Principles of Software Construction: Objects, Design, and

Concurrency

Part 6: Concurrency

The Perils of Concurrency

Can't live with it...

Can't live without it...

Christian Kästner Charlie Garrod

Administrivia

- Homework 5 team signups due tonight
- 2nd midterm exam Thursday
 - Review session tonight 7 9 p.m. in Hamburg Hall 1000
- Homework 5 framework design advice... (at the end of class)

Key concepts from last Thursday

API: Application Programming Interface

An API defines the boundary between components/modules in a programmatic system

An API design process

- Define the scope of the API
 - Collect use-case stories, define requirements
 - Be skeptical
 - Distinguish true requirements from so-called solutions
 - "When in doubt, leave it out."
- Draft a specification, gather feedback, revise, and repeat
 - Keep it simple, short
- Code early, code often
 - Write client code before you implement the API

Key design principle: Information hiding

"When in doubt, leave it out."

Minimize mutability

- Immutable objects are:
 - Inherently thread-safe
 - Freely shared without concern for side effects
 - Convenient building blocks for other objects
 - Can share internal implementation among instances
 - See java.lang.String
- Mutable objects require careful management of visibility and side effects
 - e.g. Component.getSize() returns a mutable Dimension
- Document mutability
 - Carefully describe state space

Course themes

- Code-level design
 - Process how to start
 - Patterns re-use conceptual solutions
 - Criteria e.g. evolveability, understandability
- Analysis and modeling
 - Practical specification techniques and verification tools
- Object-oriented programming
 - Evolveability, reuse
 - Industry use basis for frameworks
 - Vehicle is Java –industry, upper-division courses

Threads and Concurrency

- System abstraction background computing
- Performance
- Our focus: explicit, application-level concurrency
 - Cf. functional parallelism (150, 210) and systems concurrency (213)

Today: Concurrency, part 1

- The backstory
 - Motivation, goals, problems, ...
- Basic concurrency in Java
 - Synchronization
- Coming soon (but not today):
 - Higher-level abstractions for concurrency
 - Data structures
 - Computational frameworks

Learning goals

- Understand concurrency as a source of complexity in software
- Know common abstractions for parallelism and concurrency, and the trade-offs among them
 - Explicit concurrency
 - Write thread-safe concurrent programs in Java
 - Recognize data race conditions
 - Know common thread-safe data structures, including high-level details of their implementation
 - Understand trade-offs between mutable and immutable data structures
 - Know common uses of concurrency in software design

institute for SOFTWARE RESEARCH

Processor speeds over time

Power requirements of a CPU

- Approx.: Capacitance * Voltage² * Frequency
- To increase performance:
 - More transistors, thinner wires: more C
 - More power leakage: increase V
 - Increase clock frequency F
 - Change electrical state faster: increase V
- Problem: Power requirements are super-linear to performance
 - Heat output is proportional to power input

ISI institute for SOFTWARE RESEARCH

One option: fix the symptom

Dissipate the heat

institute for SOFTWARE RESEARCH

13

One option: fix the symptom

- Better: Dissipate the heat with liquid nitrogen
 - Overclocking by Tom's Hardware's 5 GHz project

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html

institute for SOFTWARE RESEARCH

Another option: fix the underlying problem

- Reduce heat by limiting power input
 - Adding processors increases power requirements linearly with performance
 - Reduce power requirement by reducing the frequency and voltage
 - Problem: requires concurrent processing

ISI institute for SOFTWARE RESEARCH

Aside: Three sources of disruptive innovation

- Growth crosses some threshold
 - e.g., Concurrency: ability to add transistors exceeded ability to dissipate heat
- Colliding growth curves
 - Rapid design change forced by jump from one curve onto another
- Network effects
 - Amplification of small triggers leads to rapid change

ISI institute for SOFTWARE RESEARCH

Aside: The threshold for distributed computing

- Too big for a single computer?
 - Forces use of distributed architecture
 - Shifts responsibility for reliability from hardware to software
 - Allows you to buy larger cluster of cheap flaky machines instead of expensive slightly-less-flaky machines
 - » Revolutionizes data center design

Aside: Colliding growth curves

From http://www.genome.gov/sequencingcosts/

institute for SOFTWARE RESEARCH

18

Aside: Network effects

- Metcalfe's rule: network value grows quadratically in the number of nodes
 - a.k.a. Why my mom has a Facebook account
 - n(n-1)/2 potential connections for n nodes

- Creates a strong imperative to merge networks
 - Communication standards, media formats, ...

Concurrency

- Simply: doing more than one thing at a time
 - In software: more than one point of control
 - Threads, processes
- Resources simultaneously accessed by more than one thread or process

Concurrency then and now

- In the past multi-threading was just a convenient abstraction
 - GUI design: event threads
 - Server design: isolate each client's work
 - Workflow design: producers and consumers
- Now: must use concurrency for scalability and performance

Image Name	Threads	С
IPSSVC.EXE	86	0
svchost.exe	82	0
System	80	0
afsd_service.exe	51	(
Rtvscan.exe	47	0
winlogon.exe	39	(
explorer.exe	20	0
ccEvtMgr.exe	19	(
svchost.exe	18	(
lsass.exe	18	0
tabtip.exe	17	(
svchost.exe	17	0
firefox.exe	16	(
services.exe	16	(
thunderbird.exe	15	(
csrss.exe	13	(
tcserver.exe	10	0
KeyboardSurroga	10	(
spoolsv.exe	10	(
tvt_reg_monitor	10	(
svchost.exe	10	0
POWERPNT.EXE	9	0
taskmgr.exe	8	(
VPTray.exe	8	(
S24EvMon.exe	8	(
EvtEng.exe	8	(
emacs.exe	7	(
tvtsched.exe	7	(
ibmpmsvc.exe	7	(
AcroRd32.exe	7	0
vpngui.exe	6	0
cvpnd.exe	6	0
AluSchedulerSvc	6	0
ccSetMgr.exe	6	0
svchost.exe	_	0
wisptis.exe	5	(
alg.exe	5	0
TPHKMGR.exe	5	(
ASRSVC.exe	5	(

Problems of concurrency

- Realizing the potential
 - Keeping all threads busy doing useful work
- Delivering the right language abstractions
 - How do programmers think about concurrency?
 - Aside: parallelism vs. concurrency
- Non-determinism
 - Repeating the same input can yield different results

Realizing the potential

- Possible metrics of success
 - Breadth: extent of simultaneous activity
 - width of the shape
 - Depth (or span): length of longest computation
 - height of the shape
 - Work: total effort required
 - area of the shape
- What are the typical goals in parallel algorithm design?

Amdahl's law: How good can the depth get?

- Ideal parallelism with N processors:
 - Speedup = N
- In reality, some work is always inherently sequential
 - Let F be the portion of the total task time that is inherently sequential
 - Speedup = $\frac{\overline{F + (1 F)/N}}{F + (1 F)/N}$

Speedup by Amdahl's Law (P=1024)

- Suppose F = 10%. What is the max speedup? (you choose N)

Amdahl's law: How good can the depth get?

- Ideal parallelism with N processors:
 - Speedup = N
- In reality, some work is always inherently sequential
 - Let F be the portion of the total task time that is inherently sequential
 - Speedup = $\overline{F + (1 F)/N}$

Speedup by Amdahl's Law (P=1024)

- Suppose F = 10%. What is the max speedup? (you choose N)
 - As N approaches ∞ , 1/(0.1 + 0.9/N) approaches 10.

Using Amdahl's law as a design guide

- For a given algorithm, suppose
 - N processors
 - Problem size M
 - Sequential portion F

- An obvious question:
 - What happens to speedup as N scales?
- A less obvious, important question:
 - What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore's Law; from now on, it will be driven by Amdahl's Law."

— Doron Rajwan, Intel Corp

Principles of Software Construction: Objects, Design, and Concurrency

Part 6: Concurrency, Part 2

The Perils of Concurrency

Can't live with it...

Can't live without it...

Christian Kästner Charlie Garrod

Administrivia

- Homework 5a due tomorrow 9 a.m.
- 2nd midterm exam returned today at end of class
- Do you want to be a software engineer?

The foundations of the Software Engineering minor

- Core computer science fundamentals
- Building good software
- Organizing a software project
 - Development teams, customers, and users
 - Process, requirements, estimation, management, and methods
- The larger context of software
 - Business, society, policy
- Engineering experience
- Communication skills
 - Written and oral

SE minor requirements

- Prerequisite: 15-214
- Two core courses
 - 15-313 Foundations of SE (fall semesters)
 - 15-413 SE Practicum (spring semesters)
- Three electives
 - Technical
 - Engineering
 - Business or policy
- Software engineering internship + reflection
 - 8+ weeks in an industrial setting, then
 - -17-413

To apply to be a Software Engineering minor

- Email <u>aldrich@cs.cmu.edu</u> and <u>clegoues@cs.cmu.edu</u>
 - Your name, Andrew ID, class year, QPA, and minor/majors
 - Why you want to be a SE minor
 - Proposed schedule of coursework
- Spring applications due by Friday, 10 Apr 2015
 - Only 15 SE minors accepted per graduating class
- More information at:
 - http://isri.cmu.edu/education/undergrad/

ISI institute for SOFTWARE RESEARCH

Key concepts from last Tuesday

ISI institute for software research

Today: Concurrency, part 2

- The backstory
 - Motivation, goals, problems, ...
- Basic concurrency in Java
 - Synchronization
- Coming soon:
 - Higher-level abstractions for concurrency
 - Data structures
 - Computational frameworks

Abstractions of concurrency

Processes

- Execution environment is isolated
 - Processor, in-memory state, files, ...
- Inter-process communication typically slow, via message passing
 - Sockets, pipes, ...

Threads

- Execution environment is shared
- Inter-thread communication typically fast, via shared state

ISI institute for software research

Aside: Abstractions of concurrency

- What you see:
 - State is all shared

- A (slightly) more accurate view of the hardware:
 - Separate state stored in registers and caches
 - Shared state stored in caches and memory

ISI institute for SOFTWARE RESEARCH

Basic concurrency in Java

The java.lang.Runnable interface
 void run();

The java.lang.Thread class

```
Thread(Runnable r);
void start();
static void sleep(long millis);
void join();
boolean isAlive();
static Thread currentThread();
```

See IncrementTest.java

Atomicity

- An action is atomic if it is indivisible
 - Effectively, it happens all at once
 - No effects of the action are visible until it is complete
 - No other actions have an effect during the action
- In Java, integer increment is not atomic

i++; is actually

- 1. Load data from variable i
- 2. Increment data by 1
- 3. Store data to variable i

One concurrency problem: race conditions

- A race condition is when multiple threads access shared data and unexpected results occur depending on the order of their actions
- E.g., from IncrementTest.java:
 - Suppose classData starts with the value 41:

Thread A:

classData++;

Thread B:

classData++;

One possible interleaving of actions:

1A. Load data(41) from classData

1B. Load data(41) from classData

2A. Increment data(41) by $1 \rightarrow 42$

2B. Increment data(41) by $1 \rightarrow 42$

3A. Store data(42) to classData

3B. Store data(42) to classData

Race conditions in real life

E.g., check-then-act on the highway

Race conditions in real life

- E.g., check-then-act at the bank
 - The "debit-credit problem"

Alice, Bob, Bill, and the Bank

- A. Alice to pay Bob \$30
 - Bank actions
 - 1. Does Alice have \$30?
 - 2. Give \$30 to Bob
 - 3. Take \$30 from Alice
- B. Alice to pay Bill \$30
 - Bank actions
 - 1. Does Alice have \$30?
 - 2. Give \$30 to Bill
 - 3. Take \$30 from Alice
- If Alice starts with \$40, can Bob and Bill both get \$30?

Race conditions in real life

- E.g., check-then-act at the bank
 - The "debit-credit problem"

Alice, Bob, Bill, and the Bank

- A. Alice to pay Bob \$30
 - Bank actions
 - 1. Does Alice have \$30?
 - 2. Give \$30 to Bob
 - 3. Take \$30 from Alice
- B. Alice to pay Bill \$30
 - Bank actions
 - 1. Does Alice have \$30?
 - 2. Give \$30 to Bill
 - 3. Take \$30 from Alice
- If *Alice* starts with \$40, can *Bob* and *Bill* both get \$30?

A.1

A.2

B.1

B.2

A.3

B.3!

Race conditions in *your* life

E.g., check-then-act in simple code

```
public class StringConverter {
    private Object o;
    public void set(Object o) {
        this.o = o;
    }
    public String get() {
        if (o == null) return "null";
        return o.toString();
    }
}
```

See StringConverter.java, Getter.java, Setter.java

Some actions are atomic

Precondition:

Thread A:

Thread B:

int
$$i = 7$$
;

$$i = 42;$$

ans =
$$i;$$

What are the possible values for ans?

Some actions are atomic

Precondition:

Thread A:

Thread B:

int
$$i = 7$$
;

$$i = 42;$$

ans = i;

What are the possible values for ans?

i: 00000...0000111

:

i: 00000...00101010

Some actions are atomic

Precondition:

Thread A:

Thread B:

int
$$i = 7$$
;

$$i = 42;$$

ans = i;

What are the possible values for ans?

i: 00000...0000111

:

i: 00000...00101010

In Java:

- Reading an int variable is atomic
- Writing an int variable is atomic

Thankfully, ans

ans: 00000...00101111

is not possible

Bad news: some simple actions are not atomic

Consider a single 64-bit long value

high bits

low bits

- Concurrently:
 - Thread A writing high bits and low bits
 - Thread B reading high bits and low bits

Precondition:

long i = 10000000000;

Thread A:

i = 42;

Thread B:

ans = i;

ans: 01001...0000000

ans: 00000...00101010

ans: 01001...00101010

(10000000000)

(42)

(1000000042 or ...)

Primitive concurrency control in Java

- Each Java object has an associated intrinsic lock
 - All locks are initially unowned
 - Each lock is exclusive: it can be owned by at most one thread at a time
- The synchronized keyword forces the current thread to obtain an object's intrinsic lock

```
- E.g.,
    synchronized void foo() { ... } // locks "this"

synchronized(fromAcct) {
        if (fromAcct.getBalance() >= 30) {
            toAcct.deposit(30);
            fromAcct.withdrawal(30);
        }
    }
}
```

See SynchronizedIncrementTest.java

Primitive concurrency control in Java

• java.lang.Object allows some coordination via the intrinsic lock:

```
void wait();
void wait(long timeout);
void wait(long timeout, int nanos);
void notify();
void notifyAll();
```

See Blocker.java, Notifier.java, NotifyExample.java

Primitive concurrency control in Java

- Each lock can be owned by only one thread at a time
- Locks are re-entrant: If a thread owns a lock, it can lock the lock multiple times
- A thread can own multiple locks

```
synchronized(lock1) {
    // do stuff that requires lock1

    synchronized(lock2) {
        // do stuff that requires both locks
    }

    // ...
}
```

Another concurrency problem: deadlock

- E.g., Alice and Bob, unaware of each other, both need file A and network connection B
 - Alice gets lock for file A
 - Bob gets lock for network connection B
 - Alice tries to get lock for network connection B, and waits...
 - Bob tries to get lock for file A, and waits...
- See Counter.java and DeadlockExample.java

Dealing with deadlock (abstractly, not with Java)

- Detect deadlock
 - Statically?
 - Dynamically at run time?
- Avoid deadlock
- Alternative approaches
 - Automatic restarts
 - Optimistic concurrency control

Detecting deadlock with the waits-for graph

- The waits-for graph represents dependencies between threads
 - Each node in the graph represents a thread
 - A directed edge T1->T2 represents that thread T1 is waiting for a lock that
 T2 owns
- Deadlock has occurred iff the waits-for graph contains a cycle

Deadlock avoidance algorithms

- Prevent deadlock instead of detecting it
 - E.g., impose total order on all locks, require locks acquisition to satisfy that order

```
    Thread:
        acquire(lock1)
        acquire(lock2)
        acquire(lock9)
        acquire(lock42) // now can't acquire lock30, etc...
```


Avoiding deadlock with restarts

- One option: If thread needs a lock out of order, restart the thread
 - Get the new lock in order this time
- Another option: Arbitrarily kill and restart long-running threads

Avoiding deadlock with restarts

- One option: If thread needs a lock out of order, restart the thread
 - Get the new lock in order this time
- Another option: Arbitrarily kill and restart long-running threads
- Optimistic concurrency control
 - e.g., with a copy-on-write system
 - Don't lock, just detect conflicts later
 - Restart a thread if a conflict occurs

Another concurrency problem: livelock

- In systems involving restarts, livelock can occur
 - Lack of progress due to repeated restarts
- *Starvation*: when some task(s) is(are) repeatedly restarted because of other tasks

Principles of Software Construction: Objects, Design, and Concurrency

Part 6: Concurrency, Part 3

The Perils of Concurrency

Can't live with it...

Can't live without it...

Christian Kästner Charlie Garrod

Administrivia

- Homework 5b due next Thursday, 11:59 p.m.
 - Finish by Friday (10 Apr) 10 a.m. if you want to be considered as a "Best Framework" for Homework 5c
 - Our evaluation considers:
 - Novelty
 - Functional correctness
 - Documentation

— ...

Key concepts from Tuesday

ISI institute for software research

15-214 59

Bad news: some simple actions are not atomic

Consider a single 64-bit long value

high bits

low bits

- Concurrently:
 - Thread A writing high bits and low bits
 - Thread B reading high bits and low bits

Precondition:

Thread A:

Thread B:

long
$$i = 10000000000;$$

$$i = 42;$$

ans =
$$i;$$

ans: 01001...0000000

(10000000000)

ans: 00000...00101010

(42)

ans: 01001...00101010

(1000000042 or ...)

Key concepts from Tuesday

- Basic concurrency in Java
- Atomicity
- Race conditions
- The Java synchronized keyword

The Java happens-before relation

- Java guarantees a transitive, consistent order for some memory accesses
 - Within a thread, one action happens-before another action based on the usual program execution order
 - Release of a lock happens-before acquisition of the same lock
 - Object.notify happens-before Object.wait returns
 - Thread.start happens-before any action of the started thread
 - Write to a volatile field happens-before any subsequent read of the same field
 - **—** ...
- Assures ordering of reads and writes
 - A race condition can occur when reads and writes are not ordered by the happens-before relation

Concurrency control in Java

- Using primitive synchronization, you are responsible for correctness:
 - Avoiding race conditions
 - Progress (avoiding deadlock)
- Java provides tools to help:
 - java.util.concurrent.atomic
 - java.util.concurrent

The power of immutability

- Recall: Data is mutable if it can change over time. Otherwise it is immutable.
 - Primitive data declared as final is always immutable
- After immutable data is initialized, it is immune from race conditions

The java.util.concurrent.atomic package

Concrete classes supporting atomic operations

```
- AtomicInteger
   int get();
   void set(int newValue);
       getAndSet(int newValue);
   int getAndAdd(int delta);
   boolean compareAndSet(int expectedValue,
                          int newValue);
   •••
- AtomicIntegerArray

    AtomicBoolean

AtomicLong
```

The java.util.concurrent package

- Interfaces and concrete thread-safe data structure implementations
 - ConcurrentHashMap
 - BlockingQueue
 - ArrayBlockingQueue
 - SynchronousQueue
 - CopyOnWriteArrayList
 - **–** ...
- Other tools for high-performance multi-threading
 - ThreadPools and Executor services
 - Locks and Latches

java.util.concurrent.ConcurrentHashMap

- Implements java.util.Map<K,V>
 - High concurrency lock striping
 - Internally uses multiple locks, each dedicated to a region of the hash table
 - Locks just the part of the table you actually use
 - You use the ConcurrentHashMap like any other map...

institute for software RESEARCH

java.util.concurrent.BlockingQueue

- Implements java.util.Queue<E>
- java.util.concurrent.SynchronousQueue
 - Each put directly waits for a corresponding poll
 - Internally uses wait/notify
- java.util.concurrent.ArrayBlockingQueue
 - put blocks if the queue is full
 - poll blocks if the queue is empty
 - Internally uses wait/notify

The CopyOnWriteArrayList

- Implements java.util.List<E>
- All writes to the list copy the array storing the list elements

Today: Concurrency, part 3

- The backstory
 - Motivation, goals, problems, ...
- Basic concurrency in Java
 - Explicit synchronization with threads and shared memory
 - More concurrency problems
- Higher-level abstractions for concurrency
 - Data structures
 - Higher-level languages and frameworks
 - Hybrid approaches
- In the trenches of parallelism
 - Using the Java concurrency framework
 - Prefix-sums implementation

Concurrency at the language level

· Consider:

```
int sum = 0;
Iterator i = coll.iterator();
while (i.hasNext()) {
    sum += i.next();
}
In python:
sum = 0;
for item in coll:
    sum += item
```

Parallel quicksort in Nesl

```
function quicksort(a) =
  if (#a < 2) then a
  else
  let pivot = a[#a/2];
    lesser = {e in a| e < pivot};
    equal = {e in a| e == pivot};
    greater = {e in a| e > pivot};
    result = {quicksort(v): v in [lesser,greater]};
  in result[0] ++ equal ++ result[1];
```

- Operations in {} occur in parallel
- What is the total work? What is the depth?
 - What assumptions do you have to make?

Prefix sums (a.k.a. inclusive scan)

 Goal: given array x[0...n-1], compute array of the sum of each prefix of x

```
[ sum(x[0...0]),
   sum(x[0...1]),
   sum(x[0...2]),
   ...
  sum(x[0...n-1]) ]
```

• e.g., x = [13, 9, -4, 19, -6, 2, 6, 3]prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]

Parallel prefix sums

- Intuition: If we have already computed the partial sums sum(x[0...3]) and sum(x[4...7]), then we can easily compute sum(x[0...7])
- e.g., x = [13, 9, -4, 19, -6, 2, 6, 3]

Parallel prefix sums algorithm, winding

Computes the partial sums in a more useful manner

75

Parallel prefix sums algorithm, winding

Computes the partial sums in a more useful manner

Parallel prefix sums algorithm, winding

Computes the partial sums in a more useful manner

Parallel prefix sums algorithm, unwinding

Now unwinds to calculate the other sums

Parallel prefix sums algorithm, unwinding

Now unwinds to calculate the other sums

• Recall, we started with:

$$[13, 9, -4, 19, -6, 2, 6, 3]$$

Parallel prefix sums

 Intuition: If we have already computed the partial sums sum(x[0...3]) and sum(x[4...7]), then we can easily compute sum(x[0...7])

```
• e.g., x = [13, 9, -4, 19, -6, 2, 6, 3]
```

• Pseudocode:

Parallel prefix sums algorithm, in code

• An iterative Java-esque implementation:

```
void computePrefixSums(long[] a) {
  for (int gap = 1; gap < a.length; gap *= 2) {
    parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {</pre>
      a[i+gap] = a[i] + a[i+gap];
  for (int gap = a.length/2; gap > 0; gap /= 2) {
    parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {</pre>
      a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);
```

Parallel prefix sums algorithm, in code

A recursive Java-esque implementation:

```
void computePrefixSumsRecursive(long[] a, int gap) {
  if (2*gap - 1 >= a.length) {
    return;
  parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {</pre>
    a[i+gap] = a[i] + a[i+gap];
  computePrefixSumsRecursive(a, gap*2);
  parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {</pre>
    a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);
```

Parallel prefix sums algorithm

How good is this?

ISI institute for SOFTWARE RESEARCH

Parallel prefix sums algorithm

How good is this?

– Work: O(n)

Depth: O(lg n)

• See Main.java, PrefixSumsNonconcurrentParallelWorkImpl.java

ISI institute for SOFTWARE RESEARCH

Goal: parallelize the PrefixSums implementation

Specifically, parallelize the parallelizable loops
 parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {
 a[i+gap] = a[i] + a[i+gap];
 }

• Partition into multiple segments, run in different threads for(int i=left+gap-1; i+gap<right; i += 2*gap) { a[i+gap] = a[i] + a[i+gap]; }

Recall the Java primitive concurrency tools

The java.lang.Runnable interface void run();

• The java.lang.Thread class

Recall the Java primitive concurrency tools

The java.lang.Runnable interface void run();

• The java.lang.Thread class

- The java.util.concurrent.Callable<V> interface
 - Like java.lang.Runnable but can return a value
 V call();

A framework for asynchronous computation

The java.util.concurrent.Future<V> interface

```
V get();
V get(long timeout, TimeUnit unit);
boolean isDone();
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
```

A framework for asynchronous computation

The java.util.concurrent.Future<V> interface

```
V get();
V get(long timeout, TimeUnit unit);
boolean isDone();
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
```

• The java.util.concurrent.ExecutorService interface

```
Future
Future<V> submit(Runnable task);
Future<V> submit(Callable<V> task);
List<Future<V> invokeAll(Collection<Callable<V>> tasks);
Future<V> invokeAny(Collection<Callable<V>> tasks);
```

Executors for common computational patterns

- From the java.util.concurrent.Executors class static ExecutorService newSingleThreadExecutor(); static ExecutorService newFixedThreadPool(int n); static ExecutorService newCachedThreadPool(); static ExecutorService newScheduledThreadPool(int n);
- Aside: see NetworkServer.java (later)

Fork/Join: another common computational pattern

- In a long computation:
 - Fork a thread (or more) to do some work
 - Join the thread(s) to obtain the result of the work

Fork/Join: another common computational pattern

- In a long computation:
 - Fork a thread (or more) to do some work
 - Join the thread(s) to obtain the result of the work
- The java.util.concurrent.ForkJoinPool class
 - Implements ExecutorService
 - Executes java.util.concurrent.ForkJoinTask<V> or java.util.concurrent.RecursiveTask<V> or java.util.concurrent.RecursiveAction

The RecursiveAction abstract class

```
public class MyActionFoo extends RecursiveAction {
    public MyActionFoo(...) {
        store the data fields we need
    }
    @Override
    public void compute() {
        if (the task is small) {
            do the work here;
            return;
        invokeAll(new MyActionFoo(...), // smaller
                   new MyActionFoo(...), // tasks
                  ...);
                                        // ...
    }
```

A ForkJoin example

- See PrefixSumsParallelImpl.java, PrefixSumsParallelLoop1.java, and PrefixSumsParallelLoop2.java
- See the processor go, go go!

ISI institute for SOFTWARE RESEARCH

Parallel prefix sums algorithm

How good is this?

– Work: O(n)

– Depth: O(lg n)

See PrefixSumsSequentialImpl.java

Parallel prefix sums algorithm

- How good is this?
 - Work: O(n)
 - Depth: O(lg n)
- See PrefixSumsSequentialImpl.java
 - n-1 additions
 - Memory access is sequential
- For PrefixSumsNonsequentialImpl.java
 - About 2n useful additions, plus extra additions for the loop indexes
 - Memory access is non-sequential
- The punchline: Constants matter.

ISI institute for SOFTWARE RESEARCH

Next week...

Introduction to distributed systems

ISI institute for SOFTWARE RESEARCH

In-class example for parallel prefix sums

[7, 5, 8, -36, 17, 2, 21, 18]