
Four threads 8 Aug 11

1

 1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 2: Designing (Sub-)Systems)

What to build?

Christian Kästner Charlie Garrod

 2 15-214

Learning Goals

• High-level understanding of requirements
challenges

• Identify the key abstractions in a domain,
model them as a domain model

• Identify the key interactions within a system,
model them as system sequence diagram

• Discuss benefits and limitations of the design
principle low representational gap

2
 3 15-214

Design Goals, Principles, and Patterns

• Design Goals

– Design for change

– Design for division of labor

– Design for reuse

• Design Principle

– Low representational gap

3

 4 15-214

REQUIREMENTS

4
 5 15-214

5
 6 15-214

Requirements say what the system will
do (and not how it will do it).

• The hardest single part of building a software
system is deciding precisely what to build.

• No other part of the conceptual work is as
difficult as establishing the detailed technical
requirements ...

• No other part of the work so cripples the
resulting system if done wrong.

• No other part is as difficult to rectify later.
 — Fred Brooks

6

Four threads 8 Aug 11

2

 7 15-214

Requirements

• What does the customer want?

• What is required, desired, not necessary?
Legal, policy constraints?

• Customers often do not know what they really
want; vague, biased by what they see; change
their mind; get new ideas…

• Difficult to define requirements precisely

• (Are we building the right thing? Not: Are we
building the thing right?)

7

 8 15-214

Lufthansa Flight 2904

• The Airbus A320-200 airplane
has a software-based braking
system that consists of:

– Ground spoilers (wing
plates extended to reduce
lift)

– Reverse thrusters

– Wheel brakes on the main
landing gear

• To engage the braking system,
the wheels of the plane must
be on the ground.

8
 9 15-214

Lufthansa Flight 2904

There are two “on ground” conditions:

1. Both shock absorber bear a load of 6300 kgs

2. Both wheels turn at 72 knots (83 mph) or faster

• Ground spoilers activate for conditions 1 or 2
• Reverse thrust activates for condition 1 on both

main landing gears
• Wheel brake activation depends upon the

rotation gain and condition 2

9

 10 15-214

10
 11 15-214

Requirements

• What does the customer want?

• What is required, desired, not necessary?
Legal, policy constraints?

• Customers often do not know what they really
want; vague, biased by what they see; change
their mind; get new ideas…

• Difficult to define requirements precisely

• (Are we building the right thing? Not: Are we
building the thing right?)

11

214 assumption:
Somebody has gathered the
requirements (mostly text).

Challenges:
How do we start implementing them?

How do we cope with changes?

 12 15-214

This lecture

• Understand functional requirements

• Understand the problem’s vocabulary (domain
model)

• Understand the intended behavior (system
sequence diagrams; contracts)

12

Four threads 8 Aug 11

3

 13 15-214

Problem

Space

Domain Model

Solution

Space

Object Model

• Real-world concepts
• Requirements, Concepts
• Relationships among

concepts
• Solving a problem
• Building a vocabulary

• System implementation
• Classes, objects
• References among

objects and inheritance
hierarchies

• Computing a result
• Finding a solution

 14 15-214

A design process

• Object-Oriented Analysis
– Understand the problem
– Identify the key concepts and their relationships
– Build a (visual) vocabulary
– Create a domain model (aka conceptual model)

• Object-Oriented Design
– Identify software classes and their relationships with class diagrams
– Assign responsibilities (attributes, methods)
– Explore behavior with interaction diagrams
– Explore design alternatives
– Create an object model (aka design model and design class diagram)

and interaction models

• Implementation
– Map designs to code, implementing classes and methods

 15 15-214

DESIGN PRINCIPLE:
LOW REPRESENTATIONAL GAP

15

 16 15-214
16

 17 15-214
17

SimObj1

a
s

kill()

SimGroup2
SimEngine

op1(SimGroup2)
op2(SimGroup2)

m
n

 18 15-214
18

PineTree

age
size

harvest()

Forest
RangerAgent

sanitation(Forest)
salvage(Forest)

1
n

Four threads 8 Aug 11

4

 19 15-214
19

PineTree

age
size

harvest()

Forest
RangerAgent

sanitation(Forest)
salvage(Forest)

1
n

inspires objects and names

Problem

Space

Domain Model

Solution

Space

Object Model

 20 15-214

Low Representational Gap
(Congruency)

• Align software objects with real-world objects
(concrete and abstract); objects with
relationships and interactions in the real world
similarly relate and interact in software

• “Intuitive” understanding; clear vocabulary

• Real-world abstractions are less likely to
change => Design for change

20

 => Find and understand real-world objects and abstractions

 21 15-214

Benefit of Low Representational Gap
(Congruence)
• The domain model is familiar to domain experts

– Simpler than code
– Uses familiar names, relationships

• Classes in the object model and implementation will be
inspired by domain model
– similar names
– possibly similar connections and responsibilities

• Facilitates understanding of design and implementation
• Facilitates traceability from problem to solution
• Facilitates evolution

– Small changes in the domain more likely to lead to small
changes in code

 22 15-214

DOMAIN MODELS

22
 23 15-214

Object-Oriented Analysis

• Find the concepts in the problem domain
– Real-world abstractions, not necessarily software objects

• Understand the problem

• Establish a common vocabulary

• Common documentation, big picture

• For communication!

• Often using UML class diagrams as (informal) notation

• Starting point for finding classes later (low
representational gap)

 24 15-214

Why domain modeling?

• Understand the domain
– Details matter! Does every student have exactly one

major?

• Ensure completeness
– A student’s home college affects registration

• Agree on a common set of terms
– freshman/sophomore vs. first-year/second-year

• Prepare to design
– Domain concepts are good candidates for OO classes (->

low representational gap)

• A domain model is a (often visual) representation of
the concepts and relationships in a domain

Four threads 8 Aug 11

5

 25 15-214

Running Example

© CC License by Cyberslayer on Flickr

 26 15-214

Identify concepts

StoreRegister SaleItem

Cash

Payment

Sales

LineItem
Cashier Customer

Product

Catalog

Product

Description

Ledger

 27 15-214

Running Example

• Point of sale (POS) or checkout is the place where a retail transaction is
completed. It is the point at which a customer makes a payment to a merchant in
exchange for goods or services. At the point of sale the merchant would use any of
a range of possible methods to calculate the amount owing - such as a manual
system, weighing machines, scanners or an electronic cash register. The merchant
will usually provide hardware and options for use by the customer to make
payment. The merchant will also normally issue a receipt for the transaction.

• For small and medium-sized retailers, the POS will be customized by retail industry
as different industries have different needs. For example, a grocery or candy store
will need a scale at the point of sale, while bars and restaurants will need to
customize the item sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to cater to different
verticals, such as inventory, CRM, financials, warehousing, and so on, all built into
the POS software. Prior to the modern POS, all of these functions were done
independently and required the manual re-keying of information, which resulted
in a lot of errors.

http://en.wikipedia.org/wiki/Point_of_sale

 28 15-214

Read description carefully, look for

nouns and verbs
• Point of sale (POS) or checkout is the place where a retail transaction is

completed. It is the point at which a customer makes a payment to a merchant in
exchange for goods or services. At the point of sale the merchant would use any of
a range of possible methods to calculate the amount owing - such as a manual
system, weighing machines, scanners or an electronic cash register. The merchant
will usually provide hardware and options for use by the customer to make
payment. The merchant will also normally issue a receipt for the transaction.

• For small and medium-sized retailers, the POS will be customized by retail industry
as different industries have different needs. For example, a grocery or candy store
will need a scale at the point of sale, while bars and restaurants will need to
customize the item sold when a customer has a special meal or drink request. The
modern point of sale will also include advanced functionalities to cater to different
verticals, such as inventory, CRM, financials, warehousing, and so on, all built into
the POS software. Prior to the modern POS, all of these functions were done
independently and required the manual re-keying of information, which resulted
in a lot of errors.

http://en.wikipedia.org/wiki/Point_of_sale

 29 15-214

Hints for Identifying Concepts

• Read the requirements description, look for nouns
• Reuse existing models
• Use a category list

– tangible things: cars, telemetry data, terminals, …
– roles: mother, teacher, researcher
– events: landing, purchase, request
– interactions: loan, meeting, intersection, …
– structure, devices, organizational units, …

• Analyze typical use scenarios, analyze behavior
• Brainstorming

• Collect first; organize, filter, and revise later

 30 15-214

Identifying Relevant Concepts

• The domain model should contain only relevant
concepts

• Remove concepts irrelevant for the problem

• Remove vague concepts (e.g., "system")

• Remove redundant concepts, agree on name

• Remove implementation constructs

• Distinguish attributes (strings, numbers) and
concepts

• Distinguish operations and concepts

http://www.fotopedia.com/redirect?u=http://www.flickr.com/photos/90514086@N00
http://www.fotopedia.com/redirect?u=http://www.flickr.com/photos/90514086@N00/1437093077

Four threads 8 Aug 11

6

 31 15-214

Identifying Concepts for the
Library System

• Let’s identify some concepts

• Library Scenario (sometimes called a Use Case)

– User arrives at automated checkout system with
books to borrow

– User logs in with ID card

– User scans books

– System assigns due date

– System prints receipt

 32 15-214

Organize Concepts

• Identify related elements

• Model relationships through inheritance ("is
a") or associations ("related to")

 33 15-214

Reminder: Classes vs. Attributes

• "If we do not think of some conceptual class X as
text or a number in the real world, it's probably a
conceptual class, not an attribute"

• Avoid type annotations

Sale

store

Sale Store

phoneNr
vs.

 34 15-214

Reminder: Associations

• When do we care about a relationship between two
objects? (in the real world)

• Include cardinality (aka multiplicity) where relevant

ItemStore
stocks

*

Cardinality of the role

1

 35 15-214

Domain Model (example, excerpt)

 36 15-214

Reminder: Lowering the
Representational Gap (Congruency)

• Classes in the object model and
implementation will be inspired by domain
model

– similar names

– possibly similar connections and responsibilities

• Facilitates understanding of design and
implementation

• Eases tracking and performing of changes

Four threads 8 Aug 11

7

 37 15-214

Hints for Object-Oriented Analysis

• A domain model provides vocabulary
– for communication among developers, testers, clients, domain experts, …
– Agree on a single vocabulary, visualize it

• Focus on concepts, not software classes, not data
– ideas, things, objects
– Give it a name, define it and give examples (symbol, intension, extension)
– Add glossary
– Some might be implemented as classes, other might not

• There are many choices
• The model will never be perfectly correct

– that’s okay
– start with a partial model, model what's needed
– extend with additional information later
– communicate changes clearly
– otherwise danger of "analysis paralysis"

 38 15-214

Documenting a Domain Model

• Typical: UML class diagram
– Simple classes without methods and essential

attributes only
– Associations, inheritances, … as needed
– Do not include implementation-specific details, e.g.,

types, method signatures
– Include notes as needed

• Complement with examples, glossary, etc as
needed

• Formality depends on size of project
• Expect revisions

 39 15-214

Three perspectives of class diagrams

• Conceptual: Draw a diagram that represents the
concepts in the domain under study
– Conceptual classes reflect concepts in the domain

– Little or no regard for software that might implement it

• Specification: Describing the interfaces of the software,
not the implementation
– Software classes representing candidates for implem.

– Often confused in OO since classes combine both
interfaces and implementation

• Implementation: Diagram describes actual
implementation classes

 40 15-214

Domain Model Distinctions

• Vs. data model (solution space)

– Not necessarily data to be stored

• Vs. object model and Java classes (solution
space)

– Only includes real domain concepts (real objects
or real-world abstractions)

– No “UI frame”, no database, etc.

 41 15-214

SYSTEM SEQUENCE DIAGRAMS

41
 42 15-214

System Sequence Diagrams

• Domain model – understanding concepts and
relationships in the domain

• What about interactions?
– Between the program and its environment
– Between major parts of the program

• A System Sequence Diagram is a model that

shows, for one scenario of use, the sequence of
events that occur on the system’s boundary or
between subsystems

Four threads 8 Aug 11

8

 43 15-214

Simulation Framework Behavior Model

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

… Simulation
Driver

1. Select and
create agents

2. Add agents to
framework

3. Invoke
simulate() on
the framework

4. Invoke
timestep() on
each agent

5. Update
agent-specific
state in
timestep()

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

(actually a
Communication Diagram)

 44 15-214

Interaction diagrams

• See textbook for notation of UML
communication and sequence diagrams

44
 45 15-214

Sequence vs Communication Diagrams

• Sequence diagrams are better to visualize the
order in which things occur

• Communication diagrams also illustrate how
objects are statically connected

• Communication diagrams often are more
compact

• You should generally use interaction diagrams
when you want to look at the behavior of
several objects within a single use case.

 46 15-214

A System Sequence Diagram for
Borrowing a Book
• Library Scenario

(sometimes called a Use
Case)
– User arrives at automated

checkout system with
books to borrow

– User logs in with ID card

– User scans books

– System assigns due date

– System prints receipt

 47 15-214

Behavioral Contracts: What do These
Operations Do?

• Behavioral contract

– Like a pre-/post-
condition
specification for code

– Often written in
natural language

– Focused on system
interfaces

• may or may not be
methods

: Cashier : System

makeNewSale

enterItem(itemID, quantity)

description, total

endSale

total with taxes

makePayment(amount)

change due, receipt

 48 15-214

Example Point of Sale Contract
Operation: makeNewSale()
Preconditions: none

Postconditions: - A Sale instance s was created

 - s was associated with a Register

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

Four threads 8 Aug 11

9

 49 15-214

A Point of Sale Contract

• Contract structure
– Operation name, parameters
– Requirement or use case this is a part of
– Preconditions
– Postconditions

• Which contracts to write?
– Operations that are complex or subtle
– Operations that not everyone understands
– Simple/obvious operations are often not given contracts in practice

• Writing postconditions
– Written in past tense (a post-condition)
– Describe changes to domain model

• Instance creation and deletion
• Attribute modification
• Associations formed and broken

– Easy to forget associations when creating objects!

 50 15-214

Example Point of Sale Contract

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

Operation: enterItem(itemID : ItemID, quantity : integer)
Preconditions:

Postconditions:

 51 15-214

Example Point of Sale Contracts
Operation: makeNewSale()
Preconditions: none

Postconditions: - A Sale instance s was created

 - s was associated with a Register

Operation: enterItem(itemID : ItemID, quantity : integer)
Preconditions: There is a sale s underway

Postconditions: - A SalesLineItem instance sli was created

 - sli was associated with the sale s
 - sli.quantity became quantity
 - sli was associated with a ProjectDescription,

 based on itemID match

SalesLineItem

quantity

Sale

dateTime
total

Register

id

ProductDesc

itemID
description
price

* 1

0..1 1

1

1..*

Contained-in

Captured-on

Described-by

 52 15-214

Take-Home Messages

• To design a solution, problem needs to be understood
• We assume requirements as given in this course, but need to

understand them <- Domain modeling
• Domain models describe vocabulary and relationships of the

problem space; useful to understand the domain
• System sequence diagrams model the interaction with the system,

derive behavioral contracts
• Domain classes often turn into Java classes

– Low representational gap principle to support design for
understanding and change

– Some domain classes don’t need to be modeled in code; other
concepts only live at the code level

• UML is a commonly understood notation for domain modeling;
ensure right abstraction level

