
 - Phase 1: acquire locks
 - Phase 2: release locks
- E.g.,
 - Lock all copies of an object before reading or writing it
 - Don't release any locks until commit or abort
- Two new problems:
 - Distributed deadlocks are possible
 - All participants must agree on whether each transaction commits or aborts

Two-phase commit (2PC)

Two roles:

- Coordinator: for each transaction there is a unique server coordinating the 2PC protocol
- Participants: any server storing data locked by the transaction

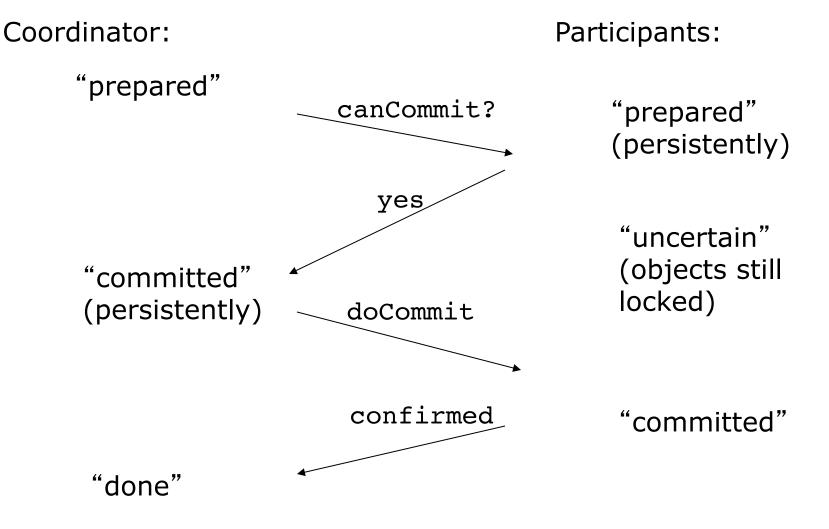
Two phases:

- Phase 1: Voting (or Prepare) phase
- Phase 2: Commit phase

Failure model:

- Unreliable network:
 - Messages may be delayed or lost
- Unreliable servers with reliable storage:
 - Servers may fail, but will eventually recover persistently-stored state

The 2PC voting phase


- Coordinator sends canCommit? (\mathcal{T}) message to each participant
 - Messages re-sent as needed
- Each participant replies yes or no
 - May not change vote after voting
 - Must log vote to persistent storage
 - If vote is yes:
 - Objects must be strictly locked to prevent new conflicts
 - Must log any information needed to successfully commit
- Coordinator collects replies from participants

The 2PC commit phase

- If participants unanimously voted yes
 - Coordinator logs commit(T) message to persistent storage
 - Coordinator sends doCommit(T) message to all participants
 - Participants confirm, messages re-sent as needed
- If any participant votes no
 - Coordinator sends doAbort (T) message to all participants
 - Participants confirm, messages re-sent as needed

2PC sequence of events for a successful commit

Problems with two-phase commit?

Problems with two-phase commit?

- Failure assumptions are too strong
 - Real servers can fail permanently
 - Persistent storage can fail permanently
- Temporary failures can arbitrarily delay a commit
- Poor performance
 - Many round-trip messages

The CAP theorem for distributed systems

- For any distributed system you want...
 - Consistency
 - Availability
 - tolerance of network Partitions
- ...but you can support at most two of the three

Next time...

Models for distributed computation