
1

 1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency
(Part 1: Designing Classes)

Design for Change (class level)

Christian Kästner Charlie Garrod

 2 15-214
2

 3 15-214

Tradeoffs?
void sort(int[] list, String order) {

 …

 boolean mustswap;

 if (order.equals("up")) {

 mustswap = list[i] < list[j];

 } else if (order.equals("down")) {

 mustswap = list[i] > list[j];

 }

 …

}

void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) { return i>j; }}

 4 15-214

Case Study: Pines and Beetles

Photo by Walter Siegmund

Source: BC Forestry website

Lodgepole Pine Mountain Pine Beetle Galleries carved
in inner bark

Widespread
tree death

Further reading: Liliana Péreza and Suzana Dragićević. Exploring Forest Management Practices Using an Agent-Based Model of Forest Insect Infestations.
International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, 2010. 5 15-214

Simulation Framework Behavior Model

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

… Simulation
Driver

1. Select and
create agents

2. Add agents to
framework

3. Invoke
simulate() on
the framework

4. Invoke
timestep() on
each agent

5. Update
agent-specific
state in
timestep()

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

 6 15-214

Today: How Objects Respond to
Messages

s:Simulation

grid:Agent[]

simulate()

*simplification: we consider a 1-dimensional grid in this diagram

a0:LodgepolePine

age:int

timeStep(Simulation)
…

a1:InfectedPine

intensity:int

timeStep(Simulation)
…

1. assign a0 to grid[0]
2. assign a1 to grid[1]
3. invoke grid[0].timeStep()
4. invoke grid[1].timeStep() Object a0 is a

LodgepolePine
Dispatch to code in the
LodgepolePine class

Object a1 is a
LodgepolePine
Dispatch to code in the
LodgepolePine class

2

 7 15-214

Learning Goals

• Explain the need to design for change and design for
division of labor

• Understand subtype polymorphism and dynamic dispatch
– Distinguish between static and runtime type
– Explain static and instanceof and their limitations

• Use encapsulation to achieve information hiding
• Define method contracts beyond type signatures
• Explain the concept of design patterns, their ingredients

and applications
• Identify applicability of and apply the strategy design

pattern
• Write and automate unit tests

7
 8 15-214

Design Goals, Principles, and Patterns

• Design Goals
– Design for Change
– Design for Division of Labor

• Design Principles
– Explicit Interfaces (clear boundaries)
– Information Hiding (hide likely changes)

• Design Patterns
– Strategy Design Pattern
– Composite Design Pattern

• Supporting Language Features
– Subtype Polymorphism
– Encapuslation

8
 9 15-214

Software Change

• …accept the fact of change as a way of life, rather than
an untoward and annoying exception.
—Brooks, 1974

• Software that does not change becomes useless over
time.
—Belady and Lehman

• For successful software projects, most of the cost is spent
evolving the system, not in initial development
– Therefore, reducing the cost of change is one of the most

important principles of software design

 10 15-214

The limits of exponentials

time

c
a
p
a
b
il

it
y

Computing capability

Human capacity

 11 15-214

Building Complex Systems

● Division of Labor

● Division of Knowledge and Design Effort

● Reuse of Existing Implementations

simple complex

Comprehensible by
a Single Person

Buildable by
a Single Person

 12 15-214

Goal of Software Design

• For each desired program behavior there are
infinitely many programs that have this
behavior
– What are the differences between the variants?

– Which variant should we choose?

• Since we usually have to synthesize rather
than choose the solution…
– How can we design a variant that has the desired

properties?

3

 13 15-214

Sorting with configurable order, variant B

• Sorting with configurable order, variant B
void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) { return i>j; }}

(by the way, this design is called “strategy pattern”)

Uses Polymorphism for
Extensibility

Programming against an

Interface

Strategy Design Pattern

 14 15-214

Design Goals for Today

• Design for Change (flexibility, extensibility,
modifiability)

also

• Design for Division of Labor

• Design for Understandability

14
 15 15-214

SUBTYPE POLYMORPHISM / DYNAMIC DISPATCH

(OBJECT-ORIENTED LANGUAGE
FEATURE ENABLING FLEXIBILITY)

15

 16 15-214

Objects

• A package of state (data) and behavior (actions)
• Can interact with objects by sending messages

– perform an action (e.g., move)
– request some information (e.g., getSize)

• Possible messages described through an interface

interface Point {
 int getX();
 int getY();
 void moveUp(int y);
 Point copy();
}

interface IntSet {
 boolean contains(int element);
 boolean isSubsetOf(
 IntSet otherSet);
}

Point p = …
int x = p.getX();

IntSet a = …; IntSet b = …
boolean s = a.isSubsetOf(b);

 17 15-214

Subtype Polymorphism

• There may be multiple implementations of an
interface

• Multiple implementations coexist in the same
program

• May not even be distinguishable

• Every object has its own data and behavior

 18 15-214

Creating Objects
interface Point {

 int getX();

 int getY();

}

Point p = new Point() {

 int getX() { return 3; }

 int getY() { return -10; }

}

4

 19 15-214

Creating Objects
interface IntSet {

 boolean contains(int element);

 boolean isSubsetOf(IntSet otherSet);

}

IntSet emptySet = new IntSet() {

 boolean contains(int element) { return false; }

 boolean isSubsetOf(IntSet otherSet) { return
true; }

}

 20 15-214

Creating Objects
interface IntSet {
 boolean contains(int element);
 boolean isSubsetOf(IntSet otherSet);
}
IntSet threeSet = new IntSet() {
 boolean contains(int element) {
 return element == 3;
 }
 boolean isSubsetOf(IntSet otherSet) {
 return otherSet.contains(3);
 }
}

 21 15-214

Classes as Object Templates
interface Point {
 int getX();
 int getY();
}
Class CartesianPoint implements Point {
 int x,y;
 Point(int x, int y) {this.x=x; this.y=y;}
 int getX() { return this.x; }
 int getY() { return this.y; }
}
Point p = new CartesianPoint(3, -10);

 22 15-214

More Classes
interface Point {

 int getX();

 int getY();

}

class SkewedPoint implements Point {

 int x,y;

 SkewedPoint(int x, int y) {this.x=x + 10; this.y=y * 2;}

 int getX() { return this.x - 10; }

 int getY() { return this.y / 2; }

}

Point p = new SkewedPoint(3, -10);

 23 15-214

Polar Points
interface Point {
 int getX();
 int getY();
}
class PolarPoint implements Point {
 double len, angle;
 PolarPoint(double len, double angle)
 {this.len=len; this.angle=angle;}
 int getX() { return this.len * cos(this.angle);}
 int getY() { return this.len * sin(this.angle); }
 double getAngle() {…}
}
Point p = new PolarPoint(5, .245);

 24 15-214

Implementation of interfaces

• Classes can implement one or more
interfaces.

 Semantics

 Must provide code for all methods in the interface(s)

public class PolarPoint implements Point, IPolarPoint {…}

5

 25 15-214

Polar Points
interface Point {
 int getX();
 int getY();
}
class PolarPointImpl implements Point, PolarPoint {
 double len, angle;
 PolarPoint(double len, double angle)
 {this.len=len; this.angle=angle;}
 int getX() { return this.len * cos(this.angle);}
 int getY() { return this.len * sin(this.angle); }
 double getAngle() {…}
 double getLength() {… }
}
PolarPoint p = new PolarPointImpl(5, .245);
Point q = new PolarPointImpl(5, .245);

interface PolarPoint {

 double getAngle() ;

 double getLength();
}

 26 15-214

Middle Points
interface Point {
 int getX();
 int getY();
}
class MiddlePoint implements Point {
 Point a, b;
 MiddlePoint(Point a, Point b) {this.a = a; this.b = b; }
 int getX() { return (this.a.getX() + this.b.getX()) / 2;}
 int getY() { return (this.a.getY() + this.b.getY()) / 2; }
}
Point p = new MiddlePoint(new PolarPoint(5, .245),

 new CartesianPoint(3, 3));

 27 15-214

Example: Points and Rectangles
interface Point {
 int getX();
 int getY();
}
… = new Rectangle() {
 Point origin;
 int width, height;
 Point getOrigin() { return this.origin; }
 int getWidth() { return this.width; }
 void draw() {
 this.drawLine(this.origin.getX(), this.origin.getY(), // first line
 this.origin.getX()+this.width, this.origin.getY());
 … // more lines here
 }
};

 28 15-214

Points and Rectangles: Interface
interface Point {

 int getX();

 int getY();

}

interface Rectangle {

 Point getOrigin();

 int getWidth();

 int getHeight();

 void draw();

}

What are possible
implementations of the
IRectangle interface?

 29 15-214

Java interfaces and classes

• Organize program functionality around kinds of abstract “objects”

– For each object kind, offer a specific set of operations on the objects

– Objects are otherwise opaque: Details of representation are hidden

– “Messages to the receiving object”

• Distinguish interface from class

– Interface: expectations

– Class: delivery on expectations (the implementation)

– Anonymous class: special Java construct to create objects without
explicit classes: Point x = new Point() { /* implementation */ };

• Explicitly represent the taxonomy of object types

– This is the type hierarchy (!= inheritance, more on that later): A
CartesianPoint is a Point

 30 15-214

Discussion Subtype Polymorphism

• A user of an object does not need to know the
object’s implementation, only its interface

• All objects implementing the interface can be
used interchangably

• Allows flexible change (modifications,
extensions, reuse) later without changing the
client implementation, even in unanticipated
contexts

30

6

 31 15-214

Today: How Objects Respond to
Messages

s:Simulation

grid:Agent[]

simulate()

*simplification: we consider a 1-dimensional grid in this diagram

a0:LodgepolePine

age:int

timeStep(Simulation)
…

a1:InfectedPine

intensity:int

timeStep(Simulation)
…

1. assign a0 to grid[0]
2. assign a1 to grid[1]
3. invoke grid[0].timeStep()
4. invoke grid[1].timeStep() Object a0 is a

LodgepolePine
Dispatch to code in the
LodgepolePine class

Object a1 is a
LodgepolePine
Dispatch to code in the
LodgepolePine class

 32 15-214

Check your Understanding

• What happens?

 interface Animal {
 void makeSound();
 }
 class Dog implements Animal {
 public void makeSound() { System.out.println("bark!"); }
 }
 class Cow implements Animal {
 public void makeSound() { mew(); }
 public void mew() {System.out.println("Mew!"); }
 }
0 Animal x = new Animal() {
 public void makeSound() { System.out.println("chirp!"); }}
 x.makeSound():
1 Animal a = new Animal();
2 a.makeSound();
3 Dog d = new Dog();
4 d.makeSound();
5 Animal b = new Cow();
6 b.makeSound();
7 b.mew();

 33 15-214

STRATEGY DESIGN PATTERN
(EXPLOITING POLYMORPHISM FOR
FLEXIBILITY)

33

See textbook 26.7

 34 15-214

Behavioral: Strategy

 35 15-214

Tradeoffs

void sort(int[] list, String order) {

 …

 boolean mustswap;

 if (order.equals("up")) {

 mustswap = list[i] < list[j];

 } else if (order.equals("down")) {

 mustswap = list[i] > list[j];

 }

 …

}

void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) { return i>j; }}

 36 15-214

Behavioral: Strategy

• Applicability
– Many classes differ in

only their behavior
– Client needs different variants of

an algorithm

• Consequences
– Code is more extensible with new

strategies
• compare to conditionals

– Separates algorithm from context
• each can vary independently
• design for change and reuse; reduce

coupling

– Adds objects and dynamism
• code harder to understand

– Common strategy interface
• may not be needed for all Strategy

implementations – may be extra
overhead

• Design for change
– Find what varies and encapsulate it
– Allows changing/adding alternative

variations later
– Class Context closed for

modification, but open for
extension

• Equivalent in functional progr.
languages: Higher-order functions

7

 37 15-214

Design Patterns

• "Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing
it the same way twice”
– Christopher Alexander

• Every Strategy interface has its own domain-
specific interface
– But they share a common problem and solution

 38 15-214

Examples

• Change the sorting criteria in a list

• Change the aggregation method for
computations over a list (e.g., fold)

• Compute the tax on a sale

• Compute a discount on a sale

• Change the layout of a form

38
 39 15-214

Benefits of Patterns

• Shared language of design
– Increases communication bandwidth

– Decreases misunderstandings

• Learn from experience
– Becoming a good designer is hard

• Understanding good designs is a first step

– Tested solutions to common problems
• Where is the solution applicable?

• What are the tradeoffs?

 40 15-214

Illustration [Shalloway and Trott]

• Carpenter 1: How do you think we should build these
drawers?

• Carpenter 2: Well, I think we should make the joint by
cutting straight down into the wood, and then cut back
up 45 degrees, and then going straight back down, and
then back up the other way 45 degrees, and then going
straight down, and repeating…

• SE example: “I wrote this if statement to handle …
followed by a while loop … with a break statement so
that…”

 41 15-214

A Better Way

• Carpenter 1: Should we use a
dovetail joint or a miter joint?

• Subtext:
– miter joint: cheap, invisible, breaks easily
– dovetail joint: expensive, beautiful, durable

• Shared terminology and knowledge of consequences
raises level of abstraction
– CS: Should we use a Strategy?
– Subtext

• Is there a varying part in a stable context?
• Might there be advantages in limiting the number of possible

implementations?

 42 15-214

Elements of a Pattern

• Name
– Important because it becomes part of a design vocabulary
– Raises level of communication

• Problem
– When the pattern is applicable

• Solution
– Design elements and their relationships
– Abstract: must be specialized

• Consequences
– Tradeoffs of applying the pattern

• Each pattern has costs as well as benefits
• Issues include flexibility, extensibility, etc.
• There may be variations in the pattern with different consequences

8

 43 15-214

History: Design Patterns Book
• Brought Design Patterns

into the mainstream
• Authors known as the

Gang of Four (GoF)
• Focuses on descriptions of

communicating objects
and classes that are
customized to solve a
general design problem in
a particular context

• Great as a reference text
• Uses C++, Smalltalk

 44 15-214

Design Exercise (on paper)

• You are designing software for a shipping company.
• There are several different kinds of items that can be shipped: letters,

books, packages, fragile items, etc.
• Two important considerations are the weight of an item and its insurance

cost.
– Fragile items cost more to insure.
– All letters are assumed to weigh an ounce
– We must keep track of the weight of other packages.

• The company sells boxes and customers can put several items into them.
– The software needs to track the contents of a box (e.g. to add up its weight, or

compute the total insurance value).
– However, most of the software should treat a box holding several items just

like a single item.

• Think about how to represent packages; what are possible interfaces,
classes, and methods? (letter, book, box only)

 45 15-214

The Composite Design Pattern

45

Context

+operation()

Leaf

+operation()
+add(in c : Component)
+remove(in c : Component)

Composite

+operation()

«interface»
Component

-parent

1

-children

*

operation() {
 for (c in children)
 c.operation();
}

 46 15-214

The Composite Design Pattern

• Applicability
– You want to represent part-whole

hierarchies of objects

– You want to be able to ignore the
difference between compositions of
objects and individual objects

• Consequences
– Makes the client simple, since it can

treat objects and composites
uniformly

– Makes it easy to add new kinds of
components

– Can make the design overly general

• Operations may not make sense
on every class

• Composites may contain only
certain components

Context

+operation()

Leaf

+operation()
+add(in c : Component)
+remove(in c : Component)

Composite

+operation()

«interface»
Component

-parent

1

-children

*

operation() {
 for (c in children)
 c.operation();
}

 47 15-214

We have seen this before

interface Point {
 int getX();
 int getY();
}
class MiddlePoint implements Point {
 Point a, b;
 MiddlePoint(Point a, Point b) {this.a = a; this.b = b; }
 int getX() { return (this.a.getX() + this.b.getX()) / 2;}
 int getY() { return (this.a.getY() + this.b.getY()) / 2; }
}

 48 15-214

ENCAPSULATION
(LANGUAGE FEATURE TO CONTROL
VISIBILITY)

9

 49 15-214

Controlling Access – Best practices

• Define an interface
• Client may only use

the messages in
the interface

• Fields not
accessible from
client code

• Methods only
accessible if
exposed in
interface

Interface Type

interface Point {
 int getX();
 int getY();
}
class CartesianPoint implements Point {
 int x,y;
 Point(int x, int y) {this.x=x; this.y=y;}
 int getX() { return this.x; }
 int getY() { return this.y; }
 String getText() { return this.x + “ x “ + this.y; }
}
Point p = new CartesianPoint(3, -10);
p.getX();
p.getText(); // not accessible
p.x; // not accessible

 50 15-214

Java: Classes as Types

• Classes usable as type
– (Public) methods in classes usable like methods in

interfaces
– (Public) fields directly accessible from other classes
– Language constructs (public, private, protected) to control

access

• Prefer programming to interfaces (variables should
have interface type, not class type)
– Esp. whenever there are multiple implementations of a

concept
– Allows to provide different implementations later
– Prevents dependence on implementation details

int add(CartesianPoint p) { … // preferably no
int add(Point p) { … // yes!

 51 15-214

Interfaces vs Classes as Types

Point p = new CartesianPoint(3,5);

CartesianPoint pp= new CartesianPoint(2, 4);

Point

CartesianPoint

PolarPointImpl

Clonable
Type

Class

Interface Interface

Class Class

 52 15-214

Interfaces and Classes (Review)
class PolarPoint implements Point {

 double len, angle;

 PolarPoint(double len, double angle)

 {this.len=len; this.angle=angle;}

 int getX() { return this.len * cos(this.angle);}

 int getY() { return this.len * sin(this.angle); }

 double getAngle() { return angle; }

}

Point p = new PolarPoint(5, .245);

p.getX();

p.getAngle(); // not accessible

p.len // not accessible

PolarPoint pp = …

pp.getX();

pp.getAngle();

pp.len
 53 15-214

Java: Visibility Modifiers
class Point {
 private int x, y;
 public int getX() { return this.x; } // a method; getY() is similar
 public Point(int px, int py) { this.x = px; this.y = py; }// constructor creating the object
}
class Rectangle {
 private Point origin;
 private int width, height;
 public Point getOrigin() { return origin; }
 public int getWidth() { return width; }
 public void draw() {
 drawLine(this.origin.getX(), this.origin.getY(), // first line
 this.origin.getX()+this.width, origin.getY());
 … // more lines here
 }
 public Rectangle(Point o, int w, int h) {
 this.origin = o; this.width = w; this.height = h;
 }
}

 54 15-214

Hiding interior state
class Point {
 private int x, y;
 public int getX() { return x; } // a method; getY() is similar
 public Point(int px, int py) { x = px; y = py; } // constructor for creating the object
}
class Rectangle {
 private Point origin;
 private int width, height;
 public Point getOrigin() { return origin; }
 public int getWidth() { return width; }
 public void draw() {
 drawLine(origin.getX(), origin.getY(), // first line
 origin.getX()+width, origin.getY());
 … // more lines here
 }
 public Rectangle(Point o, int w, int h) {
 origin = o; width = w; height = h;
 }
}

Some Client Code

Point o = new Point(0, 10); // allocates memory, calls ctor
Rectangle r = new Rectangle(o, 5, 10);
r.draw();

int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

Client Code that will not work in this version

Point o = new Point(0, 10); // allocates memory, calls ctor
Rectangle r = new Rectangle(o, 5, 10);
r.draw();

int rightEnd = r.origin.x + r.width; // trying to “look inside”

10

 55 15-214

Hiding interior state
class Point {
 private int x, y;
 public int getX() { return x; } // a method; getY() is similar
 public Point(int px, int py) { x = px; y = py; } // constructor for creating the object
}
class Rectangle {
 private Point origin;
 private int width, height;
 public Point getOrigin() { return origin; }
 public int getWidth() { return width; }
 public void draw() {
 drawLine(origin.getX(), origin.getY(), // first line
 origin.getX()+width, origin.getY());
 … // more lines here
 }
 public Rectangle(Point o, int w, int h) {
 origin = o; width = w; height = h;
 }
}

Discussion:
• What are the benefits of private fields?
• Methods can also be private – why is this

useful?

 56 15-214

Discussion

• Types vs Classes and Interfaces

• Subtypes

56
 57 15-214

DESIGN PRINCIPLE:
INFORMATION HIDING

57

 58 15-214

Fundamental Design Principle for
Change: Information Hiding

• Expose as little implementation detail as
necessary

• Allows to change hidden details later

58

Service*
implementation

Service* interface

Client
environment

 Hidden from
service* provider

 Hidden from
service* client

* service = object,
subsystem, …

 59 15-214

Information Hiding

• Interfaces (contracts) remain stable

• Hidden implementation can be changed easily

• => Identify what is likely to change, and hide it

• => Requires anticipation of change (judgment)

• Points example: Minimal stable interface, allows
alternative implementations and flexible composition

• (Not all change can be anticipated, causing
maintenance work or reducing flexibility)

59
 60 15-214

Information Hiding promotes Reuse

• Think in terms of abstractions not
implementations
– e.g., Point vs CartesianPoint

• Abstractions can often be reused
• Different implementations of the same interface

possible,
– e.g., reuse Rectangle but provide different Point

implementation

• Decoupling implementations
• Hiding internals of implementations

More on reuse next week

11

 61 15-214

INFORMATION HIDING CASE STUDY

61
 62 15-214

62
 63 15-214

CONTRACTS
(BEYOND TYPE SIGNATURES)

63

 64 15-214

Contracts and Clients

Service*
implementation

Service* interface

Client
environment

 Hidden from
service* provider

 Hidden from
service* client

* service = object,
subsystem, …

 65 15-214

Contracts

• Agreement between provider and users of an
object

• Includes

– Interface specification

– Functionality and correctness expectations

– Performance expectations

• “Focus on concepts rather than operations”

65
 66 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> ArrayOutOfBoundsException

12

 67 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> -1

 68 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> 0

 69 15-214

Who’s to blame?

class Algorithms {

 /**

 * This method finds the

 * shortest distance between to

 * verticies. It returns -1 if

 * the two nodes are not

 * connected. */

 int shortestDistance(…) {…}

}

 70 15-214

Who’s to blame?

Math.sqrt(-5);

> 0

 71 15-214

Who’s to blame?

/**
 * Returns the correctly rounded positive square root of a
 * {@code double} value.
 * Special cases:
 * If the argument is NaN or less than zero, then the
 * result is NaN.
 * If the argument is positive infinity, then the result
 * is positive infinity.
 * If the argument is positive zero or negative zero, then
 * the result is the same as the argument.
 * Otherwise, the result is the {@code double} value closest to
 * the true mathematical square root of the argument value.
 *
 * @param a a value.
 * @return the positive square root of {@code a}.
 * If the argument is NaN or less than zero, the result is NaN.
 */

public static double sqrt(double a) { …}

 72 15-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

13

 73 15-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

 74 15-214

Textual Specification
public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

 Multiple error cases, each with a
precondition

 Includes “runtime exceptions” not in
throws clause

 Specification of return
 Timing behavior (blocks)
 Case-by-case spec

 len=0  return 0
 len>0 && eof  return -1
 len>0 && !eof return >0

 Exactly where the data is stored
 What parts of the array are not affected

 75 15-214

Specifications

• Contains
– Functional behavior
– Erroneous behavior
– Quality attributes (performance, scalability, security, …)

• Desirable attributes
– Complete

• Does not leave out any desired behavior

– Minimal
• Does not require anything that the user does not care about

– Unambiguous
• Fully specifies what the system should do in every case the user cares about

– Consistent
• Does not have internal contradictions

– Testable
• Feasible to objectively evaluate

– Correct
• Represents what the end-user(s) need

 76 15-214

Function Specifications

• A function’s contract is a statement of the responsibilities of that
function, and the responsibilities of the code that calls it.
– Analogy: legal contracts - If you pay me $30,000, I will build a new

room on your house
– Helps to pinpoint responsibility

• Contract structure
– Precondition: the condition the function relies on for correct operation
– Postcondition: the condition the function establishes after correctly

running

• (Functional) correctness with respect to the specification
– If the client of a function fulfills the function’s precondition, the

function will execute to completion and when it terminates, the
postcondition will be fulfilled

• What does the implementation have to fulfill if the client violates
the precondition?

76
 77 15-214

Formal Specifications

 /*@ requires len >= 0 && array != null && array.length == len;
 @
 @ ensures \result ==
 @ (\sum int j; 0 <= j && j < len; array[j]);
 @*/
int total(int array[], int len);

 78 15-214

/*@ requires len >= 0 && array.length == len

 @ ensures \result ==

 @ (\sum int j; 0 <= j && j < len; array[j])

 @*/

float sum(int array[], int len) {

 assert len >= 0;

 assert array.length == len;

 float sum = 0.0;

 int i = 0;

 while (i < len) {

 sum = sum + array[i]; i = i + 1;

 }

 assert sum …;

 return sum;

}

Runtime Checking of Specifications with Assertions

java -ea Main

14

 79 15-214

/*@ requires len >= 0 && array.length == len

 @ ensures \result ==

 @ (\sum int j; 0 <= j && j < len; array[j])

 @*/

float sum(int array[], int len) {

 if (len < 0 || array.length != len)

 throw IllegalArgumentException(…);

 float sum = 0.0;

 int i = 0;

 while (i < len) {

 sum = sum + array[i]; i = i + 1;

 }

 return sum;

 assert …;

}

Runtime Checking with Exceptions

Check arguments
even when
assertions are
disabled.
Good for robust
libraries!

 80 15-214

Contacts and Interfaces

• All objects implementing an interface must
adhere to the interface’s contracts
– Objects may provide different implementations

for the same specification

– Subtype polymorphism: Client only cares about
interface, not about the implementation

 p.getX() s.read()

=> Design for Change

80
 81 15-214

Specifications in Practice

• Describe expectations beyond the type signature

• Ideally formal pre- and post-conditions

• Textual specifications in practice
– Best effort approach

• If any specification at all

• Specification especially necessary when reusing code
and integrating code

• Writing specifications is good practice

• Writing fully formal specifications is often unrealistic

 82 15-214

ASIDE:
SPECIFICATION OF CLASS INVARIANTS

82
 83 15-214

Data Structure Invariants (cf. 122)

struct list {

 elem data;

 struct list* next;

};

struct queue {

 list front;

 list back;

};

bool is_queue(queue Q) {

 if (Q == NULL) return false;

 if (Q->front == NULL || Q->back == NULL) return false;

 return is_segment(Q->front, Q->back);

}

 84 15-214

Data Structure Invariants (cf. 122)

• Properties of the Data Structure

• Should always hold before and after method
execution

• May be invalidated temporarily during
method execution

void enq(queue Q, elem s)
//@requires is_queue(Q);
//@ensures is_queue(Q);
{ … }

15

 85 15-214

Class Invariants

• Properties about the fields of an object

• Established by the constructor

• Should always hold before and after execution
of public methods

• May be invalidated temporarily during
method execution

 86 15-214

Class Invariants

• Properties about the fields of an object

• Established by the constructor

• Should always hold before and after execution
of public methods

• May be invalidated temporarily during
method execution

public class SimpleSet {

 int contents[];
 int size;

 //@ ensures sorted(contents);
 SimpleSet(int capacity) { … }

 //@ requires sorted(contents);
 //@ ensures sorted(contents);
 boolean add(int i) { … }

 //@ requires sorted(contents);
 //@ ensures sorted(contents);
 boolean contains(int i) { … }
}

public class SimpleSet {

 int contents[];
 int size;

 //@invariant sorted(contents);

 SimpleSet(int capacity) { … }

 boolean add(int i) { … }

 boolean contains(int i) { … }
}

 87 15-214

Java: Constructors

• Special “Methods” to create objects

– Same name as class, no return type

• May initialize object during creation

• Implicit constructor without parameters if
none provided

class BPoint {

 int x,y;

 BPoint(int x, int y)

 {this.x=x; this.y=y;}

}

BPoint p = new BPoint(3, -10);

class APoint {

 int x,y;

}

APoint p = new APoint();

p.x=3;

p.y=-10;

 88 15-214

DESIGN PRINCIPLE:
EXPLICIT INTERFACES

88
 89 15-214

Explicit Interfaces

• Whenever two modules A and B
communicate, it must be obvious from the
text of A or B or both

• Avoid communication through shared state

89

Global
Variable

/ File

A B

writes reads

 90 15-214

Explicit Interfaces

• Behavior involving global state is hard to
specify – redesign when writing lengthy
specification involving the state of other
objects / system state

90

Global
Variable

/ File

A B

writes reads

16

 91 15-214

FUNCTIONAL CORRECTNESS
(UNIT TESTING AGAINST INTERFACES)

91
 92 15-214

Correctness?

 93 15-214

Functional Correctness

• The compiler ensures that the types are correct
(type checking)
– Prevents “Method Not Found” and “Cannot add

Boolean to Int” errors at runtime

• Static analysis tools (e.g., FindBugs) recognize
certain common problems
– Warns on possible NullPointerExceptions or forgetting

to close files

• How to ensure functional correctness of contracts
beyond type correctness and bug patterns?

93

 94 15-214

C
h

e
c
k
S

ty
le

 95 15-214

Excursion: Formal Verification

• Proving the correctness of an implementation
with respect to a formal specification, using
formal methods of mathematics.

• Formally prove that all possible executions of
an implementation fulfill the specification

• Manual effort; partial automation; not
automatically decidable

 96 15-214

Recap: Hoare-Style Verification

• Formal reasoning about program correctness using
pre- and postconditions

• Syntax: {P} S {Q}
– P and Q are predicates
– P is the precondition
– S is a program
– Q is the postcondition

• Semantics

– If we start in a state where P is true and execute S, then S
will terminate in a state where Q is true

17

 97 15-214

Recap: Hoare-Logic Rules

• Assignments
{ P[E/x] } x:= E { P }

• Composition
{ P } S { Q } { Q } T { R }

 { P } S; T { R }

• If statement
{ B & P } S { Q } { !B & P } T { Q }
--
 { P } if (B) S else T { Q }

• While loop with loop invariant P
 { P & B } S { P }

 { P } while (B) S { !B & P }

• Consequence
P -> P' { P } S { Q } Q -> Q'
--
 { P' } S { Q' }

 98 15-214

Recap: 122 midterm

int find_peak_bin(int[] A, int n)

 //@requires 0 < n && n <= \length(A);

 //@requires is_peaked(A, 0, n);

 //@ensures 0 <= \result && \result < n;

 //@ensures gt_seg(A[\result], A, 0, \result);

 //@ensures gt_seg(A[\result], A, \result+1, n);

{

 int lower = 0;

 int upper = n-1;

 while (lower < upper)

 //@loop_invariant ____________________________ ;

 //@loop_invariant ____________________________ ;

 {

 int mid = lower + (upper-lower)/2;

 //@assert ________________ ; /* optional */

 if (A[mid] < A[mid+1])

 lower = mid+1;

 else //@assert ______ ; /* optional */

 upper = mid;

 }

 //@assert _______________________ ; /* optional */

 return lower;

}

 99 15-214

Hoare Triples – Examples

• { true } x := 5 { }

• { } x := x + 3 { x = y + 3 }

• { } x := x * 2 + 3 { x > 1 }

• { x=a } if (x < 0) then x := -x { }

• { false } x := 3 { }

• { x < 0 } while (x!=0) x := x-1 { }

 100 15-214

Hoare Triples – Examples

• { true } x := 5 { x=5 }

• { x = y } x := x + 3 { x = y + 3 }

• { x > -1 } x := x * 2 + 3 { x > 1 }

• { x=a } if (x < 0) then x := -x { x=|a| }

• { false } x := 3 { x = 8 }

• { x < 0 } while (x!=0) x := x-1 { }

– no such triple!

 101 15-214

Testing

• Executing the program with selected inputs in a controlled
environment

• Goals:
– Reveal bugs (main goal)

– Assess quality (hard to quantify)

– Clarify the specification, documentation

– Verify contracts

"Testing shows the presence,
 not the absence of bugs

 Edsger W. Dijkstra 1969

 102 15-214

What to test?

• Functional correctness of a method (e.g.,
computations, contracts)

• Functional correctness of a class (e.g., class invariants)
• Behavior of a class in a subsystem/multiple

subsystems/the entire system
• Behavior when interacting with the world

– Interacting with files, networks, sensors, …
– Erroneous states
– Nondeterminism, Parallelism
– Interaction with users

• Other qualities (performance, robustness, usability,
security, …)

O
u

r
fo

cu
s

n
o

w

18

 103 15-214

Manual Testing?

• Live System?
• Extra Testing System?
• Check output / assertations?
• Effort, Costs?
• Reproducable?

 104 15-214

Automate Testing

• Execute a program with specific inputs,
check output for expected values

• Easier to test small pieces than testing user
interactions

• Set up testing infrastructure

• Execute tests regularly

 105 15-214

Example

/**
 * computes the sum of the first len values of the array
 *
 * @param array array of integers of at least length len
 * @param len number of elements to sum up
 * @return sum of the array values
 */
int total(int array[], int len);

 106 15-214

Example

• Test empty array
• Test array of length 1 and 2
• Test negative numbers
• Test invalid length (negative or longer than

array.length)
• Test null as array
• Test with a very long array

/**
 * computes the sum of the first len values of the array
 *
 * @param array array of integers of at least length len
 * @param len number of elements to sum up
 * @return sum of the array values
 */
int total(int array[], int len);

 107 15-214

JUnit

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {

 @Test

 public void testSanityTest(){

 Graph g1 = new AdjacencyListGraph(10);

 Vertex s1 = new Vertex("A");

 Vertex s2 = new Vertex("B");

 assertEquals(true, g1.addVertex(s1));

 assertEquals(true, g1.addVertex(s2));

 assertEquals(true, g1.addEdge(s1, s2));

 assertEquals(s2, g1.getNeighbors(s1)[0]);

 }

 @Test

 public void test….

 private int helperMethod…

}

Set up
tests

Check
expected
results

 108 15-214

JUnit

• Popular unit-testing framework for Java

• Easy to use

• Tool support available

• Can be used as design mechanism

19

 109 15-214

Selecting Test Cases: Common
Strategies
• Read specification

• Write tests for representative case
– Small instances are usually sufficient

• Write tests for invalid cases
• Write tests to check boundary conditions
• Are there difficult cases? (error guessing)

– Stress tests? Complex algorithms?

• Think like a user, not like a programmer
– The tester’s goal is to find bugs!

• Specification covered?
• Feel confident? Time/money left?

 110 15-214

Unit Tests

• Unit tests for small units: functions, classes, subsystems
– Smallest testable part of a system
– Test parts before assembling them
– Intended to catch local bugs

• Typically written by developers
• Many small, fast-running, independent tests
• Little dependencies on other system parts or environment
• Insufficient but a good starting point,

extra benefits:
– Documentation (executable specification)
– Design mechanism (design for testability)

 111 15-214

assert, Assert

• assert is a native Java statement throwing an AssertionError exception
when failing
– assert expression: "Error Message";

• org.junit.Assert is a library that provides many more specific methods
– static void assertTrue(java.lang.String message, boolean condition)

// Asserts that a condition is true.

– static void assertEquals(java.lang.String message, long expected, long actual);
// Asserts that two longs are equal.

– static void assertEquals(double expected, double actual, double delta);
// Asserts that two doubles are equal to within a positive delta

– static void assertNotNull(java.lang.Object object)
// Asserts that an object isn't null.

– static void fail(java.lang.String message)
//Fails a test with the given message.

 112 15-214

JUnit Conventions

• TestCase collects multiple tests (in one class)

• TestSuite collects test cases (typically package)

• Tests should run fast

• Tests should be independent

• Tests are methods without parameter and return value

• AssertError signals failed test (unchecked exception)

• Test Runner knows how to run JUnit tests
– (uses reflection to find all methods with @Test annotat.)

 113 15-214

Common Setup

import org.junit.*;

import org.junit.Before;

import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {

 Graph g;

 @Before

 public void setUp() throws Exception {

 graph = createTestGraph();

 }

 @Test

 public void testSanityTest(){

 Vertex s1 = new Vertex("A");

 Vertex s2 = new Vertex("B");

 assertEquals(3, g.getDistance(s1, s2));

 }

 114 15-214

Checking for presence of an exception

 import org.junit.*;
import static org.junit.Assert.fail;

public class Tests {

 @Test

 public void testSanityTest(){

 try {

 openNonexistingFile();

 fail("Expected exception");

 } catch(IOException e) { }

 }

 @Test(expected = IOException.class)

 public void testSanityTestAlternative() {

 openNonexistingFile();

 }

}

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

20

 115 15-214

Test organization

• Conventions (not requirements)

• Have a test class XTest for each
class X

• Have a source directory and a test
directory
– Store ATest and A in the same

package

– Tests can access members with
default (package) visibility

– Maven style: src/main/java and
src/test/java

 116 15-214

Testable Code

• Think about testing when writing code
• Unit testing encourages to write testable code
• Separate parts of the code to make them

independently testable
• Abstract functionality behind interface, make it

replaceable

• Test-Driven Development
– A design and development method in which you write

tests before you write the code!

 117 15-214

Run tests frequently

• You should only commit code that is passing all tests

• Run tests before every commit

• Run tests before trying to understand other
developers' code

• If entire test suite becomes too large and slow for rapid
feedback, run local tests ("smoke tests", e.g. all tests in
package) frequently, run all tests nightly
– Medium sized projects easily have 1000s of test cases and

run for minutes

• Continuous integration servers help to scale testing

 118 15-214

Continuous Integration

 119 15-214

Travis CI

 120 15-214

Automating Test Execution

21

 121 15-214

Build and Test Automation

• Compile and execute from the command line
• Dependencies to all required libraries included

(or downloaded on demand)
• Build tools

– make
– ant
– gradle
– maven
– sbt
– …

 122 15-214

Write testable code
//700LOC
public boolean foo() {
 try {

 synchronized () {
 if () {
 } else {

 }
 for () {
 if () {

 if () {
 if () {
 if ()?

 {
 if () {
 for () {

 }
 }
 }

 } else {
 if () {
 for () {

 if () {
 } else {
 }

 if () {
 } else {
 if () {

 }
 }
 if () {

 if () {
 if () {
 for () {

 }
 }
 }

 } else {
 }
 }

 } else {
 }
 }

 }
 }
 }

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

Unit testing
as design
mechanism

 * Code with low
 complexity

 * Clear interfaces
 and specifications

 123 15-214

Ant example

<project name="MyProject" default="dist" basedir=".">
 <property name="src" location="src"/>
 <property name="build" location="build"/>
 <property name="dist" location="dist"/>

 <target name="init"><tstamp/><mkdir dir="${build}"/> </target>

 <target name="compile" depends="init"
 description="compile the source " >
 <javac srcdir="${src}" destdir="${build}"/>
 </target>

 <target name="clean"
 description="clean up" >
 <!-- Delete the ${build} and ${dist} directory trees -->
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

 124 15-214

Outlook: Statement Coverage

• Trying to test all parts of the implementation
• Execute every statement in at least one test

• Does this guarantee correctness?

 125 15-214
125

 126 15-214
126

22

 127 15-214

127
 128 15-214

Testing and Proofs

• Testing

– Observable properties

– Verify program for one execution

– Manual development with
automated regression

– Most practical approach now

– Does not find all problems
(unsound)

• Proofs (Formal Verification)

– Any program property

– Verify program for all executions

– Manual development with
automated proof checkers

– Practical for small programs, may
scale up in the future

– Sound and complete, but not
automatically decidable

 So why study proofs if they aren’t (yet) practical?
 Proofs tell us how to think about program correctness
 Important for development, inspection, dynamic assertions
 Foundation for static analysis tools
 These are just simple, automated theorem provers
 Many are practical today!

 129 15-214

Testing, Static Analysis, and Proofs

• Testing
– Observable properties
– Verify program for one execution
– Manual development with

automated regression
– Most practical approach now
– Does not find all problems

(unsound)

• Static Analysis
– Analysis of all possible executions
– Specific issues only with

conservative approx. and bug
patterns

– Tools available, useful for bug
finding

– Automated, but unsound and/or
incomplete

• Proofs (Formal Verification)
– Any program property
– Verify program for all executions
– Manual development with

automated proof checkers
– Practical for small programs, may

scale up in the future
– Sound and complete, but not

automatically decidable

What strategy to
use in your project?

 130 15-214

JAVA: STATIC AND INSTANCEOF
(BREAKING SUBTYPE POLYMORPHISM
AND ENCAPUSLATION)

130
 131 15-214

Java: Static Methods

• Static methods belong to a class, not an object

• They are global (a single implementation only)

• Direct dispatch, no subtype polymorphism

• Avoid unless really only a single
implementation exists (e.g., Math.min)

• Pure object-oriented
languages don’t support
static methods

131

Point p = …
p.getX()

Point.move(p);

 132 15-214

Java: Breaking encapsulation:
instanceof and typecast
• Java allows to inspect an object's runtime type

• Objects always assignable to variables of supertypes ("upcast")
 (this effectively throws away
 parts of the interface)

• Assignment to subtype requires downcast (may fail at runtime!)

Point p = …
if (p instanceof PolarPoint) {
 PolarPoint q = (PolarPoint) p;
 q.getAngle()
}

CartesianPoint q = …
Point p = q;

Point p = …
CartesianPoint q = (CartesianPoint) p;

23

 133 15-214

Instanceof breaks encapsulation

• Never ask for the type of an object
• Instead, ask the object to do something (call a method of the

interface)
• If the interface does not provide the method, maybe there was a

reason? Rethink design!

• Instanceof and downcasts are indicators of poor design
• They break abstractions and encapsulation
• There are only few exceptions where instanceof is needed
• Use polymorphism instead

• Pure object-oriented languages do not have an instanceof

operation

 134 15-214

Excursion: Objects vs ADTs

interface Point {
 int getX();
 int getY();
}
class CartesianPoint
 implements Point { … }
class PolarPoint
 implements Point { … }

Point p = …
p.getX()

class CartesianPoint { … }
class PolarPoint { … }

int getX(Object p) {
 if (p instanceof CartesianPoint)
 return ((CartesianP.)p).x;
 if (p instanceof PolarPoint)
 return ((PolarPoint)p).r*…;
 …
}
datatype point
 = CartesianP of int * int
 | PolarPoint of real * real

fun getX point =
 case shape
 of CartesianP (x, _) => x
 | PolarPoint (r, a) => r*… 135 15-214

Excursion: Objects vs ADTs

• OOP solution with polymorphism
– Easy to extend with new

implementations of interface
– Functions fixed; adding a function

to the interface requires changes in
all implementations

interface Point {
 int getX();
 int getY();
}
class CartesianPoint
 implements Point { … }
class PolarPoint
 implements Point { … }
Point p = …
p.getX()

class CartesianPoint { … }
class PolarPoint { … }

int getX(Object p) {
 if (p instanceof CartesianPoint)
 return ((CartesianP.)p).x;
 if (p instanceof PolarPoint)
 return ((PolarPoint)p).r*…;
 …
}

• ADT solution with case analysis/
pattern matching
 ADTs fixed; cannot add new class

without changing all functions
 Easy to add new functions
 No language/compiler support in Java

 136 15-214

EXCURSION: TECHNICAL REALIZATION
OF SUBTYPE POLYMORPHISM

 137 15-214

Reminder: Subtype Polymorphism

• A type (e.g. Point) can have many forms (e.g.,
CartesianPoint, PolarPoint, …)

• All implementations of an interface can be used
interchangeably

• When invoking a method p.x() the specific
implementation of x() from object p is executed
– The executed method depends on the actual object p, i.e.,

on the runtime type
– It does not depend on the static type, i.e., how p is

declared

 138 15-214

Objects and References (example)
// allocates memory, calls constructor

Point o = new PolarPoint(0, 10);

Rectangle r = new MyRectangle(o, 5, 10);

r.draw();

int rightEnd = r.getOrigin().getX() +
r.getWidth(); // 5

24

 139 15-214

What’s really going on?

Point o = new Point(0, 10); // allocates memory, calls ctor
Rectangle r = new Rectangle(o, 5, 10);
r.draw();
int rightEnd = r.getOrigin().getX() + r.getWidth(); // 5

main()
 o
 r
 rightEnd=5

Method Stack

r : Rectangle
origin
width = 5
height = 10
getOrigin()
getWidth()
draw()

o : Point
x = 0
y = 10
getX()

 140 15-214

Anatomy of a Method Call

r.setX(5)

The receiver,

an implicit argument,

called this inside the

method

The method name.

Identifies which method to use,

of all the methods the receiver’s

class defines

Method arguments,

just like function

arguments

 141 15-214

Java Specifics: The keyword this refers
to the “receiver”
class Point {

 int x, y;

 int getX() { return this.x; }

 Point(int x, int y) { this.x = x; this.y = y; }

}

 can also be written in this way:

class Point {

 int x, y;

 int getX() { return x; }

 Point(int px, int py) { x = px; y = py; }

}

 142 15-214

Static types vs dynamic types

• Static type: how is a variable declared

• Dynamic type: what type has the object in
memory when executing the program (we
may not know until we execute the program)

Point createZeroPoint() {

 if (new Math.Random().nextBoolean())

 return new CartesianPoint(0, 0);

 else return new PolarPoint(0,0);

}

Point p = createZeroPoint();

p.getX();

p.getAngle();
 143 15-214

Method dispatch (conceptually)

• Step 1 (compile time): determine what type to look in
– Look at the static type (Point) of the receiver (p)

• Step 2 (compile time): find the method in that type
– Find the method in the interface/class with the right name

int getX();

– Error if there is no such method

– Error if the method is not accessible (e.g., private)

• Step 3 (run time): Execute the method stored in the
object

p : PolarPoint
len = 4
angle = .34
getX()

q : PolarPoint
len = 5
angle = .34
getX()

 144 15-214

Method dispatch (actual; simplified)

• Step 3 (run time): Determine the run-time
type of the receiver

– Look at the object in the heap and get its class

• Step 4 (run time): Locate the method
implementation to invoke

– Look in the class for an implementation of the
method

– Invoke that implementation Metho
d area

heap Java
stacks

pc
registe

rs

Native
metho

d
stacks

Runtime data area

Class
loader

.class
file

Execution
engine

25

 145 15-214

Method
area

heap Java
stacks

pc
registe
rs

Native
method
stacks

Runtime data area

Class
loader

.class
file

Execution
engine

The Java Virtual Machine
(sketch)

 146 15-214

Method
area

heap Java
stacks

pc
registers

Native
method
stacks

Runtime data area

Class
loader

.class
file

Execution
engine

The Java Virtual Machine
(sketch)

PolarPoint
getX() { … }

p
len = 4
angle = .34

q
len = 5
angle = .34

 147 15-214

SUMMARY: DESIGN FOR CHANGE/
DIVISION OF LABOR

147

 148 15-214

Design Goals

• Design for Change such that
– Classes are open for extension and modification without

invasive changes

– Subtype polymorphism enables changes behind interface

– Classes encapsulate details likely to change behind (small)
stable interfaces

• Design for Division of Labor such that
– Internal parts can be developed independently

– Internal details of other classes do not need to be
understood, contract is sufficient

– Test classes and their contracts separately (unit testing)

 148

 149 15-214

Aside: UML class diagram notation

«interface» Dog

getName() : String
getBreed() : String
bark() : String
setName(name : String)
toString() : String

GermanShephard

- name : String
- breed : String

+ getName() : String
+ getBreed() : String
+ setName(name : String)
setBreed(breed : String)
+ toString() : String
+ bark() : String

«interface»
brand

Name of class or
interface in top
compartment

Return type
comes after

method or field

Methods in
bottom

compartment Dashed line, open
triangle arrowhead

for implements

Optional visibility:
+ for public
- for private
for protected
~ for package (not used
much)

Fields in middle
compartment

 150 15-214

Outlook

• Specifying contracts, formally and informally

• Testing

• Technical realization of dynamic dispatch

• Reading assignment:

– Chapters 14 and 16, in-class quiz on Tuesday

– Homework 1, due Tuesday 11:59pm

150

