
15-214

1

 1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 5: Large-Scale Reuse)

Principles of API Design

Christian Kästner Charlie Garrod

Closely based on How To Design A Good
API and Why It Matters by Josh Bloch

 2 15-214

2
 3 15-214

Agenda

• Introduction to APIs: Application
Programming Interfaces

• An API design process

• Key design principle: Information hiding

• Concrete advice for user-centered design

 4 15-214

Agenda

• Introduction to APIs: Application Programming
Interfaces

• An API design process

• Key design principle: Information hiding

• Concrete advice for user-centered design

• Based heavily on "How to Design a Good API and
Why it Matters by Josh Bloch"
– If you have "Java" in your resume you

should own Effective Java, our optional
course textbook.

 5 15-214

Learning goals

• Understand and be able to discuss the similarities
and differences between API design and regular
software design
– Relationship between libraries, frameworks and API

design
– Information hiding as a key design principle

• Acknowledge, and plan for failures as a
fundamental limitation on a design process

• Given a problem domain with use cases, be able
to plan a coherent design process for an API for
those use cases, e.g., "Rule of Threes"

 6 15-214

API: Application Programming
Interface

• An API defines the boundary between
components/modules in a programmatic
system

15-214

2

 7 15-214

API: Application Programming
Interface

• An API defines the boundary between
components/modules in a programmatic
system

 8 15-214

API: Application Programming
Interface

• An API defines the boundary between
components/modules in a programmatic
system

 9 15-214

API: Application Programming
Interface

• An API defines the boundary between
components/modules in a programmatic
system

 10 15-214

Libraries and frameworks both define
APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup

internals, without rendering

}

/ render component on first view and

resizing

protected void

paintComponent(Graphics g) {

// draw a red box on his

componentDimension d = getSize();

g.setColor(Color.red);

g.drawRect(0, 0, d.getWidth(),

d.getHeight()); }

}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup

internals, without rendering

}

/ render component on first view and

resizing

protected void

paintComponent(Graphics g) {

// draw a red box on his

componentDimension d = getSize();

g.setColor(Color.red);

g.drawRect(0, 0, d.getWidth(),

d.getHeight()); }

}

your code

your code

API

API

 11 15-214

APIs are forever

11

Your
code

Your
colleague

Another
colleague

Somebody
on the web

Somebody
on the web

Somebody
on the web

Somebody
on the web

Somebody
on the web

Somebody
on the web

Somebody
on the web

Somebody
on the web

 12 15-214

APIs are forever

12

Eclipse
(IBM)

JDT Plugin
(IBM)

CDT Plugin
(IBM)

UML Plugin
(third party)

Somebody
on the web

Somebody
on the web

Somebody
on the web

Somebody
on the web

Somebody
on the web

Somebody
on the web

third party
plugin

15-214

3

 13 15-214

Evolutionary problems: Public (used)
APIs are forever

• "One chance to get it right"

• Can add features to library

• Cannot remove method from library

• Cannot change contract in library

• Cannot change plugin interface of framework

• Deprecation of APIs as weak workaround

awt.Component,
deprecated since Java 1.1
still included in 7.0

 14 15-214

APIs are everywhere

• Frameworks

• Libraries

• Any code that is reused really

– …may turn slowly into a library

14
 15 15-214

Motivation to create a public API

• Good APIs are a great asset
– Distributed development among many teams

• Incremental, non-linear software development

• Facilitates communication

– Long-term buy-in from clients & customers

• Poor APIs are a great liability
– Lost productivity from your software developers

– Lack of buy-in from clients & customers

– Wasted customer support resources

 16 15-214

Good and bad APIs

• Lots of reuse

– including from yourself

• Lots of users/customers

• User buy-in and lock-in

• Lost productivity,
inefficient reuse

• Maintenance and
customer support
liability

16
 17 15-214

An API design process

• Define the scope of the API
– Collect use-case stories, define requirements

– Be skeptical
• Distinguish true requirements from so-called solutions

• "When in doubt, leave it out."

• Draft a specification, gather feedback, revise, and
repeat
– Keep it simple, short

• Code early, code often
– Write client code before you implement the API

 18 15-214

Case Study: Java Date and Calendars

18

15-214

4

 19 15-214

Plan with Use Cases

• Think about how the API might be used?

– e.g., get the current time, compute the difference
between two times, get the current time in Tokyo,
get next week's date using a Maya calendar, …

• What tasks should it accomplish?

• Should all the tasks be supported?

– If in doubt, leave it out!

• How would you solve the tasks with the API?

19
 20 15-214

Respect the rule of three

• Via Will Tracz (via Josh Bloch), Confessions of a
Used Program Salesman:

– "If you write one, it probably won't support
another."

– "If you write two, it will support more with
difficulty."

– "If you write three, it will work fine."

 21 15-214

Contracts and Documentation

• APIs should be self-documenting
– Good names drive good design

• Document religiously anyway
– All public classes
– All public methods
– All public fields
– All method parameters
– Explicitly write behavioral specifications

• Documentation is integral to the design and
development process

 22 15-214

Key design principle: Information
hiding

• "When in doubt, leave it out."

 23 15-214

Contracts and Documentation

• APIs should be self-documenting
– Good names drive good design

• Document religiously anyway
– All public classes
– All public methods
– All public fields
– All method parameters
– Explicitly write behavioral specifications

• Documentation is integral to the design and
development process

• Do not document implementation details

 24 15-214

 public class Point {

 public double x;

 public double y;

 }

 vs.
 public class Point {

 private double x;

 private double y;

 public double getX() { /* … */ }

 public double getY() { /* … */ }

 }

15-214

5

 25 15-214

Key design principle: Information
hiding (2)

• Minimize the accessibility of classes, fields,
and methods

– "You can add features, but never remove or
change the behavioral contract for an existing
feature"

 26 15-214

Applying Information Hiding:
Fields vs Getter/Setter Functions

 public class Point {

 public double x;

 public double y;

 }

 vs.
 public class Point {

 private double x;

 private double y;

 public double getX() { /* … */ }

 public double getY() { /* … */ }

 }

 27 15-214

public class Rectangle {

 public Rectangle(Point e, Point f) …

}

vs.
public class Rectangle {

 public Rectangle(PolarPoint e, PolarPoint f) …

}

 28 15-214

Applying Information hiding:
Interface vs. Class Types

public class Rectangle {

 public Rectangle(Point e, Point f) …

}

vs.
public class Rectangle {

 public Rectangle(PolarPoint e, PolarPoint f) …

}

 29 15-214

Applying Information hiding: Factories

• Consider implementing a factory method
instead of a constructor

• Factory methods provide additional flexibility

– Can be overridden

– Can return instance of any subtype; hides dynamic
type of object

– Can have a descriptive method name

 30 15-214

Applying Information Hiding:
Hide Information Details

• Subtle leaks of implementation details
through
– Documentation

– Implementation-specific return types

– Implementation-specific exceptions

– Output formats

– implements Serializable

• Lack of documentation -> Implementation
becomes specification –> no hiding

15-214

6

 31 15-214

Minimize conceptual weight

• Conceptual weight: How many concepts must
a programmer learn to use your API?

– APIs should have a "high power-to-weight ratio"

• See java.util.*,
java.util.Collections

 32 15-214

Apply principles of user-centered
design

• Other programmers are your users

• e.g., "Principles of Universal Design"
– Equitable use

– Flexibility in use

– Simple and intuitive use

– Perceptible information

– Tolerance for error

– Low physical effort

– Size and space for approach and use

 33 15-214

public class Thread implements Runnable {

 // Tests whether current thread has been interrupted.

 // Clears the interrupted status of current thread.

 public static boolean interrupted();

 }

 34 15-214

Good names drive good design

• Do what you say you do:

– "Don't violate the Principle of Least Astonishment"

 public class Thread implements Runnable {
 // Tests whether current thread has been interrupted.

 // Clears the interrupted status of current thread.

 public static boolean interrupted();

 }

 35 15-214

– get_x() vs getX()

– Timer vs timer

– isEnabled() vs. enabled()

– computeX() vs. generateX()?

– deleteX() vs. removeX()?

 36 15-214

Good names drive good design (2)

• Follow language- and platform-dependent
conventions

– Typographical:
• get_x() vs. getX()

• timer vs. Timer, HTTPServlet vs HttpServlet

• edu.cmu.cs.cs214

– Grammatical:

• Nouns for classes

• Nouns or adjectives for interfaces

15-214

7

 37 15-214

Good names drive good design (3)
• Use clear, specific naming conventions

– getX() and setX() for simple accessors and
mutators

– isX() for simple boolean accessors

– computeX() for methods that perform
computation

– createX() or newInstance() for factory
methods

– toX() for methods that convert the type of an
object

– asX() for wrapper of the underlying object
 38 15-214

Good names drive good design (4)

• Be consistent

– computeX() vs. generateX()?

– deleteX() vs. removeX()?

 39 15-214

Do not violate Liskov's behavioral
subtyping rules
• Use inheritance only for true subtypes
• Favor composition over inheritance

// A Properties instance maps Strings to Strings
public class Properties extends HashTable {
 public Object put(Object key, Object value);
 …
}

public class Properties {
 private final HashTable data = new HashTable();
 public String put(String key, String value) {
 data.put(key, value);
 }
 …
}

class Stack extends Vector …

 40 15-214

Minimize mutability

• Immutable objects are:

– Inherently thread-safe

– Freely shared without concern for side effects

– Convenient building blocks for other objects

– Can share internal implementation among
instances

• See java.lang.String

 41 15-214

Minimize mutability

• Immutable objects are:
– Inherently thread-safe
– Freely shared without concern for side effects
– Convenient building blocks for other objects
– Can share internal implementation among instances

• See java.lang.String

• Mutable objects require careful management of
visibility and side effects
– e.g. Component.getSize()

returns a mutable Dimension

• Document mutability
– Carefully describe state space

 42 15-214

Overload method names judiciously

• Avoid ambiguous overloads for subtypes
– Recall the subtleties of method dispatch:

 public class Point() {
 private int x;
 private int y;
 public boolean equals(Point p) {
 return this.x == p.x && this.y == p.y;
 }
 }

• If you must be ambiguous, implement consistent behavior
public class TreeSet implements SortedSet {
 public TreeSet(Collection c); // Ignores order.
 public TreeSet(SortedSet s); // Respects order.
}

15-214

8

 43 15-214

Use consistent parameter ordering

• An egregious example from C:

– char* strncpy(char* dest, char* src, size_t n);
– void bcopy(void* src, void* dest, size_t n);

 44 15-214

Avoid long lists of parameters

• Especially avoid parameter lists with repeated
parameters of the same type
 HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,

 DWORD dwStyle, int x, int y, int nWidth, int nHeight,

 HWND hWndParent, HMENU hMenu, HINSTANCE hInstance,

 LPVOID lpParam);

• Break up the method or use a helper class to
hold parameters instead

 45 15-214

 // A Properties instance maps Strings to Strings

 public class Properties extends HashTable {

 public Object put(Object key, Object value);

 // Throws ClassCastException if this instance

 // contains any keys or values that are not Strings

 public void save(OutputStream out, String comments);

 }

 46 15-214

Fail fast

• Report errors as soon as they are detectable

– Check preconditions at the beginning of each method

– Avoid dynamic type casts, run-time type-checking

 // A Properties instance maps Strings to Strings

 public class Properties extends HashTable {

 public Object put(Object key, Object value);

 // Throws ClassCastException if this instance

 // contains any keys or values that are not Strings

 public void save(OutputStream out, String comments);

 }

 47 15-214

Avoid behavior that demands special
processing
• Do not return null to indicate an empty value

– e.g., Use an empty Collection or array instead

• Do not return null to indicate an error
– Use an exception instead

• Do not return a String if a better type exists
• Do not use exceptions for normal behavior
• Avoid checked exceptions if possible

 try {
 Foo f = (Foo) g.clone();
 } catch (CloneNotSupportedException e) {
 // Do nothing. This exception can't happen.
 }

 48 15-214

Don't let your output become your de
facto API

• Document the fact that output formats may
evolve in the future

• Provide programmatic access to all data
available in string form

 public class Throwable {

 public void
printStackTrace(PrintStream s);

 }

15-214

9

 49 15-214

Don't let your output become your de
facto API
• Document the fact that output formats may evolve in the future
• Provide programmatic access to all data available in string form

 public class Throwable {
 public void printStackTrace(PrintStream s);
 public StackTraceElement[] getStackTrace();
 }

 public final class StackTraceElement {
 public String getFileName();
 public int getLineNumber();
 public String getClassName();
 public String getMethodName();
 public boolean isNativeMethod();
 }

 50 15-214

Summary

• Accept the fact that you, and others, will make
mistakes
– Use your API as you design it

– Get feedback from others

– Think in terms of use cases (domain engineering)

– Hide information to give yourself maximum
flexibility later

– Design for inattentive, hurried users

– Document religiously

