ity For
SOFTWARE
B piscacli

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 2: Designing (Sub-)Systems)

Assigning Responsibilities
Christian Kastner Charlie Garrod

Schoolof
Computersdence

Learning Goals
* Apply GRASP patterns to assign

responsibilities in designs
* Reason about tradeoffs among designs

15-214

Responsibilities

15-214

Responsibilities are related to the obligations of an object in terms
of its behavior.

Two types of responsibilities:
— knowing
— doing
Doing responsibilities of an object include:

— doing something itself, such as creating an object or doing a
calculation

— initiating action in other objects

— controlling and coordinating activities in other objects
Knowing responsibilities of an object include:

— knowing about private encapsulated data

— knowing about related objects

— knowing about things it can derive or calculate

Today’s topics

* Object-Oriented Design: “After identifying your
requirements and creating a domain model, then
add methods to the software classes, and define
the messaging between the objects to fulfill the
requirements.”

* But how?

— How should concepts be implemented by classes?
— What method belongs where?

— How should the objects interact?

— This is a critical, important, and non-trivial task

15-214 3 |EI

Design Goals, Principles, and Patterns

Design Goals

— Design for change, understanding, reuse, division of
labor, ...

Design Principle

— Low coupling, high cohesion
— Low representational gap

— Law of demeter

* Design Heuristics (GRASP)
— Information expert

— Creator

— Controller

15-214

x Goals, principles, heuristics, patterns may conflict

Goals, Principles, Guidelines coais
A

Design Goals Principles

— Desired quality attributes of software

— Driven by cost/benefit economics.

— Examples: design for change, understanding, reuse, ...
Design Principles

— Guidelines for designing software

— Support one or more design goals

— Examples: Information hiding, low repr. gap, low coupling, high cohesion, ...
Design Heuristics

— Rules of thumb for low-level design decisions

— Promote design principles, and ultimately design goals

— Example: Creator, Expert, Controller
Design Patterns

— General solutions to recurring design problems

— Promote design goals, but may add complexity or involve tradeoffs

— Examples: Decorator, Strategy, Template Method

Heuristics Patterns

~ Use high-level goals of project to resolve

15-214

15-214

GRASP Patterns

* GRASP = General Responsibility Assignment
Software Patterns
* Patterns of assigning responsibilities
— reason about design trade-offs when assigning
methods and fields to classes
* The GRASP patterns are a learning aid to
— help one understand essential object design

— apply design reasoning in a methodical, rational,
explainable way

— lower level and more local reasoning than most
design patterns

15-214 7

DESIGN PRINCIPLE:
LOW REPRESENTATIONAL GAP

Y
-
Problem
Space

‘ ‘ ‘ ‘ ‘ inspires objects and names t ‘ ‘ ‘ ‘

= » s |

Designs with

Low Representational Gap

* Create software class for each domain class,
create corresponding relationships

* Design goal: Design for change

* This is only a starting point!
— Not all domain classes need software
correspondence; pure fabrications might be
needed

— Other principles often more important

15-214 10

PineTree RangerAgent
age Solution
size Space sanitation(Forest)
harvest() salvage(Forest)
Object Model
15-214 e 9

DESIGN PRINCIPLE: LOW COUPLING

A E)
15-214 11 IEI bt

Design Principle: Low Coupling

A module should depend on as few other modules
as possible
* Enhances understandability (design for underst.)

— Limited understanding of context, easier to
understand in isolation

* Reduces the cost of change (design for change)
— Little context necessary to make changes

— When a module interface changes, few modules are
affected (reduced rippling effects)

* Enhances reuse (design for reuse)
— Fewer dependencies, easier to adapt to a new context

15-214

15-214

Topologies with different coupling

K 2

15-214

High Coupling is undesirable

* Element with low coupling depends on only few other
elements (classes, subsystems, ...)
— “few" is context-dependent
* A class with high coupling relies on many other classes
— Changes in related classes force local changes; changes in local
class forces changes in related classes (brittle, rippling effects)
— Harder to understand in isolation.

— Harder to reuse because requires additional presence of other
dependent classes

Difficult to extend — changes in many places

15-214

Coupling Example

« Create a Tree and “infest” it with beetles

| Simulation

| Beetle

| Tree |

15-214

Which classes are coupled?
How can coupling be improved?

class Shipment {

private List<Box> boxes;

int getWeight() {
int w=0;
for (Box box: boxes)

for (Item item: box.getItems())
w += item.weight;

return w;

class Box {
private List<Item> items;
Iterable<Item> getltems() { return items;}

class Item {

Box containedIn;
int weight;

15-214

Coupling Example

~Tree
2: creale() -
4
3: creale
:

-1 Simulation
init()

15-214

Coupling Example

2 create()

S Simulation
init)
3: create(),

:

o creseilected

15-214

Coupling Example

EOdBeetle(t)

3: create
e I
* '"‘lOE‘ resenteced

Second solution has less coupling

Simulation does not know about Beetle class
15-214 19

T
initf

Common Forms of Coupling in OO
Languages

* Type X has a field of type Y
* Method m in type X refers to type Y

— e.g. a method argument, return value, local
variable, or static method call

* Type X is a direct or indirect subclass of Type Y

* Type Y is an interface, and Type X implements
that interface

15-214

Law of Demeter

* Each module should have only limited
knowledge about other units: only units
"closely" related to the current unit

* In particular: Don’t talk to strangers!
 For instance, no a.getB().getC().foo()

for (Item i: shipment.getBox().getitems())
i.getWeight() ...

15-214

Low Coupling: Discussion

Low Coupling is a principle to keep in mind during all
design decisions

It is an underlying goal to continually consider.

It is an evaluative principle that a designer applies
while evaluating all design decisions.

* Low Coupling supports design of more independent
classes; reduces the impact of change.
Context-dependent; should be considered together
with cohesion and other principles and patterns

Prefer coupling to interfaces over coupling to
implementations

15-214

Coupling: Discussion

* Subclass/superclass coupling is particularly strong
— protected fields and methods are visible

— subclass is fragile to many superclass changes, e.g. change in
method signatures, added abstract methods

— Guideline: prefer composition to inheritance, to reduce coupling
* High coupling to very stable elements is usually not
problematic

— A stable interface is unlikely to change, and likely well-
understood

— Prefer coupling to interfaces over coupling to implementations
* Coupling is one principle among many
— Consider cohesion, low repr. gap, and other principles

15-214 2 |E] 1

Coupling to “non-standards”

* Libraries or platforms may include non-
standard features or extensions
* Example: JavaScript support across Browsers

— <div id="e1”>old content</div> w3c-

compliant DOM
standard

* InJavaScript...
— MSIE: el.innerText = “Aéw content”
— Firefox: el.textContent = “new content”

15-214 24 IEI

15-214

Design Goals

15-214

Explain how low cohesion supports
— design for change

— design for understandability

— design for division of labor

— design for reuse

25

Design Goals

« design for change

— changes easier because fewer dependencies on fewer

other objects

— changes are less likely to have rippling effects
* design for understandability
— fewer dependencies to understand (e.g.,

a.getB().getC().foo())
« design for division of labor

— smaller interfaces, easier to divide

* design for reuse

— easier to reuse without complicated dependencies

15-214

C

ontroller (GRASP)

Problem: What object receives and
coordinates a system operation (event)?

* Solution: Assign the responsibility to an object

15-214

representing

— the overall system, device, or subsystem (fagade
controller), or

— a use case scenario within which the system event
occurs (use case controller)

1526

GRASP PATTERN: CONTROLLER
DESIGN PATTERN: FACADE

15-214

27

: System

: Student
login(id)
checkout(bookid)
due date
logout()
receipt
15-214

29

: System

: Student
login(id)
checkout(bookid)
due date
logout()
receipt
15-214

CheckoutController

login(id: Int)
checkout(bid: Int)
logout()

30

15-214

: Student : System

login(id)

ot -J;Il

checkout(bookid)

due date
logout() o K\ U
receipt . J
.
15-214 -

Controller: Discussion

15-214

A Controller is a coordinator

— does not do much work itself

— delegates to other objects
Fagade controllers suitable when not "too many" system
events

— ->one overall controller for the system

Use case controller suitable when fagade controller
"bloated" with excessive responsibilities (low cohesion,
high coupling)

— ->several smaller controllers for specific tasks

Closely related to Fagade design pattern (future lecture)

Controller: Discussion of Design
Goals/Strategies

« Decrease coupling
— User interface and domain logic are decoupled from each other
* Understandability: can understand these in isolation, leading to:
+ Evolvability: both the Ul and domain logic are easier to change
— Both are coupled to the controller, which serves as a mediator,
but this coupling is less harmful
* The controller is a smaller and more stable interface
« Changes to the domain logic affect the controller, not the Ul
* The Ul can be changed without knowing the domain logic design
Support reuse
— Controller serves as an interface to the domain logic
— Smaller, explicit interfaces support evolvability
But, bloated controllers increase coupling and decrease
cohesion; split if applicable

15-214 33 |EI

DESIGN PRINCIPLE: HIGH COHESION

15-214

15-214

Design Principle: Cohesion

A module should have a small set of related
responsibilities
* Enhances understandability (design for
understandability)
— A small set of responsibilities is easier to
understand
* Enhances reuse (design for reuse)
— A cohesive set of responsibilities is more likely to
recur in another application

<
(>
X

15-214

15-214

15-214

class DatabaseApplication o 9 Q

Cohesion in Coupling Example I gl Cohesion in Graph Implementations
" Loggingstream

1. Cache status Graph is tasked with

public void i data, User tL class Graph { e e G, (Uit £lEw

// check authorization .
5 // lock objects for synchronization Node[] nodes; algorithmic responsibilities
- create() /] validate buffer boolean[] isVisited;
e

// perform operation

4: addBeetle(b) "
b Simulation 1/ logstart of operation
inite 5 A
5 eremel v ok mampects class Algorithm {
) int shortestPath(Graph g, Node n, Node m) {
for (inti; ...)

public void ippi data, User K

/1 check authorization if (1g.isVisited[i]) {

/1 lock objects for synchronization

// validate buffer
-1 init() Simulation 2. createlnfected Tr /1 log start of operation B\ /Ffl i .
/1 perform operation) g.isVisited[i] = true;

e
e

3 /1 log end of operation

cregte() /1 release lock on objects 3

Register responsibilities .
« Trigger simulation step based on - } return \

environment stimulus
15-}14

Coordinate creation of domain objects

15-214 s7 16l 15-214

Monopoly Example

class Player {
Board board;
/* in code somewhere... */ getSquare(n);

Igher conesions Hints for Identifying Cohesion Hints for Identifying Cohesion

=) * Use one color per concept * There is no clear definition of what is a
(5 ge e equals(name)) * Highlight all code of that concept with the “concept”
n e el color * Concepts can be split into smaller concepts
class P'aé’f;ﬁ oo » =>Classes/ - Graph with search vs. Basic Graph + Search
/* in code sémewhere... */ board.getSquare(n); methods Algonthm vs. Basic Gr‘—f‘ph + Search Framework +
zlass Board(should have Concrete Search Algorithm etc
List<Square> squares; few colors £ * Requires engineering judgment

Square getSquare(String name) {
for (Square s: squares)
if (s.getName().equals(name))
return s;

[o7

15-214 & Jb £

/(\//

return null;

152}4

15-214

Cohesion: Discussion

* Very Low Cohesion: A Class is solely responsible for many things in
very different functional areas

* Low Cohesion: A class has sole responsibility for a complex task in
one functional area

* High Cohesion: A class has moderate responsibilities in one
functional area and collaborates with classes to fulfil tasks

* Advantages of high cohesion
— Classes are easier to maintain
— Easier to understand
— Often support low coupling
— Supports reuse because of fine grained responsibility

* Rule of thumb: a class with high cohesion has relatively few
methods of highly related functionality; does not do too much work

15-214 a3

Coupling vs Cohesion (Extreme cases)

Think about extreme cases:
* Very low coupling?
* Very high cohesion?

class Graph {
Node[] nodes;
boolean(] isVisited;

class Algorithm {
int shortestPath(Graph g, Node n, Node m) {
for (inti; ...
if (1g.isVisited(i]) {

g.isVisited[i] = true;

return v;

15-214 }

GRASP PATTERN:
INFORMATION EXPERT

15-214 46

Coupling vs Cohesion (Extreme cases)

« All code in one class/method

— very low coupling, but very low cohesion
Every statement separated

— very high cohesion, but very high coupling

* Find good tradeoff; consider also other
principles, e.g., low representational gap

15-214 as

Information Expert
(GRASP Pattern/Design Heuristic)
Heuristic: Assign a responsibility to the class

that has the information necessary to fulfill the
responsibility

Start assigning responsibilities by clearly stating
responsibilities!

Typically follows common intuition

Software classes instead of Domain Model classes

— If software classes do not yet exist, look in Domain
Model for fitting abstractions (-> correspondence)

15-214 47 IEI

Which class has all the
information to compute the
shipment’s weight?
class Shipment {

private List<Box> boxes;
int getWeight() {

int w=0;

for (Box box: boxes)

for (Item item: box.getltems())
w += item.weight;
return w;

class Box {
private List<Item> items;
Iterable<Item> getltems() { return items;}

class Item {

Box containedIn;
int weight;

15-214 48

15-214

Information Expert -> "Do It Myself
Strategy"

* Expert usually leads to designs where a software
object does those operations that are normally
done to the inanimate real-world thing it
represents
— a sale does not tell you its total; it is an inanimate

thing

* In OO design, all software objects are "alive" or
"animated," and they can take on responsibilities
and do things.

* They do things related to the information they
know.

15-214 a9 Eiad

GRASP PATTERN: CREATOR

15-214

i 1:x50
50 IEI i

Creator (GRASP)

* Who is responsible for creating Beetle
objects? Tree objects?

Creator
(GRASP Pattern/Design Heuristic)

* Problem: Who creates an A?

* Solution: Assign class responsibility of creating

instance of class A to B if

— B aggregates A objects

— B contains A objects

— B records instances of A objects

— B closely uses A objects

— B has the initializing data for creating A objects

the more the better; where there is a choice, prefer

— B aggregates or contains A objects

* Key idea: Creator needs to keep reference anyway and
will frequently use the created object

15-214 51 Eiad

15-214

Simiulation Tree Bestle
sizo
s a0 (oo
) grow)

stepl Isintested() step()

simutates

Ranger

harvesi)

Creator : Example

* Who is responsible for creating Beetle
objects?
— Creator pattern suggests Tree

* Interaction diagram:

L initg) Simula

createtected

&
cragre()

15-214

Creator (GRASP)

* Problem: Assigning responsibilities for
creating objects
— Who creates Nodes in a Graph?
— Who creates instances of Salesltem?
— Who creates Children in a simulation?
— Who creates Tiles in a Monopoly game?
« AI? Player? Main class? Board? Meeple (Dog)?

15-214 54 e

15-214

C
G

15-214

reator: Discussion of Design
oals/Principles

Promotes low coupling, high cohesion

— class responsible for creating objects it needs to reference
— creating the objects themselves avoids depending on another

class to create the object
Promotes evolvability (design for change)
— Object creation is hidden, can be replaced locally

Contra: sometimes objects must be created in special ways

— complex initialization

— instantiate different classes in different circumstances
— then cohesion suggests putting creation in a different object

« see design patterns such as builder, factory method

Take-Home Messages

* Design is driven by quality attributes

— Evolvability, separate development, reuse,
performance, ...

* Design principles provide guidance on achieving
qualities

— Low coupling, high cohesion, high correspondence, ...

* GRASP design heuristics promote these principles
— Creator, Expert, Controller, ...

15-214

[Customer |

customers

customers add(customer)
arketing.customeradded(customer)
gui st add(customer.name)

Customer | . comers
<

stng)

mareting

Customertist interface-
T e e S
|ehangaadressicustomer, strng)

15-214

oreach (v handler) [randiers-add(hands
hicustomeradded(eustomen)

MarketingLetters

[customertigmtbiatog
Customertististener

Fiu\s{u?

customer.sendwelcomeLetter(..)

* old midterm question

qui st add(customer.name)

57

15-214

10

