Principles of Software Construction: Objects, Design, and
Concurrency
Part 6: Concurrency and distributed systems

MapReduce

Christian Kastner Charlie Garrod

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH
te‘f

e Institute ror
SOFTWARE
15_214 1 RESEAI{\CH

Administrivia

* Homework 5c due tomorrow (Wednesday) night, 11:59 p.m.
* Homework 6 (MapReduce!) released by Friday
* Final exam Tuesday, May 51", 1 —4 p.m. DH 2210

— Final exam review session Sunday, May 3™, 4 — 6:30 p.m., Hamburg 1000

-
institute for
15-214 2 ol

Key concepts from last Thursday

ite f

ok
- A
15 214 3 S RESEARCH

Some distributed system design goals

The end-to-end principle
— When possible, implement functionality at the ends (rather than the
middle) of a distributed system

The robustness principle
— Be strict in what you send, but be liberal in what you accept from others
* Protocols
* Failure behaviors

Benefit from incremental changes

Be redundant
— Data replication
— Checks for correctness

ite f

-
InstitL or
15-214 a ol

Partitioning for scalability

* Partition data based on some property, put each partition on a
different server

CMU server:
{cohen:9,
bob:42,

o b

front-end <//>

Yale server: {feei?':ig !
{alice:90, D) -
pete:12,
o)

= institute for
15-214 5 ol

Consistent hashing

 Goal: Benefit from incremental changes
— Resizing the hash table (i.e., adding or removing a server) should not
require moving many objects
 E.g., Interpret the range of hash codes as a ring
— Each bucket stores data for a range of the ring
* Assign each bucket an ID in the range of hash codes

* To store item X don't compute X.hashCode() % n. Instead,

place X in bucket with the same ID as or next higher ID than
X.hashCode()

-
institute for
15-214 6 ol

Master/tablet-based systems

* Dynamically allocate range-based partitions

— Master server maintains tablet-to-server assignments
— Tablet servers store actual data

— Front-ends cache tablet-to-server assignments

front-end

front-end

15-214

Master: I
fa-ci[2], Tablet server 1
d-g:[3,4], S
h-j:[3], {pete:12,

: — | reif:42}

Jablet server 2:

a-C:

{alice: 90,
bob:42,
cohen:9}

Tablet server 3
d-g: '
{deb:16}
h-j:{

Tablet server 4
d-g:
{deb:16}

7

Today: Distributed system design

 MapReduce: A robust, scalable framework for distributed
computation...

— ...on replicated, partitioned data

Master: k
{a-c:[2], Map/reduce wrker
d-g:[3,4], k-z:

/ h-j:[3], {pete:12,
/ k-z:[1]} reif:42}

Map/reduce workeré

Map/reduce worker gz:lge:b'16}
' a-C. h-i:
{alice: 90, I)
bob:42,
cohen:9}

\\ ///
~) -
"""""""""""""""""""""""""" SorriRE
15-214 8 RESEARCH

Map from a functional perspective

* map(f, x[0..n-1])

* Apply the function £ to each element of list x

Input list \\ J

Mapping function

Output list |/ “

map/reduce images src: Apache Hadoop tutorials

 E.g., in Python:

def square(x): return x*x

map(square, [1l, 2, 3, 4])wouldreturn[1l, 4, 9, 16]

* Parallel map implementation is trivial
— What is the work? What is the depth?

-

institute for
9 I S r SOFTWARE
RESEARCH

15-214

Reduce from a functional perspective

* reduce(f, x[0..n-1])

— Repeatedly apply binary function £ to pairs of items in x, replacing
the pair of items with the result until only one item remains

— One sequential Python implementation:
def reduce(f, x):
if len(x) == 1l: return x[0]
return reduce(f, [£(x[0],x[1])] + xX[2:])

— e.g., in Python:

Input list

def add(x,y): return x+y

reduce(add, [1,2,3,4])
would return 10 as Reducing function
reduce(add, [1,2,3,4])
reduce(add, [3,3,4]) Output value

reduce(add, [6,4])
reduce(add, [10]) -> 10
15-214 10

Reduce with an associative binary function

* If the function £ is associative, the order £ is applied does not
affect the result

/ \
/\ N, /\ P
/ \ 1 / \ 11 Bl B B
4 \ l 4 \
1 +((2+3) + 4) 1+ (2 +(3+4)) (1+2) + (3+4)

* Parallel reduce implementation is also easy
— What is the work? What is the depth?

= ute for
15-214 11 sormiags

Distributed MapReduce

 The distributed MapReduce idea is similar to (but not the same
as!):
reduce(f2, map(fl, x))

* Key idea: "data-centric" architecture
— Send function £1 directly to the data
e Execute it concurrently
— Then merge results with reduce
e Also concurrently

* Programmer can focus on the data processing rather than the
challenges of distributed systems

ite f

15-214 12 ol

MapReduce with key/value pairs (Google style)

* Master
— Assign tasks to workers
— Ping workers to test for failures

° Map workers Node 1 Node 2 Node 3

— Map for each key/value pair QQQQQQ; @9@9??9 QQQQQQQ

Mapp ng process Mapp ng process Mapp ng process

— Emit intermediate key/value pairs iiﬁﬁﬁ ﬁﬁﬁﬁﬁ ﬁﬁﬁﬁﬁ

the shuffle: m

Node 1 Node 2 Node 3

* Reduce workers @@@@ Q@@@w @@@@@

— Sort data by intermediate key and | [Reduingpro | Reducing pro [Reducing pro

aggregate by key ﬁ ﬁ ﬁ

— Reduce for each key

= ute for
15-214 13 sormiags

MapReduce with key/value pairs (Google style)

e E.g., for each word on the Web, count the number of times

that word occurs
= For Map: keyl is a document name, value is the contents of that

document
= For Reduce: key2 isaword, values is a list of the number of counts
of that word
fl1(String keyl, String value): f2(String key2, Iterator values):
for each word w in value: int result = 0;
EmitIntermediate(w, 1); for each v in values:
result += v;
Emit (key2, result);
Map: (keyl, vl1) = (key2, v2)* Reduce: (key2, v2*) > (key3, v3)*

MapReduce: (keyl, vl1)* > (key3, v3)*

MapReduce: (docName, docText)* - (word, wordCount)*
15-214 1+ [HE s

MapReduce architectural details

e Usually integrated with a
distributed storage system
— Map worker executes function on its
share of the data
* Map output usually written to
worker's local disk
— Shuffle: reduce worker often pulls

intermediate data from map o NigigR s
worker's local disk ! ez Map/reduce wc
) d-g:[3,4], e

|
* Reduce output usually written 7| h-j:[3], {pete:12,
) p. y / k-;:[l]} reif:42}
back to distributed storage 5 M —
system Map/reduce worker |4°9:

{deb:16}
a-C. h_:
{alice:90, it ;
bob:42,
cohen:9}

institute tor
15-214 15 SOt

Handling server failures with MapReduce

* Map worker failure:

— Re-map using replica of the storage

system data

e Reduce worker failure:

— New reduce worker can pull
intermediate data from map
worker's local disk, re-reduce

* Master failure:

— Options:

* Restart system using new
master

* Replicate master

15-214

~"Master:

{’ {a-c:[2], Map/rfeduce W(

- dg:34] | |kz
/ h-j:[3], {pe_te:12,
/ k-z:[1]} reif:42}

Map/reduce worke

i d-g:

i Map/reduce worker {deb:16}
a-C. h_:
{alice:90, it ;

bob:42,
cohen:9}

Institute ror
SOFTWARE
RESEARCH

The beauty of MapReduce

 Low communication costs (usually)
— The shuffle (between map and reduce) is expensive

* MapReduce can be iterated

— Input to MapReduce: key/value pairs in the distributed storage system

— Output from MapReduce: key/value pairs in the distributed storage
system

ite f

15-214 17 ol

MapReduce to count mutual friends

e E.g., for person in a social network graph, output the number

of mutual friends they have
= For Map: keyl is a person, value is the list of her friends
= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

MapReduce: (person, friends)* = (pair of people, count of mutual friends)*

- nsite for
15-214 18 |ISYJ o

MapReduce to count mutual friends

e E.g., for person in a social network graph, output the number
of mutual friends they have
= For Map: keyl is a person, value is the list of her friends

= For Reduce: key?2 is a pair of people, values is a list of 1s, for each
mutual friend that pair has

fl1(String keyl, String value): f2(String key2, Iterator values):
for each pair of friends int result = 0;
in value: for each v in values:
EmitIntermediate(pair, 1); result += v;

Emit (key2, result);

MapReduce: (person, friends)* = (pair of people, count of mutual friends)*

151 R
‘A
15_214 19 I S RESEARCH

MapReduce to count incoming links

e E.g., for each page on the Web, count the number of pages

that link to it

= For Map: keyl is a document name, value is the contents of that
document

= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

MapReduce: (docName, docText)* - (docName, number of incoming links)*

151 R
A
15-214 20 IS RESEARCH

MapReduce to count incoming links

e E.g., for each page on the Web, count the number of pages

that link to it

= For Map: keyl is a document name, value is the contents of that
document

= For Reduce: key2 islink, values is a list of 1s

fl1(String keyl, String value): f2(String key2, Iterator values):
for each link in value: int result = 0;
EmitIntermediate(link, 1) for each v in values:

result += v;
Emit (key2, result);

MapReduce: (docName, docText)* - (docName, number of incoming links)*

te fo

15-214 21 sormiags

MapReduce to create an inverted index

e E.g., for each page on the Web, create a list of the pages that

link to it

= For Map: keyl is a document name, value is the contents of that
document

= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):
for each link in value: Emit (key2, values)
EmitIntermediate(link, keyl)

MapReduce: (docName, docText)* - (docName, list of incoming links)*

te fo

15-214 22 sormiags

List the mutual friends

e E.g., for each pair in a social network graph, list the mutual

friends they have
= For Map: keyl is a person, value is the list of her friends
= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

MapReduce: (person, friends)* = (pair of people, list of mutual friends)*

- nsite for
15-214 23 [SYf o

List the mutual friends

e E.g., for each pair in a social network graph, list the mutual

friends they have
= For Map: keyl is a person, value is the list of her friends
= For Reduce: key?2 is a pair of people, values is a list of their mutual

friends
fl(String keyl, String value): f2(String key2, Iterator values):
for each pair of friends Emit (key2, values)
in value:

EmitIntermediate(pair, keyl);

MapReduce: (person, friends)* = (pair of people, list of mutual friends)*

151 R
A
15_214 24 IS RESEARCH

Count friends + friends of friends

e E.g., for each person in a social network graph, count their

friends and friends of friends
= For Map: keyl is a person, value is the list of her friends
= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

MapReduce: (person, friends)* = (person, count of f + fof)*

- nsite for
15-214 25 [YJ o

Count friends + friends of friends

e E.g., for each person in a social network graph, count their

friends and friends of friends
= For Map: keyl is a person, value is the list of her friends
= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):
for each friendl in value: distinct values = {}
EmitIntermediate(friendl, keyl) for each v in values:
for each friend2 in value: if not v in distinct values:
EmitIntermediate(friendl, distinct values.insert(v)
friend2); Emit(key2, len(distinct values))

MapReduce: (person, friends)* = (person, count of f + fof)*

1S 1
‘A
15_214 26 I S RESEARCH

Friends + friends of friends + friends of friends of friends

e E.g., for each person in a social network graph, count their

friends and friends of friends and friends of friends of friends
= For Map: keyl is a person, value is the list of her friends
= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

MapReduce: (person, friends)* = (person, count of f + fof + fofof)*

= institute for
15-214 27 ot

Problem: How to reach distance 3 nodes?

e Solution: Iterative MapReduce
— Use MapReduce to get distance 1 and distance 2 nodes
— Feed results as input to a second MapReduce process

 Also consider:
— Breadth-first search
— PageRank

ite f

15-214 28 ol

Dataflow processing

* High-level languages and systems for complex MapReduce-like
processing

— Yahoo Pig, Hive ? P P Q@ inousies
— Microsoft Dryad, Naiad 0 00 @9 @ ;.

e MapReduce generalizations... x) 00) x) (00 Ox
P & N o< o< —
>~ [—

Channels Vertices

M \V/
{processes)
Output files ; {

it o
- ‘A
15 214 29 S RESEARCH

No class Thursday: Carnival

ite f

15-214 30

