
1

 1 15-214

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Introduction, Overview, and
Syllabus

Christian Kästner Charlie Garrod

 2 15-214

Growth of code—and complexity—
over time

(informal reports)

 3 15-214

15-313 Software Engineering 3

 4 15-214
15-313 Software Engineering 4

 5 15-214

Principles of Software Construction

• You’ve written small- to medium-size programs in 15-
122

• This course is about software design and managing
software complexity
– Scale of code: KLOC -> MLOC, design at scale
– Worldly environment: external I/O, network, asynchrony
– Software infrastructure: libraries, frameworks, design for

reuse
– Software evolution: design for change over time
– Correctness: testing, static analysis tools, automation
– In contrast: algorithmic complexity not an emphasis in 15-

214

 6 15-214

binary tree

graph search

sorting

BDDs

primes

GCD

2

 7 15-214

Our goal: understanding both the building blocks and also the design principles for
construction of software systems at scale

From Programs to Systems

Writing algorithms, data
structures from scratch

Functions with inputs

and outputs

Sequential and local

computation

Full functional
specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed

computation

Partial, composable,

targeted models

 8 15-214

Course themes

• Code-level Design
– Process – how to start
– Patterns – re-use conceptual solutions
– Criteria – e.g. evolveability, understandability

• Analysis and Modeling
– Practical specification techniques and verification tools

• Object-oriented programming
– Evolveability, Reuse
– Industry use – basis for frameworks
– Vehicle is Java –industry, upper-division courses

• Threads and Concurrency
– System abstraction – background computing
– Performance
– Our focus: explicit, application-level concurrency

• Cf. functional parallelism (150, 210) and systems concurrency (213)

 9 15-214

This is not a
Java course

but you will
write a lot of

Java code

 10 15-214

 int a = 010 + 3;

 System.out.println("A" + a);

 11 15-214

 int a = 010 + 3;

 System.out.println("A" + a);

 12 15-214

Sorting with configurable order, variant A

 void sort(int[] list, String order) {
 …

 boolean mustswap;

 if (order.equals("up")) {

 mustswap = list[i] < list[j];

 } else if (order.equals("down")) {

 mustswap = list[i] > list[j];

 }

 …

}

3

 13 15-214

Sorting with configurable order, variant B

• Sorting with configurable order, variant B
void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) { return i>j; }}

(by the way, this design is called “strategy pattern”) 14 15-214

Tradeoffs?
void sort(int[] list, String order) {

 …

 boolean mustswap;

 if (order.equals("up")) {

 mustswap = list[i] < list[j];

 } else if (order.equals("down")) {

 mustswap = list[i] > list[j];

 }

 …

}

void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) { return i>j; }}

 15 15-214

it depends
(see context)

depends on what?
what are scenarios?
what are tradeoffs?

 16 15-214

"Software engineering is the branch of computer science that
creates practical, cost-effective solutions to computing and
information processing problems, preferentially by applying
scientific knowledge, developing software systems in the service
of mankind.
Software engineering entails making decisions under constraints
of limited time, knowledge, and resources. […]

Engineering quality resides in engineering judgment. […]

Quality of the software product depends on the engineer's
faithfulness to the engineered artifact. […]

Engineering requires reconciling conflicting constraints. […]

Engineering skills improve as a result of careful systematic
reflection on experience. […]

Costs and time constraints matter, not just capability. […]

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

 17 15-214

Software Engineering at CMU

• 15-214: “Code-level” design
– extensibility, reuse, concurrency, functional correctness

• 15-313: “Human aspects” of software development
– requirements, team work, scalability, security, scheduling,

costs, risks, business models

• 15-413, 17-413 Practicum, Seminar, Internship

• Various master-level courses on requirements,
architecture, software analysis, etc

• SE Minor: http://isri.cmu.edu/education/undergrad/

17
 18 15-214

Semester overview

• Introduction
– Design goals, principles, patterns

• Designing classes
– Design for change: Subtype polymorphism

and information hiding
– Design for reuse: Inheritance and Delegation

• Designing (sub)systems
– What to build: Domain models, System

sequence diagrams
– Assigning responsibilities: GRASP patterns
– Design for robustness: Exceptions, Modular

protection
– Design for change (2): Façade, Adapter,

Observer

• Design Case Studies
– Graphical user interfaces
– Streams, I/O
– Collections

• Design for large-scale reuse
– Libraries, APIs,
– Frameworks
– Product lines

• Explicit concurrency
• Distributed system

• Crosscutting topics:
– Modern development tools: IDEs, version

control, build automation, continuous
integration, static analysis

– Modeling and specification, formal and
informal

– Functional correctness: Testing, static
analysis, verification

18

http://isri.cmu.edu/education/undergrad/
http://isri.cmu.edu/education/undergrad/

4

 19 15-214

COURSE ORGANIZATION

19
 20 15-214

Course preconditions

• 15-122 or equivalent
– 2 semesters of programming, knowledge of C-like

languages

• Specifically:
– Basic programming skills

– Basic (formal) reasoning about programs with
pre/post conditions, invariants, formal verification
of correctness

– Basic algorithms and data structures (lists, graphs,
sorting, binary search, …)

 21 15-214

High-level learning goals

1. Ability to design medium-scale programs
– Design goals (e.g., design for change, design for reuse)
– Design principles (e.g., low coupling, explicit interfaces)
– Design patterns (e.g., strategy pattern, decorator pattern), libraries, and frameworks
– Evaluating trade-offs within a design space
– Paradigms such as event-driven GUI programming

2. Understanding object-oriented programming concepts and how they support
design decisions

– Polymorphism, encapsulation, inheritance, object identity

3. Proficiency with basic quality assurance techniques for functional correctness
– Unit testing
– Static analysis
– (Verification)

4. Fundamentals of concurrency and distributed systems
5. Practical skills

– Ability to write medium-scale programs in Java
– Ability to use modern development tools, including VCS, IDEs, debuggers, build and test

automation, static analysis, …

(See course web site for a full list of learning goals)

 22 15-214

Important features of this course

• The team
– Instructors

• Christian Kästner kaestner@cs.cmu.edu Wean 5122
• Charlie Garrod charlie@cs.cmu.edu Wean 5101

– TAs: Jonathan, Matt, Nora, Pratik, Terence, Yongjin,
Shurui

• The schedule
– Lectures: Tues, Thurs 3:00 – 4:20pm DH 2315
– Recitations: A-E: Weds 9:30 - … - 2:20pm WEH 5310
– Office hours and emails see course web page

• https://www.cs.cmu.edu/~charlie/courses/15-214/2015-
spring/ Recitations

are required

 23 15-214

Course Infrastructure

• Course website http://www.cs.cmu.edu/~charlie/courses/15-214
– Schedule, assignments, lecture slides, policy documents

• Tools
– Git, Github: Assignment distribution, hand-in, and grades
– Piazza: Discussion site – link from course page
– Eclipse: Recommended for developing code
– Gradle, Travis-CI, Checkstyle, Findbugs: Practical development tools

• Assignments
– Homework 1 available tomorrow morning

• Ensure all tools are working together, Git, Java, Eclipse, Gradle, Checkstyle

• First recitation is tomorrow
– Introduction to Java and the tools in the course
– Bring your laptop, if you have one!
– Install Git, Java, Eclipse, Gradle beforehand – instructions on Piazza

 24 15-214

Text books

• Required course textbook:
– Craig Larman. Applying UML and

Patterns: An Introduction to Object-
Oriented Analysis and Design and
Iterative Development. 3rd Edition.
Prentice Hall. 2004. ISBN 0-13-148906-2

– Covers the design process and most
design patterns

– Regular reading assignments + in-class
quizzes

– Read chapters 14 and 16 until next
Tuesday

• Additional texts on Java, concurrency,
and design patterns recommended on
the course web page

24

http://www.amazon.com/Applying-UML-Patterns-Introduction-Object-Oriented/dp/0131489062/ref=sr_1_1?ie=UTF8&qid=1420559495&sr=8-1&keywords=uml+and+patterns

5

 25 15-214

Course policies

• Grading (subject to adjustment)
– 50% assignments
– 20% midterms (2 x 10% each)
– 20% final exam
– 10% quizzes and participation

• Bring paper and a pen/pencil to class!

• Collaboration policy on the course website
– We expect your work to be your own
– Do not release your solutions (not even after end of semester)
– Ask if you have any questions
– If you are feeling desperate, please reach out to us

• Always turn in any work you've completed before the deadline

– We run cheating detection tools. Trust us, academic integrity meetings
are painful for everybody

 26 15-214

Course policies

• Late days for homework assignments
– 2 possible late days per deadline (exceptions will be announced)

• 5 total free late days for semester (+ separate 2 late days for
assignments done in pairs)

• Beyond 5 free late days, penalty 1% per 5 minutes, up to 10% per day

– After 2 possible late days: Penalty 1% per 5 minutes, up to 100%
– Extreme circumstances – talk to us

• Recitations
– Practice of lecture material
– Presentation of additional material
– Discussion, presentations, etc.
– Attendance is required
– In general, bring a laptop if you can

 27 15-214

INTRODUCTION TO
SOFTWARE DESIGN

 28 15-214

Today’s Learning Goals

• Introduce the design process through an
example

• Understand what drives design

 29 15-214

Goal of Software Design

• For each desired program behavior there are
infinitely many programs that have this
behavior
– What are the differences between the variants?

– Which variant should we choose?

• Since we usually have to synthesize rather
than choose the solution…
– How can we design a variant that has the desired

properties?

 30 15-214

Software Quality

 Sufficiency / Functional Correctness
 Fails to implement the specifications … Satisfies all of the specifications

 Robustness
 Will crash on any anomalous even … Recovers from all anomalous events

 Flexibility
 Will have to be replaced entirely if specification changes … Easily adaptable to reasonable changes

 Reusability
 Cannot be used in another application … Usable in all reasonably related applications without modification

 Efficiency
 Fails to satisfy speed or data storage requirement … satisfies speed or data storage requirement with reasonable

margin

 Scalability
 Cannot be used as the basis of a larger version … is an outstanding basis…

 Security
 Security not accounted for at all … No manner of breaching security is known

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

O
b

ject-D
esign

C

h
allen

ges

6

 31 15-214

Why a Design Process?

• Without a process, how do you know what to do?

– A process tells you what is the next thing you should
be doing

• A process structures learning

– We can discuss individual steps in isolation

– You can practice individual steps, too

• If you follow a process, we can help you better

– You can show us what steps you have done

– We can target our advice to where you are stuck

 32 15-214

A simple process

1. Discuss the software that needs to be
written

2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

15-313 Software Engineering 32
 33 15-214

Software Design

• Think before coding

• Consider quality attributes (maintainability,
extensibility, performance)

• Consider alternatives and make conscious
design decisions

33

 34 15-214

Preview: Goals, Principles, Patterns

• Design goals enable evaluation of designs and
discussion of tradeoffs

• Design requires experience, learn and
generalize from examples, discover good
solutions

• Principles describe best practices

• Patterns codify experiences: established
solutions for common problems; building
blocks and vocabulary

34
 35 15-214

Preview: The design process

• Object-Oriented Analysis
– Understand the problem
– Identify the key concepts and their relationships
– Build a (visual) vocabulary
– Create a domain model (aka conceptual model)

• Object-Oriented Design
– Identify software classes and their relationships with class diagrams
– Assign responsibilities (attributes, methods)
– Explore behavior with interaction diagrams
– Explore design alternatives
– Create an object model (aka design model and design class diagram)

and interaction models

• Implementation
– Map designs to code, implementing classes and methods

 36 15-214

Case Study: Pines and Beetles

Photo by Walter Siegmund

Source: BC Forestry website

Lodgepole Pine Mountain Pine Beetle Galleries carved
in inner bark

Widespread
tree death

Further reading: Liliana Péreza and Suzana Dragićević. Exploring Forest Management Practices Using an Agent-Based Model of Forest Insect Infestations.
International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, 2010.

7

 37 15-214

How to save the trees?

• Causes
– Warmer winters  fewer beetles die

– Fire suppression  more old (susceptible) trees

• Can management help? And what form of
management?
– Sanitation harvest

• Remove highly infested trees

• Remove healthy neighboring trees above a certain size

– Salvage harvest
• Remove healthy trees that have several infested neighbors

Further reading: Liliana Péreza and Suzana Dragićević. Exploring Forest Management Practices Using an Agent-Based Model of Forest Insect Infestations.
International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, 2010. 38 15-214

Applying Agent-Based Modeling to the
Pine Beetle Problem
• Goal: evaluate different forest management techniques

– Use a simulated forest based on real scientific
observations

• An agent-based model
– Create a simulated forest, divided into a grid

– Populate the forest with agents: trees, beetles, forest
managers

– Simulate the agents over multiple time steps

– Calibrate the model to match observations

– Compare tree survival in different management strategies
• and vs. no management at all

Further reading: Liliana Péreza and Suzana Dragićević. Exploring Forest Management Practices Using an Agent-Based Model of Forest Insect Infestations.
International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, 2010. 39 15-214

39 Further reading: Liliana Péreza and Suzana Dragićević. Exploring Forest Management Practices Using an Agent-Based Model of Forest Insect Infestations.
International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, 2010.

 40 15-214
40 Further reading: Liliana Péreza and Suzana Dragićević. Exploring Forest Management Practices Using an Agent-Based Model of Forest Insect Infestations.

International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, 2010. 41 15-214

Simulating Pines and Beetles

• Pine trees
– Track size/age—beetles only infect trees with thick enough bark
– Seedling germination and natural tree death

• Infestations
– Growth in the number of beetles per tree
– Spreads to nearby trees once the infestation is strong enough
– Kills the tree once there are enough beetles

• Forest manager
– Applies sanitation or salvage harvest

• Others?
– Statistics gathering agent?
– Climate? (cold winters kill beetles)
– Competing trees? (the Douglas Fir is not susceptable)

• Agent operations
– Simulation of a time step
– Logging (and perhaps restoring) state

 42 15-214

A Design Problem

• How should we organize our simulation code?

• Considerations (“Quality Attributes”)
– Separate the simulation infrastructure from forest

agents: We may want to reuse it in other studies
and have multiple developers work in parallel

– Make it easy to change the simulation setup: We
want need to adjust the parameters before getting
it right

– Make it easy to add and remove agents: New
elements may be needed for accurate simulation

8

 43 15-214

Exercise (small groups, on paper)

• Sketch a design for the simulator

– Ideally such that it can be extended (e.g., adding
new agents without changing the simulation logic)

– Such that work is decomposed into several
modules/files

– Use whatever notation (lines and boxes, code, etc)
seems convenient

 44 15-214

Design Exercise - Reflection

• “I didn’t know how to get started”

– This course will help

• A process for design

• Design patterns that you can apply

• Principles for selecting among design alternatives

• Techniques for documenting design for others

• “Is my design any good?”

• “You can’t solve that problem in C / without
OO!”

 45 15-214

The Simulation Architecture

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…

Simulation
Driver

Runs the simulation

Should not be forest-specific

Should not need to modify
when adding an agent or

running a new simulation

Change easily and independently
of the simulation and agents

Choose
any
subset,
or easily
add new

agents

Each box should be
a separate module
(or file) of code

 46 15-214

Simulation Framework Behavior Model

Simulation
Framework

Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

… Simulation
Driver

1. Select and
create agents

2. Add agents to
framework

3. Invoke
simulate() on
the framework

4. Invoke
timestep() on
each agent

5. Update
agent-specific
state in
timestep()

6. Invoke
logState() on
each agent

7. Repeat 4-6
until done

 47 15-214

Idea: Managing the Agents

• Problem constraints
– Functionality: framework invokes agents
– Extension: add agents without changing framework code

• Consequence: framework must keep a list of agents
– E.g. one per tree, or one for all Lodgepole trees
– List must be open-ended, for extensibility
– List must be populated by simulation driver

• Consequence: behavior tied to each agent
– Framework invokes time step or logging actions
– Each agent does timestep() and logState() differently
– Framework can’t “know” which agent is which
– So agent must “know” it’s own behavior

 48 15-214

Design Questions:
Who is Responsible for…

• Creating the list of agents?

• Storing the list of agents?

• Running the simulation?

• Implementing agent behavior?

• Storing agent state?

Simulation

Framework
Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…

Simulation

Driver

9

 49 15-214

Who is Responsible for…

• Creating the list of agents?
– The Simulation Driver, because

it is the only thing that should
change when we add or remove
an agent

• Storing the list of agents?
– The Simulation Framework, because it invokes them

• Running the simulation?
– The Simulation Framework, because it is the reusable code

• Implementing agent behavior?
– Each agent, because we must be able to add new agents and

their behavior together

• Storing agent state?
– Each agent, because the state to be stored depends on the

agent’s behavior

Simulation

Framework
Lodgepole agent

Infestation agent

Management agent

Douglas Fir agent

Observation agent

…

Simulation

Driver

 50 15-214

The Simulation Framework and Driver
Code
Simulation Driver
void main(…) {

 Simulation s = new Simulation();

 for (int i = 0; i<NUM_TREES; ++i)

 s.add(new LodgepolePine(…));

 s.simulate()

}

* some keywords left out for simplicity

Simulation Framework
class Simulation {

 Agent grid[][];

 int xSize;

 int ySize;

 void simulate() {

 for (int i=0; i<NUM_STEPS; ++i)

 for (int x=0; x<xSize; ++x)

 for (int y=0; y<ySize; ++y) {

 Agent a = grid[x][y];

 if (a != null) {

 a.timeStep(this);

 a.logState();

 }

 } }

 // other methods, such as add(Agent a)…

}

A two-dimensional
array of Agents

 51 15-214

Let’s Run the Code!

 52 15-214

Extending with Infestations

Simulation Driver
void main(…) {

 Simulation s = new Simulation();

 for (int i = 0; i<NUM_TREES; ++i)

 s.add(new LodgepolePine(…));

 for (int i = 0; i<NUM_INFECT; ++i)

 s.add(new InfectedPine(…));

 s.simulate()

}

* some keywords left out for simplicity

Simulation Framework
class Simulation {

 Agent grid[][];

 int xSize;

 int ySize;

 void simulate() {

 for (int i=0; i<NUM_STEPS; ++i)

 for (int x=0; x<xSize; ++x)

 for (int y=0; y<ySize; ++y) {

 Agent a = grid[x][y];

 if (a != null) {

 a.timeStep(this);

 a.logState();

 }

 } }

 // other methods, such as add(Agent a)…

}

We simply add
InfectedPine objects
to the Agents in the
Simulation.

Separately, we
implement an
InfectedPine class.

 53 15-214

Let’s Run the Code Again!

 54 15-214

Next Week: How Objects Respond to
Messages

s:Simulation

grid:Agent[]

simulate()

*simplification: we consider a 1-dimensional grid in this diagram

a0:LodgepolePine

age:int

timeStep(Simulation)
…

a1:InfectedPine

intensity:int

timeStep(Simulation)
…

1. assign a0 to grid[0]
2. assign a1 to grid[1]
3. invoke grid[0].timeStep()
4. invoke grid[1].timeStep() Object a0 is a

LodgepolePine
Dispatch to code in the
LodgepolePine class

Object a1 is a
LodgepolePine
Dispatch to code in the
LodgepolePine class

10

 55 15-214

Historical Note: Simulation and the
Origins of Objects
• Simula 67 was the first

object-oriented
programming language

• Developed by
Kristin Nygaard and
Ole-Johan Dahl at the
Norwegian Computing
Center

• Developed to support discrete-event simulations
– Much like our tree beetle simulation
– Application: operations research, e.g. for traffic analysis
– Extensibility was a key quality attribute for them
– Code reuse was another—which we will examine later

 56 15-214

Takeaways: Design and Objects

• Design follows a process
– Structuring design helps us do it better

• Quality attributes drive software design
– Properties of software that describe its fitness for further

development and use

• Objects support extensibility, modifiability
– Interfaces capture a point of extension or modification

– Classes provide extensions by implementing the interface

– Method calls are dispatched to the method’s
implementation in the receiver object’s class

