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Administrivia

* Homework 5 team signups due tonight

e 2" midterm exam Thursday
— Review session tonight 7 —9 p.m. in Hamburg Hall 1000

« Homework 5 framework design advice... (at the end of class)
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Key concepts from last Thursday
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APIl: Application Programming Interface
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An API design process

* Define the scope of the API
— Collect use-case stories, define requirements
— Be skeptical
* Distinguish true requirements from so-called solutions
 "When in doubt, leave it out."

* Draft a specification, gather feedback, revise, and repeat
— Keep it simple, short

* Code early, code often
— Write client code before you implement the API
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Key design principle: Information hiding

* "When in doubt, leave it out."
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Minimize mutability

 Immutable objects are:
— Inherently thread-safe
— Freely shared without concern for side effects
— Convenient building blocks for other objects
— Can share internal implementation among instances
* See java.lang.String
 Mutable objects require careful management of visibility and

side effects
— e.g. Component.getSize() returns a mutable Dimension

 Document mutability
— Carefully describe state space
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Course themes

* Code-level design
— Process — how to start
— Patterns — re-use conceptual solutions
— Criteria — e.g. evolveability, understandability

* Analysis and modeling
— Practical specification techniques and verification tools

* Object-oriented programming
— Evolveability, reuse
— Industry use — basis for frameworks

— Vehicle is Java —industry, upper-division courses
» Threads and Concurrency

— System abstraction — background computing

— Performance

— Our focus: explicit, application-level concurrency
e Cf. functional parallelism (150, 210) and systems concurrency (213)
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Today: Concurrency, part 1

* The backstory
— Motivation, goals, problems, ...
* Basic concurrency in Java
— Synchronization
 Coming soon (but not today):
— Higher-level abstractions for concurrency

* Data structures
 Computational frameworks
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Learning goals

 Understand concurrency as a source of complexity in software

« Know common abstractions for parallelism and concurrency, and
the trade-offs among them
— Explicit concurrency
* Write thread-safe concurrent programs in Java
* Recognize data race conditions

— Know common thread-safe data structures, including high-level details of
their implementation

— Understand trade-offs between mutable and immutable data structures

— Know common uses of concurrency in software design
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Processor speeds over time
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Power requirements of a CPU

 Approx.: Capacitance * Voltage? * Frequency

 To increase performance:
— More transistors, thinner wires: more C
 More power leakage: increase V
— Increase clock frequency F
* Change electrical state faster: increase V

* Problem: Power requirements are super-linear to performance

— Heat output is proportional to power input
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One option: fix the symptom

* Dissipate the heat
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One option: fix the symptom

» Better: Dissipate the heat with liquid nitrogen
— Overclocking by Tom's Hardware's 5 GHz project

,%27
S s,
http://www.tomshardware.com/reviews/5-ghz-project,731-8.html
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Another option: fix the underlying problem

 Reduce heat by limiting power input

— Adding processors increases power requirements linearly with
performance

* Reduce power requirement by reducing the frequency and voltage

* Problem: requires concurrent processing
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Aside: Three sources of disruptive innovation

e Growth crosses some threshold

— e.g., Concurrency: ability to add transistors exceeded ability to dissipate
heat

e Colliding growth curves

— Rapid design change forced by jump from one curve onto another

e Network effects

— Amplification of small triggers leads to rapid change
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Aside: The threshold for distributed computing

* Too big for a single computer?
— Forces use of distributed architecture
 Shifts responsibility for reliability from hardware to software

— Allows you to buy larger cluster of cheap flaky machines instead
of expensive slightly-less-flaky machines

» Revolutionizes data center design

ite f

15-214 17 ol



Aside: Colliding growth curves

* From http://www.genome.gov/sequencingcosts/

Cost per Genome

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
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Aside: Network effects

 Metcalfe's rule: network value grows quadratically in the
number of nodes

— a.k.a. Why my mom has a Facebook account
— n(n-1) /2 potential connections for n nodes

— Creates a strong imperative to merge networks
e Communication standards, media formats, ...
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Concurrency

 Simply: doing more than one thing at a time
— In software: more than one point of control
* Threads, processes

* Resources simultaneously accessed by more than one thread
or process
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Concurrency then and now

* In the past multi-threading was just a
convenient abstraction
— GUI design: event threads
— Server design: isolate each client's work
— Workflow design: producers and consumers

* Now: must use concurrency for scalability and
performance
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Problems of concurrency

e Realizing the potential
— Keeping all threads busy doing useful work

* Delivering the right language abstractions

— How do programmers think about concurrency?
— Aside: parallelism vs. concurrency

* Non-determinism

— Repeating the same input can yield different results
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Realizing the potential

A A A A

> > >
concurrency

time

* Possible metrics of success
— Breadth: extent of simultaneous activity
* width of the shape
— Depth (or span): length of longest computation
* height of the shape
— Work: total effort required
e area of the shape

* What are the typical goals in parallel algorithm design?
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Amdahl’s law: How good can the depth get?

* Ideal parallelism with N processors:

Speedup by Amdahl’s Law (P=1024)
— Speedup =N

1,200.00

* |nreality, some work is always
inherently sequential
— Let F be the portion of the total
task time that is inherently

sequential .
J' 20000 A

F+(1-F)/N

— Speedup =

0.00%
0.05%
0.15% 4
0.25% 4
w 0.35% 1
0.45% 4
0.55% 4
065% 4
0.75% 4
0.85% 4
0.95% 4
1.05%

erial Percent

— Suppose F =10%. What is the max speedup? (you choose N)
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Amdahl’s law: How good can the depth get?

* Ideal parallelism with N processors:

Speedup by Amdahl’s Law (P=1024)
— Speedup =N

1,200.00

* Inreality, some work is always
inherently sequential
— Let F be the portion of the total
task time that is inherently
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— Suppose F =10%. What is the max speedup? (you choose N)
* As N approaches oo, 1/(0.1 + 0.9/N) approaches 10.
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Using Amdahl’s law as a design guide

[T11]
* For a given algorithm, suppose =
— N processors
— Problem size M l
— Sequential portion F o dil
Sani
1 ___ Numbe | e——— .-

* An obvious question:
— What happens to speedup as N scales?
* Aless obvious, important question:

— What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore’s Law;
from now on, it will be driven by Amdahl!’s Law."

— Doron Rajwan, Intel Corp
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Administrivia

e Homework 5a due tomorrow 9 a.m.
e 2" midterm exam returned today at end of class

Do you want to be a software engineer?
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The foundations of the Software Engineering minor

* Core computer science fundamentals
* Building good software
* Organizing a software project

— Development teams, customers, and users
— Process, requirements, estimation, management, and methods

* The larger context of software
— Business, society, policy

* Engineering experience

* Communication skills
— Written and oral
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SE minor requirements

* Prerequisite: 15-214

* Two core courses
— 15-313 Foundations of SE (fall semesters)
— 15-413 SE Practicum (spring semesters)

Three electives
— Technical
— Engineering
— Business or policy
Software engineering internship + reflection

— 8+ weeks in an industrial setting, then
— 17-413
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To apply to be a Software Engineering minor

* Email aldrich@cs.cmu.edu and clegoues@cs.cmu.edu
— Your name, Andrew ID, class year, QPA, and minor/majors

— Why you want to be a SE minor
— Proposed schedule of coursework

* Spring applications due by Friday, 10 Apr 2015
— Only 15 SE minors accepted per graduating class

e More information at:
— http://isri.cmu.edu/education/undergrad/
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Key concepts from last Tuesday
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Today: Concurrency, part 2

* The backstory
— Motivation, goals, problems, ...
* Basic concurrency in Java
— Synchronization
* Coming soon:
— Higher-level abstractions for concurrency

* Data structures
 Computational frameworks
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Abstractions of concurrency

* Processes

— Execution environment is isolated

* Processor, in-memory state, files, ...

— Inter-process communication typically slow, via message passing

* Sockets, pipes, ...

e Threads

— Execution environment is shared

— Inter-thread communication typically fast, via shared state

Process

Thread

Thread

Process

el

Thread

15-214

Thread

Stte]

3 [Hi

institute for
SOFTWARE
RESEARCH



Aside: Abstractions of concurrency

 What you see: Process
— Stateis all shared Thread Thread

Stte]

e A (slightly) more accurate view of the hardware:
— Separate state stored in

registers and caches
— Shared state stored in

caches and memory Thread Thread

. "
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Basic concurrency in Java

« The java.lang.Runnable interface

void run();

 The java.lang.Thread class
Thread (Runnable r);
void start();
static void sleep(long millis);
void join();
boolean isAlive();

static Thread currentThread();
« See IncrementTest.java
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Atomicity

* An actionis atomic if it is indivisible
— Effectively, it happens all at once
* No effects of the action are visible until it is complete
* No other actions have an effect during the action
* |nJava, integer increment is not atomic
1. Load data from variable i

lizkrg is actually 2. Increment data by 1

3. Store data to variable i
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One concurrency problem: race conditions

* A race condition is when multiple threads access shared data
and unexpected results occur depending on the order of their

actions

 E.g., from IncrementTest.java:
— Suppose classData starts with the value 41:

Thread A:
classData++;

Thread B:
classData++;

15-214

One possible interleaving of actions:

1A.
1B.
2A.
2B.
3A.
3B.

Load data(41) from classData
Load data(41) from classData
Increment data(41) by 1 -> 42
Increment data(41) by 1 -> 42
Store data(42) to classbData

Store data(42) to classbData
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Race conditions in real life

* E.g., check-then-act on the highway
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Race conditions in real life

 E.g., check-then-act at the bank

— The "debit-credit problem"
Alice, Bob, Bill, and the Bank

e A.Alice to pay Bob $30
= Bank actions
1. Does Alice have $30?
2. Give $30 to Bob
3. Take $30 from Alice

e B. Alice to pay Bill $30
= Bank actions
1. Does Alice have $30?
2. Give $30 to Bill
3. Take $30 from Alice

o |f Alice starts with $40, can Bob and Bill
both get $30?

15-214
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Race conditions in real life

 E.g., check-then-act at the bank

— The "debit-credit problem"
Alice, Bob, Bill, and the Bank

e A.Alice to pay Bob $30
= Bank actions
1. Does Alice have $30?
2. Give $30 to Bob
3. Take $30 from Alice

e B. Alice to pay Bill $30
= Bank actions
1. Does Alice have $30?
2. Give $30 to Bill
3. Take $30 from Alice

o |f Alice starts with $40, can Bob and Bill
both get $30?
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Race conditions in your life

 E.g., check-then-act in simple code

public class StringConverter {
private Object o;
public void set(Object o) {
this.o = o;

}

public String get() {
if (o == null) return "null"”;
return o.toString();

}

— See StringConverter.java, Getter.java, Setter.java
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Some actions are atomic

Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = i;

* What are the possible values for ans?

te f
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Some actions are atomic

Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = i;

 What are the possible values for ans?

i: 00000...00000111 |
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Some actions are atomic

Precondition: Thread A:

int 1 = 7; 1 = 42;

 What are the possible values for ans?

iz

i: 00000...00000111 |

* InJava:
— Reading an int variable is atomic
— Writing an int variable is atomic

Thread B:

ans = i;

_ Thankfully, | ans : (0000000 RORTIAN | i o possivle

15-214
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Bad news: some simple actions are not atomic

* Consider a single 64-bit 1long value

— Concurrently:

* Thread A writing high bits and low bits
* Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long i = 10000000000; i = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

(10000000042 or ...)

ans.:

= institute for
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Primitive concurrency control in Java

* Each Java object has an associated intrinsic lock
— All locks are initially unowned
— Each lock is exclusive: it can be owned by at most one thread at a time

* The synchronized keyword forces the current thread to
obtain an object's intrinsic lock

— E.g.,
synchronized void foo() { .. } // locks "this"

synchronized(fromAcct) {
if (fromAcct.getBalance() >= 30) {
toAcct.deposit (30);
fromAcct.withdrawal (30);

}

* See SynchronizedIncrementTest.java
15-214 a7 [H s



Primitive concurrency control in Java

* java.lang.Object allows some coordination via the
intrinsic lock:
void wait();
void wait(long timeout);
void wait(long timeout, int nanos);
void notify();
void notifyAll();

* See Blocker.java, Notifier.java, NotifyExample.java
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Primitive concurrency control in Java

* Each lock can be owned by only one thread at a time

 Locks are re-entrant: If a thread owns a lock, it can lock the lock
multiple times

 Athread can own multiple locks
synchronized(lockl) {
// do stuff that requires lockl

synchronized(lock2) {
// do stuff that requires both locks

/7 ..
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Another concurrency problem: deadlock

 E.g., Alice and Bob, unaware of each other, both need file A and
network connection B

— Alice gets lock for file A
— Bob gets lock for network connection B
— Alice tries to get lock for network connection B, and waits...

— Bob tries to get lock for file A, and waits...

* See Counter.java and DeadlockExample.java
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Dealing with deadlock (abstractly, not with Java)

* Detect deadlock
— Statically?
— Dynamically at run time?

* Avoid deadlock
e Alternative approaches

— Automatic restarts
— Optimistic concurrency control
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Detecting deadlock with the waits-for graph

* The waits-for graph represents dependencies between threads
— Each node in the graph represents a thread

— A directed edge T1->T2 represents that thread T1 is waiting for a lock that
T2 owns

 Deadlock has occurred iff the waits-for graph contains a cycle

@\ (e
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Deadlock avoidance algorithms

* Prevent deadlock instead of detecting it

— E.g., impose total order on all locks, require locks acquisition to satisfy
that order

* Thread:
acquire(lock1)
acquire(lock?2)
acquire(lock9)
acquire(lock42) // now can't acquire lock30, etc...
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Avoiding deadlock with restarts

* One option: If thread needs a lock out of order, restart the
thread

— Get the new lock in order this time

* Another option: Arbitrarily kill and restart long-running threads
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Avoiding deadlock with restarts

* One option: If thread needs a lock out of order, restart the
thread

— Get the new lock in order this time
* Another option: Arbitrarily kill and restart long-running threads
* Optimistic concurrency control
— e.g., with a copy-on-write system
— Don't lock, just detect conflicts later
* Restart a thread if a conflict occurs
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Another concurrency problem: livelock

* Insystems involving restarts, livelock can occur
— Lack of progress due to repeated restarts

e Starvation: when some task(s) is(are) repeatedly restarted
because of other tasks
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Administrivia

e Homework 5b due next Thursday, 11:59 p.m.

— Finish by Friday (10 Apr) 10 a.m. if you want to be considered as a "Best
Framework" for Homework 5c

e Our evaluation considers:
— Novelty
— Functional correctness
— Documentation
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Key concepts from Tuesday
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Bad news: some simple actions are not atomic

* Consider a single 64-bit 1long value

— Concurrently:

* Thread A writing high bits and low bits
* Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long i = 10000000000; i = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

(10000000042 or ...)

ans.:
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Key concepts from Tuesday

* Basic concurrency in Java

* Atomicity

* Race conditions

* Thelava synchronized keyword
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The Java happens-before relation

e Java guarantees a transitive, consistent order for some memory
accesses

— Within a thread, one action happens-before another action based on the
usual program execution order

— Release of a lock happens-before acquisition of the same lock
— Object.notify happens-before Object.wait returns
— Thread.start happens-before any action of the started thread

— Writetoavolatile field happens-before any subsequent read of the
same field

* Assures ordering of reads and writes

— A race condition can occur when reads and writes are not ordered by the
happens-before relation
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Concurrency control in Java

* Using primitive synchronization, you are responsible for
correctness:
— Avoiding race conditions
— Progress (avoiding deadlock)

* Java provides tools to help:
— Java.util.concurrent.atomic

— java.util.concurrent

ite f

15-214 63 SOt



The power of immutability

* Recall: Data is mutable if it can change over time. Otherwise it is
immutable.

— Primitive data declared as £inal is always immutable

o After immutable data is initialized, it is immune from race
conditions
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The java.util.concurrent.atomic package

* Concrete classes supporting atomic operations
— AtomicInteger
int get();
void set(int newValue);
int getAndSet(int newValue);
int getAndAdd(int delta);
boolean compareAndSet(int expectedValue,

int newValue);

— AtomicIntegerArray
— AtomicBoolean
— AtomicLong
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The java.util.concurrent package

* Interfaces and concrete thread-safe data structure
implementations
— ConcurrentHashMap
— BlockingQueue
e ArrayBlockingQueue
* SynchronousQueue
— CopyOnWriteArrayList

e Other tools for high-performance multi-threading
— ThreadPools and Executor services
— Locks and Latches
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java.util.concurrent.ConcurrentHashMap

* Implements java.util.Map<K,V>
— High concurrency lock striping

* Internally uses multiple locks, each dedicated to a region of the hash
table

* Locks just the part of the table you actually use
* You use the ConcurrentHashMap like any other map...

Locks

L

Hashtable
= Institute Fr DI
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java.util.concurrent.BlockingQueue

* Implements java.util.Queue<E>
* java.util.concurrent.SynchronousQueue

— Each put directly waits for a corresponding pol1l
— Internally uses wait/notify
* java.util.concurrent.ArrayBlockingQueue
— put blocks if the queue is full
— poll blocks if the queue is empty
— Internally uses wait/notify
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The CopyOnWriteArrayList

* Implements java.util.List<E>

« All writes to the list copy the array storing the list
elements
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Today: Concurrency, part 3

The backstory

— Motivation, goals, problems, ...

Basic concurrency in Java

— Explicit synchronization with threads and shared memory
— More concurrency problems

Higher-level abstractions for concurrency
— Data structures

— Higher-level languages and frameworks
— Hybrid approaches

In the trenches of parallelism
— Using the Java concurrency framework
— Prefix-sums implementation
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Concurrency at the language level

« Consider:
int sum = 0;
Iterator i = coll.iterator();
while (i.hasNext()) {
sum += i.next();

}
« In python:
sum = 0;

for item in coll:
sum += item
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Parallel quicksort in Nesl

function quicksort(a) =
if (#a < 2) then a

else
let pivot = a[#a/2];
lesser = {e in a| e < pivot};
equal = {e in a| e == pivot};
greater = {e in a| e > pivot};

result = {quicksort(v): v in [lesser,greater]};
in result[@] ++ equal ++ result[1];

* Operationsin { } occur in parallel
 What is the total work? What is the depth?

— What assumptions do you have to make?
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Prefix sums (a.k.a. inclusive scan)

* Goal: given array x[0..n-1], compute array of the sum of
each prefix of X
[ sum(x[0..0]),
sum(x[0..1]),
sum(x[0..2]),

sum(x[0..n-1]) ]
* eg, X = (13, 9, -4, 19, -6, 2, 6, 3]
prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]
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Parallel prefix sums

* Intuition: If we have already computed the partial sums
sum(x[0..3]) and sum(x[4..7]), then we can easily compute
sum(x[0..7])

* eg., X = (1.3, 9, -4, 19, -6, 2, 6, 3]
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Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[13, 9, -4,

NN

[13, 22, -4,
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Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[13, 9, -4,

NN

[13, 22, -4,

T~

(13, 22, -4,
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-6, 2, 6, 3]
—6, _4[ 6[ 9]
-6, -4, 6, 51
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Parallel prefix sums algorithm, winding

e Computes the partial sums in a more useful manner

[13, 9o, -4, 19, -6, 2, 6, 3]
N U N N
(13, 22, -4, 15, -6, -4, 6, 91
\\\\\\\\\sl \\\\\\\\\sl

(13, 22, -4, 37, -6, -4, 6, 51
|

(13, 22, -4, 37, -6, -4, 6, 42]
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Parallel prefix sums algorithm, unwinding

e Now unwinds to calculate the other sums

(13, 22, -4, 37, -6, -4, 6, 42]
(13, 22, -4, 37, -6, 33, 6, 42]
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Parallel prefix sums algorithm, unwinding

e Now unwinds to calculate the other sums

(13, 22, -4, 37, -6, -4, 6,
(13, 22, -4, 37, -6, 33, 6,

NN NS N

(13, 22, 18, 37, 31, 33, 39,

e Recall, we started with:

(13, 9, -4, 19, -6, 2, 6,
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Parallel prefix sums

* Intuition: If we have already computed the partial sums
sum(x[0..3]) and sum(x[4..7]), then we can easily compute
sum(x[0..7])

* eg, X = (13, 9, -4, 19, -6, 2, 6, 3]
* Pseudocode:
prefix_sums(x):
for d in @ to (1lgn)-1: // d 1is depth
parallelfor i in 29-1 to n-1, by 29+1:
x[i+29] = x[1i] + x[i+29]

for d in (lgn)-1 to O:
parallelfor i in 29-1 to n-1-29, by 29+l
if (i-29 >= 09):
x[1] = x[1] + x[i-29]
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Parallel prefix sums algorithm, in code

* An iterative Java-esque implementation:
void computePrefixSums(long[] a) {
for (int gap = 1; gap < a.length; gap *= 2) {
parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}
}
for (int gap = a.length/2; gap > 9; gap /= 2) {
parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);
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Parallel prefix sums algorithm, in code

* Arecursive Java-esque implementation:
void computePrefixSumsRecursive(long[] a, int gap) {
if (2*gap - 1 >= a.length) {
return;

¥

parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];

¥

computePrefixSumsRecursive(a, gap*2);

parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= ©) ? a[i-gap] : 0);
}
}
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Parallel prefix sums algorithm

* How good is this?
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Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Depth: O(lg n)

* See Main.java, PrefixSumsNonconcurrentParallelWorkimpl.java
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Goal: parallelize the PrefixSums implementation

» Specifically, parallelize the parallelizable loops
parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
al[i+gap] = a[i] + a[i+gap];
}
e Partition into multiple segments, run in different threads
for(int i=left+gap-1; i+gap<right; i += 2*gap) {
al[i+gap] = a[i] + a[i+gap];
}
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Recall the Java primitive concurrency tools

* The java.lang.Runnable interface
void run();

* The java.lang.Thread class
Thread(Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();
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Recall the Java primitive concurrency tools

* The java.lang.Runnable interface
void run();

* The java.lang.Thread class
Thread(Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();

* The java.util.concurrent.Callable<V> interface

— Like java.lang.Runnable but can return a value
V call();
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A framework for asynchronous computation

* The java.util.concurrent.Future<V> interface
v get();
V get(long timeout, TimeUnit unit);
boolean isDone();

boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
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A framework for asynchronous computation

* The java.util.concurrent.Future<V> interface
Vv get();
V get(long timeout, TimeUnit unit);
boolean isDone();

boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();

* The java.util.concurrent.ExecutorService interface

Future submit(Runnable task);

Future<V> submit(Callable<V> task);

List<Future<V>> invokeAll(Collection<Callable<V>> tasks);
Future<V> invokeAny(Collection<Callable<V>> tasks);
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Executors for common computational patterns

* From the java.util.concurrent.Executors class

static
static
static
static

ExecutorService
ExecutorService
ExecutorService
ExecutorService

newSingleThreadExecutor();
newFixedThreadPool(int n);
newCachedThreadPool();
newScheduledThreadPool(int n);

* Aside: see NetworkServer.java (later)
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Fork/Join: another common computational pattern

* Inalong computation:
— Fork a thread (or more) to do some work
— Join the thread(s) to obtain the result of the work
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Fork/Join: another common computational pattern

* Inalong computation:
— Fork a thread (or more) to do some work
— Join the thread(s) to obtain the result of the work

e The java.util.concurrent.ForkJoinPool class
— Implements ExecutorService

— Executes java.util.concurrent.ForkJoinTask<V> or
java.util.concurrent.RecursiveTask<V> or
java.util.concurrent.RecursiveAction
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The RecursiveAction abstract class

public class MyActionFoo extends RecursiveAction {
public MyActionFoo(..) {
store the data fields we need

@Override
public void compute() {
if (the task is small) {
do the work here;
return;

¥

invokeAll(new MyActionFoo(..), // smaller
new MyActionFoo(..), // tasks

) /] ..
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A ForkJoin example

e See PrefixSumsParallellmpl.java, PrefixSumsParallelLoop1.java,
and PrefixSumsParallelLoop2.java

* See the processor go, go go!
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Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Depth: O(lg n)

* See PrefixSumsSequentiallmpl.java
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Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Depth: O(lg n)
* See PrefixSumsSequentiallmpl.java
— n-1 additions
— Memory access is sequential
* For PrefixSumsNonsequentiallmpl.java

— About 2n useful additions, plus extra additions for the loop indexes
— Memory access is non-sequential

The punchline: Constants matter.
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Next week...

* Introduction to distributed systems
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In-class example for parallel prefix sums

[7, 5, 8, -36, 17, 2, 21, 18]
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