
15-214

1

 1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 2: Designing (Sub-)Systems)

Assigning Responsibilities

Christian Kästner Charlie Garrod

 2 15-214

Learning Goals

• Apply GRASP patterns to assign
responsibilities in designs

• Reason about tradeoffs among designs

2
 3 15-214

Today’s topics

• Object-Oriented Design: “After identifying your
requirements and creating a domain model, then
add methods to the software classes, and define
the messaging between the objects to fulfill the
requirements.”

• But how?
– How should concepts be implemented by classes?

– What method belongs where?

– How should the objects interact?

– This is a critical, important, and non-trivial task

 4 15-214

Responsibilities

• Responsibilities are related to the obligations of an object in terms
of its behavior.

• Two types of responsibilities:
– knowing
– doing

• Doing responsibilities of an object include:
– doing something itself, such as creating an object or doing a

calculation
– initiating action in other objects
– controlling and coordinating activities in other objects

• Knowing responsibilities of an object include:
– knowing about private encapsulated data
– knowing about related objects
– knowing about things it can derive or calculate

 5 15-214

Design Goals, Principles, and Patterns

• Design Goals
– Design for change, understanding, reuse, division of

labor, …

• Design Principle
– Low coupling, high cohesion
– Low representational gap
– Law of demeter

• Design Heuristics (GRASP)
– Information expert
– Creator
– Controller

5
 6 15-214

Goals, Principles, Guidelines

• Design Goals
– Desired quality attributes of software
– Driven by cost/benefit economics
– Examples: design for change, understanding, reuse, …

• Design Principles
– Guidelines for designing software
– Support one or more design goals
– Examples: Information hiding, low repr. gap, low coupling, high cohesion, …

• Design Heuristics
– Rules of thumb for low-level design decisions
– Promote design principles, and ultimately design goals
– Example: Creator, Expert, Controller

• Design Patterns
– General solutions to recurring design problems
– Promote design goals, but may add complexity or involve tradeoffs
– Examples: Decorator, Strategy, Template Method

• Goals, principles, heuristics, patterns may conflict
– Use high-level goals of project to resolve

Goals

Heuristics Patterns

Principles

X

15-214

2

 7 15-214

GRASP Patterns

• GRASP = General Responsibility Assignment
Software Patterns

• Patterns of assigning responsibilities
– reason about design trade-offs when assigning

methods and fields to classes

• The GRASP patterns are a learning aid to
– help one understand essential object design
– apply design reasoning in a methodical, rational,

explainable way
– lower level and more local reasoning than most

design patterns

 8 15-214

DESIGN PRINCIPLE:
LOW REPRESENTATIONAL GAP

8
 9 15-214

9

PineTree

age
size

harvest()

Forest
RangerAgent

sanitation(Forest)
salvage(Forest)

1
n

inspires objects and names

Problem

Space

Domain Model

Solution

Space

Object Model

 10 15-214

Designs with
Low Representational Gap

• Create software class for each domain class,
create corresponding relationships

• Design goal: Design for change

• This is only a starting point!

– Not all domain classes need software
correspondence; pure fabrications might be
needed

– Other principles often more important

10
 11 15-214

DESIGN PRINCIPLE: LOW COUPLING

11
 12 15-214

Design Principle: Low Coupling

A module should depend on as few other modules
as possible
• Enhances understandability (design for underst.)

– Limited understanding of context, easier to
understand in isolation

• Reduces the cost of change (design for change)
– Little context necessary to make changes
– When a module interface changes, few modules are

affected (reduced rippling effects)

• Enhances reuse (design for reuse)
– Fewer dependencies, easier to adapt to a new context

15-214

3

 13 15-214

Topologies with different coupling

 14 15-214

High Coupling is undesirable

• Element with low coupling depends on only few other
elements (classes, subsystems, …)

– “few" is context-dependent

• A class with high coupling relies on many other classes
– Changes in related classes force local changes; changes in local

class forces changes in related classes (brittle, rippling effects)

– Harder to understand in isolation.

– Harder to reuse because requires additional presence of other
dependent classes

– Difficult to extend – changes in many places

 15 15-214
15

class Shipment {
 private List<Box> boxes;
 int getWeight() {
 int w=0;
 for (Box box: boxes)
 for (Item item: box.getItems())
 w += item.weight;
 return w;
}
class Box {
 private List<Item> items;
 Iterable<Item> getItems() { return items;}
}
class Item {
 Box containedIn;
 int weight;
}

Which classes are coupled?
How can coupling be improved?

 16 15-214

Coupling Example

• Create a Tree and “infest” it with beetles

Simulation Beetle Tree

 17 15-214

Coupling Example

 18 15-214

Coupling Example

15-214

4

 19 15-214

Coupling Example

Second solution has less coupling
Simulation does not know about Beetle class

 20 15-214

Common Forms of Coupling in OO
Languages

• Type X has a field of type Y

• Method m in type X refers to type Y

– e.g. a method argument, return value, local
variable, or static method call

• Type X is a direct or indirect subclass of Type Y

• Type Y is an interface, and Type X implements
that interface

 21 15-214

Low Coupling: Discussion

• Low Coupling is a principle to keep in mind during all
design decisions

• It is an underlying goal to continually consider.
• It is an evaluative principle that a designer applies

while evaluating all design decisions.
• Low Coupling supports design of more independent

classes; reduces the impact of change.
• Context-dependent; should be considered together

with cohesion and other principles and patterns
• Prefer coupling to interfaces over coupling to

implementations

 22 15-214

Law of Demeter

• Each module should have only limited
knowledge about other units: only units
"closely" related to the current unit

• In particular: Don’t talk to strangers!

• For instance, no a.getB().getC().foo()

for (Item i: shipment.getBox().getItems())
 i.getWeight() …

 23 15-214

Coupling: Discussion

• Subclass/superclass coupling is particularly strong
– protected fields and methods are visible
– subclass is fragile to many superclass changes, e.g. change in

method signatures, added abstract methods
– Guideline: prefer composition to inheritance, to reduce coupling

• High coupling to very stable elements is usually not
problematic
– A stable interface is unlikely to change, and likely well-

understood
– Prefer coupling to interfaces over coupling to implementations

• Coupling is one principle among many
– Consider cohesion, low repr. gap, and other principles

 24 15-214

Coupling to “non-standards”

• Libraries or platforms may include non-
standard features or extensions

• Example: JavaScript support across Browsers

– <div id=“e1”>old content</div>

• In JavaScript…

– MSIE: e1.innerText = “new content”

– Firefox: e1.textContent = “new content”

W3C-
compliant DOM

standard

15-214

5

 25 15-214

Design Goals

• Explain how low cohesion supports

– design for change

– design for understandability

– design for division of labor

– design for reuse

– …

25
 26 15-214

Design Goals

• design for change
– changes easier because fewer dependencies on fewer

other objects
– changes are less likely to have rippling effects

• design for understandability
– fewer dependencies to understand (e.g.,

a.getB().getC().foo())

• design for division of labor
– smaller interfaces, easier to divide

• design for reuse
– easier to reuse without complicated dependencies

26
 27 15-214

GRASP PATTERN: CONTROLLER
DESIGN PATTERN: FAÇADE

27

 28 15-214

Controller (GRASP)

• Problem: What object receives and
coordinates a system operation (event)?

• Solution: Assign the responsibility to an object
representing

– the overall system, device, or subsystem (façade
controller), or

– a use case scenario within which the system event
occurs (use case controller)

 29 15-214
29

: Student : System

login(id)

checkout(bookid)

due date

logout()

receipt

 30 15-214
30

: Student : System

login(id)

checkout(bookid)

due date

logout()

receipt

CheckoutController

login(id: Int)
checkout(bid: Int)
logout()

15-214

6

 31 15-214
31

: Student : System

login(id)

checkout(bookid)

due date

logout()

receipt

 32 15-214

Controller: Discussion

• A Controller is a coordinator
– does not do much work itself
– delegates to other objects

• Façade controllers suitable when not "too many" system
events
– -> one overall controller for the system

• Use case controller suitable when façade controller
"bloated" with excessive responsibilities (low cohesion,
high coupling)
– -> several smaller controllers for specific tasks

• Closely related to Façade design pattern (future lecture)

 33 15-214

Controller: Discussion of Design
Goals/Strategies
• Decrease coupling

– User interface and domain logic are decoupled from each other
• Understandability: can understand these in isolation, leading to:
• Evolvability: both the UI and domain logic are easier to change

– Both are coupled to the controller, which serves as a mediator,
but this coupling is less harmful
• The controller is a smaller and more stable interface
• Changes to the domain logic affect the controller, not the UI
• The UI can be changed without knowing the domain logic design

• Support reuse
– Controller serves as an interface to the domain logic
– Smaller, explicit interfaces support evolvability

• But, bloated controllers increase coupling and decrease
cohesion; split if applicable

 34 15-214

DESIGN PRINCIPLE: HIGH COHESION

34
 35 15-214

Design Principle: Cohesion

A module should have a small set of related
responsibilities

• Enhances understandability (design for
understandability)
– A small set of responsibilities is easier to

understand

• Enhances reuse (design for reuse)
– A cohesive set of responsibilities is more likely to

recur in another application

 36 15-214

15-214

7

 37 15-214

Cohesion in Coupling Example

Register responsibilities
• Trigger simulation step based on

environment stimulus
• Coordinate creation of domain objects

 38 15-214

38

class DatabaseApplication
 //... database fields
 //... Logging Stream
 //... Cache Status
 public void authorizeOrder(Data data, User currentUser, ...){
 // check authorization
 // lock objects for synchronization
 // validate buffer
 // log start of operation
 // perform operation
 // log end of operation
 // release lock on objects
 }
 public void startShipping(OtherData data, User currentUser, ...){
 // check authorization
 // lock objects for synchronization
 // validate buffer
 // log start of operation
 // perform operation
 // log end of operation
 // release lock on objects
 }
}

 39 15-214

Cohesion in Graph Implementations

class Graph {
 Node[] nodes;
 boolean[] isVisited;
}
class Algorithm {
 int shortestPath(Graph g, Node n, Node m) {
 for (int i; …)
 if (!g.isVisited[i]) {
 …
 g.isVisited[i] = true;
 }
 }
 return v;
 }
}

Graph is tasked with
not just data, but also
algorithmic responsibilities

 40 15-214

Monopoly Example
class Player {
 Board board;
 /* in code somewhere… */ getSquare(n);
 Square getSquare(String name) {
 for (Square s: board.getSquares())
 if (s.getName().equals(name))
 return s;
 return null;
}}

class Player {
 Board board;
 /* in code somewhere… */ board.getSquare(n);
}
class Board{
 List<Square> squares;
 Square getSquare(String name) {
 for (Square s: squares)
 if (s.getName().equals(name))
 return s;
 return null;
}}

Which design has
higher cohesion?

 41 15-214

Hints for Identifying Cohesion

• Use one color per concept

• Highlight all code of that concept with the
color

• => Classes/
methods
should have
few colors

41
 42 15-214

Hints for Identifying Cohesion

• There is no clear definition of what is a
“concept”

• Concepts can be split into smaller concepts

– Graph with search vs. Basic Graph + Search
Algorithm vs. Basic Graph + Search Framework +
Concrete Search Algorithm etc

• Requires engineering judgment

42

15-214

8

 43 15-214

Cohesion: Discussion

• Very Low Cohesion: A Class is solely responsible for many things in
very different functional areas

• Low Cohesion: A class has sole responsibility for a complex task in
one functional area

• High Cohesion: A class has moderate responsibilities in one
functional area and collaborates with classes to fulfil tasks

• Advantages of high cohesion
– Classes are easier to maintain
– Easier to understand
– Often support low coupling
– Supports reuse because of fine grained responsibility

• Rule of thumb: a class with high cohesion has relatively few
methods of highly related functionality; does not do too much work

 44 15-214

Coupling vs Cohesion (Extreme cases)

Think about extreme cases:

• Very low coupling?

• Very high cohesion?

44

class Graph {
 Node[] nodes;
 boolean[] isVisited;
}
class Algorithm {
 int shortestPath(Graph g, Node n, Node m) {
 for (int i; …)
 if (!g.isVisited[i]) {
 …
 g.isVisited[i] = true;
 }
 }
 return v;
 }
}

 45 15-214

Coupling vs Cohesion (Extreme cases)

• All code in one class/method

– very low coupling, but very low cohesion

• Every statement separated

– very high cohesion, but very high coupling

• Find good tradeoff; consider also other
principles, e.g., low representational gap

45

 46 15-214

GRASP PATTERN:
INFORMATION EXPERT

46
 47 15-214

Information Expert
(GRASP Pattern/Design Heuristic)

• Heuristic: Assign a responsibility to the class
that has the information necessary to fulfill the
responsibility

• Start assigning responsibilities by clearly stating
responsibilities!

• Typically follows common intuition

• Software classes instead of Domain Model classes

– If software classes do not yet exist, look in Domain
Model for fitting abstractions (-> correspondence)

 48 15-214
48

class Shipment {
 private List<Box> boxes;
 int getWeight() {
 int w=0;
 for (Box box: boxes)
 for (Item item: box.getItems())
 w += item.weight;
 return w;
}
class Box {
 private List<Item> items;
 Iterable<Item> getItems() { return items;}
}
class Item {
 Box containedIn;
 int weight;
}

Which class has all the
information to compute the

shipment’s weight?

15-214

9

 49 15-214

Information Expert -> "Do It Myself
Strategy"
• Expert usually leads to designs where a software

object does those operations that are normally
done to the inanimate real-world thing it
represents
– a sale does not tell you its total; it is an inanimate

thing

• In OO design, all software objects are "alive" or
"animated," and they can take on responsibilities
and do things.

• They do things related to the information they
know.

 50 15-214

GRASP PATTERN: CREATOR

50
 51 15-214

Creator
(GRASP Pattern/Design Heuristic)
• Problem: Who creates an A?
• Solution: Assign class responsibility of creating

instance of class A to B if
– B aggregates A objects
– B contains A objects
– B records instances of A objects
– B closely uses A objects
– B has the initializing data for creating A objects

• the more the better; where there is a choice, prefer
– B aggregates or contains A objects

• Key idea: Creator needs to keep reference anyway and
will frequently use the created object

 52 15-214

Creator (GRASP)

• Who is responsible for creating Beetle
objects? Tree objects?

 53 15-214

Creator : Example

• Who is responsible for creating Beetle
objects?

– Creator pattern suggests Tree

• Interaction diagram:

 54 15-214

Creator (GRASP)

• Problem: Assigning responsibilities for
creating objects

– Who creates Nodes in a Graph?

– Who creates instances of SalesItem?

– Who creates Children in a simulation?

– Who creates Tiles in a Monopoly game?

• AI? Player? Main class? Board? Meeple (Dog)?

15-214

10

 55 15-214

Creator: Discussion of Design
Goals/Principles
• Promotes low coupling, high cohesion

– class responsible for creating objects it needs to reference
– creating the objects themselves avoids depending on another

class to create the object

• Promotes evolvability (design for change)
– Object creation is hidden, can be replaced locally

• Contra: sometimes objects must be created in special ways

– complex initialization
– instantiate different classes in different circumstances
– then cohesion suggests putting creation in a different object

• see design patterns such as builder, factory method

 56 15-214

Take-Home Messages

• Design is driven by quality attributes

– Evolvability, separate development, reuse,
performance, …

• Design principles provide guidance on achieving
qualities

– Low coupling, high cohesion, high correspondence, …

• GRASP design heuristics promote these principles

– Creator, Expert, Controller, …

 57 15-214

Which design is better? Argue with design goals, principles,
heuristics, and patterns that you know

* old midterm question

