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Administrivia 

• Homework 4a due tonight 
• Homework 4b due Thursday, October 22 
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Key concepts from Tuesday 
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Key concepts from Tuesday 

• Formal verification 
• Testing 

– Coverage metrics 
– Black-box vs. white-box testing 

• Static analysis 
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Key concepts from recitation yesterday 
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Key concepts from yesterday's recitation 

• Discovering design patterns 
• The Observer pattern 
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The Observer design pattern 
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The Observer design pattern 

• Applicability 
– When an abstraction has two 

interdependent aspects and 
you want to reuse both 

– When state change to one 
object requires notifying 
others, without becoming 
dependent on them 

• Consequences 
– Loose coupling between 

subject and observer, 
enhancing reuse 

– Support for broadcast 
communication 

– Notification can lead to further 
updates, causing a cascade 
effect 

 



9 15-214 

Learning goals for today 

• Understand the design challenges and common solutions for 
Graphical User Interfaces (GUIs) 

• Understand event-based programming 
• Understand and recognize the design patterns used and how 

those design patterns achieve design goals. 
– Observer pattern 
– Strategy pattern 
– Template method pattern 
– Composite pattern 
– Model-view-controller 
– Other common GUI design patterns not discussed here:  Decorator, 

Façade, Adapter, Command, … 

• Diagnose problems caused by computation in the GUI threads 
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Aside:  Anonymous inner classes in Java 

• You can implement an interface without naming the 
implementing class 
– E.g., 

public interface Runnable { 
    public void run(); 
} 
 
public static void main(String[] args) { 
    Runnable greeter = new Runnable() { 
        public void run() { 
            System.out.println("Hi mom!"); 
        } 
    }; 
     
    greeter.run(); 
} 
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Scope within an anonymous inner class 

• An anonymous inner class can access final (or effectively final) 
variables in the scope where it is defined 

public interface Runnable { 
    public void run(); 
} 
 
public static void main(String[] args) { 
    final String name = "Charlie"; // final variable 
    Runnable greeter = new Runnable() { 
        public void run() { 
            System.out.println("Hi " + name); 
        } 
    }; 
     
    greeter.run(); 
} 

OK 
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Scope within an anonymous inner class 

• An anonymous inner class can access final (or effectively final) 
variables in the scope where it is defined 

public interface Runnable { 
    public void run(); 
} 
 
public static void main(String[] args) { 
    String name = "Charlie"; // not final, but could be 
    Runnable greeter = new Runnable() { 
        public void run() { 
            System.out.println("Hi " + name); 
        } 
    }; 
     
    greeter.run(); 
} 

OK 
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Scope within an anonymous inner class 

• An anonymous inner class can access final (or effectively final) 
variables in the scope where it is defined 

public interface Runnable { 
    public void run(); 
} 
 
public static void main(String[] args) { 
    String name = "Charlie"; // not final; assigned later 
    Runnable greeter = new Runnable() { 
        public void run() { 
            System.out.println("Hi " + name); 
        } 
    }; 
    name = “Jonathan”; 
    greeter.run(); 
} 

Compile-time 
error 
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Today:  Introduction to Graphical User Interfaces (GUIs) 

• Event-based programming 
• Building a GUI using Java Swing 
• Event-handling and decoupling with the Observer pattern 
• GUI design challenges 

– Design patterns that solve them 

• Practical advice:  Threading architecture of a typical GUI 
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Event-based programming 

• Style of programming where control-flow is driven by (usually 
external) events 

public void performAction(ActionEvent e) { 
    List<String> lst = Arrays.asList(bar); 
    foo.peek(42) 
} 

public void performAction(ActionEvent e) { 
    bigBloatedPowerPointFunction(e); 
    withANameSoLongIMadeItTwoMethods(e); 
    yesIKnowJavaDoesntWorkLikeThat(e); 
} 

public void performAction(ActionEvent e) { 
    List<String> lst = Arrays.asList(bar); 
    foo.peek(40) 
} 
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Examples of events in GUIs 
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Examples of events in GUIs 

• User clicks a button, presses a key 
• User selects an item from a list, an item from a menu, expands a 

tree 
• Mouse hovers over a widget, focus changes 
• Scrolling, mouse wheel turned 
• Resizing a window, hiding a window 
• Drag and drop 

 
• A package arrives from a web service, connection drops, … 
• System shutdown, … 
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Interaction with command-line interfaces 

Scanner input = new Scanner(System.in); 
while (questions.hasNext()) { 
 Question q = question.next(); 
 System.out.println(q.toString()); 
 String answer = input.nextLine(); 
 q.respond(answer); 
} 
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GUIs without event-based programming 

 

while (true) { 
 if (isKeyDown(“Alt+Q”) 
  break; 
 if (isKeyDown(“F1”) 
  openHelp(); 
 if (isMouseDown(10 …)  
  startMovingWindow(); 
 … 
} 
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Event-based GUIs 

 //static public void main… 
JFrame window = … 
window.setDefaultCloseOperation( 
      WindowConstants.EXIT_ON_CLOSE); 
window.setVisible(true); 

//on add-button click: 
String email =  
 emailField.getText(); 
emaillist.add(email); 
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Event-based GUIs 

 //static public void main… 
JFrame window = … 
window.setDefaultCloseOperation( 
      WindowConstants.EXIT_ON_CLOSE); 
window.setVisible(true); 

//on add-button click: 
String email =  
 emailField.getText(); 
emaillist.add(email); 

//on remove-button click: 
int pos = 
   emaillist.getSelectedItem(); 
if (pos>=0) emaillist.delete(pos); 
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(Blocking) Interactions with users 

 

Game PlayerDealer

newGame

addCards

addCards

getAction

action

[action==hit] addCard

blocking 
execution 
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Interactions with users through events 

• Do not block waiting for user response 
• Instead, react to user events 

e.g.: 

Game PlayerDealer

newGame

addCards

addCards

hit

addCard
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Programming an event-based GUI 

• Typically use a GUI framework 
– Register code (a.k.a. callbacks) to handle different 

events 
– Operating system / GUI framework detects events 

• Determines which components are registered to 
handle the event and calls the event handlers 

• Your code is idle until called to handle events 
– Program exits by calling some exit method 

GUI 
Framework 

OS 

Application 

get 
event 

drawing 
commands 

next 
event 

event— 
mouse, key, 
redraw, …  
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Programming an event-based GUI 

• Setup phase 
– Describe how the GUI window should look 
– Use libraries for windows, widgets, and layout 
– Embed specialized code for later use 
– Register callbacks 

• Execution 
– Framework gets events from OS 

• Raw events: mouse clicks, key presses, window 
becomes visible, etc. 

– Framework processes events 
• Click at 10,40: which widget? 
• Resize window: what to re-layout and redraw? 

– Triggers callback functions of corresponding widgets 
(if registered) 

GUI 
Framework 

OS 

Application 

get 
event 

drawing 
commands 

next 
event 

event— 
mouse, key, 
redraw, …  



26 15-214 

Example: The AlarmWindow 

• …edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow 
– Creates a JFrame with a JPanel to go in it 
– Creates a text label and a button 
– Makes the window (and its contents) visible when the alarm goes off 

 

• When the dismiss button is clicked, its event handler hides the 
window 
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Example: The CustomerManagementUI 

• …rec06.customerlist.gui.CustomerManagementUI 
– Creates a JFrame with a JPanel to go in it 
– Makes the window (and its contents) visible 

• ...rec06.customerlist.gui.CustomerManagementPanel 
– Creates numerous labels and text fields, a customerAddButton 
– Registers an event handler for the customerAddButton 

• When the customerAddButton is clicked, its event handler gets 
the text from the text fields and adds a customer to the list 
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GUI frameworks in Java 

• AWT 
– Native widgets, only basic components, dated 

• Swing 
– Java rendering, rich components 

• SWT + JFace 
– Mixture of native widgets and Java rendering; created for Eclipse for 

faster performance 

 
• Others 

– Apache Pivot, SwingX, JavaFX, … 
 

• Different in their specific designs, but similar overall strategies 
and concepts 
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Swing 

JButton 

JPanel 

JTextField 
 
… 

JFrame 
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Swing has many widgets 

• JLabel 
• JButton 
• JCheckBox 
• JChoice 
• JRadioButton 

• JTextField 
• JTextArea 
• JList 
• JScrollBar 
• … and more 

• JFrame is the Swing Window 

• JPanel (aka a pane) is the container to which you add your components (or 
other containers) 
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To create a simple Swing application 

• Make a Window (a JFrame) 
• Make a container (a JPanel) 

– Put it in the window 

• Add components (Buttons, Boxes, etc.) to the container 
– Use layouts to control positioning 
– Set up observers (a.k.a. listeners) to respond to events 
– Optionally, write custom widgets with application-specific display logic 

• Set up the window to display the container 
 

• Then wait for events to arrive… 
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Reacting to events 
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Creating a button 

 //static public void main… 
JFrame window = … 
 
JPanel panel = new JPanel(); 
window.setContentPane(panel); 
 
JButton button = new JButton(“Click me”); 
button.addActionListener(new ActionListener() { 
 public void actionPerformed(ActionEvent e) { 
  System.out.println(“Button clicked”); 
 } 
}); 
panel.add(button); 
 
window.setVisible(true); 
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Creating a button 

 //static public void main… 
JFrame window = … 
 
JPanel panel = new JPanel(); 
window.setContentPane(panel); 
 
JButton button = new JButton(“Click me”); 
button.addActionListener(new ActionListener() { 
 public void actionPerformed(ActionEvent e) { 
  System.out.println(“Button clicked”); 
 } 
}); 
panel.add(button); 
 
window.setVisible(true); 

panel to hold 
the button 
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ActionListeners 

• Listeners are objects with callback functions 
• Listeners can be registered to handle events on widgets 
• All registered widgets are called if event occurs 

interface ActionListener { 
 void actionPerformed(ActionEvent e); 
} 

class ActionEvent { 
 int when; 
 String actionCommand; 
 int modifiers; 
 Object source(); 
 int id; 
 … 
} 
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ActionListeners 

• Listeners are objects with callback functions 
• Listeners can be registered to handle events on widgets 
• All registered widgets are called if event occurs 

interface ActionListener { 
 void actionPerformed(ActionEvent e); 
} 

class ActionEvent { 
 int when; 
 String actionCommand; 
 int modifiers; 
 Object source(); 
 int id; 
 … 
} 

class AbstractButton extends JComponent { 
 private List<ActionListener> listeners; 
 public void addActionListener(ActionListener l) { 
  listeners.add(l); 
 } 
 protected void fireActionPerformed(ActionEvent e) { 
  for (ActionListener l: listeners)  
   l.actionPerformed(e); 
 } 
} 
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ActionListeners 

• Listeners are objects with callback functions 
• Listeners can be registered to handle events on widgets 
• All registered widgets are called if event occurs 

interface ActionListener { 
 void actionPerformed(ActionEvent e); 
} 

class ActionEvent { 
 int when; 
 String actionCommand; 
 int modifiers; 
 Object source(); 
 int id; 
 … 
} 

class AbstractButton extends JComponent { 
 private List<ActionListener> listeners; 
 public void addActionListener(ActionListener l) { 
  listeners.add(l); 
 } 
 protected void fireActionPerformed(ActionEvent e) { 
  for (ActionListener l: listeners)  
   l.actionPerformed(e); 
 } 
} 

What design  
pattern is this? 
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Recall the observer design pattern 
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Design discussion 

• Button implementation should be reusable but customizable 
– Different button label, different event-handling 

• Must decouple button's action from the button itself 
• Listeners are separate independent objects 

– A single button can have multiple listeners 
– Multiple buttons can share the same listener 
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Swing has many event listener interfaces: 

• ActionListener 
• AdjustmentListener 
• FocusListener 
• ItemListener 
• KeyListener 

• MouseListener 
• TreeExpansionListener 
• TextListener 
• WindowListener 
• …and on and on… 

interface ActionListener { 
 void actionPerformed(ActionEvent e); 
} 

class ActionEvent { 
 int when; 
 String actionCommand; 
 int modifiers; 
 Object source(); 
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Decoupling from 
a GUI 
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A GUI design challenge 

• Consider the transit simulator, implemented by a World class: 
– Simulator World stores all entities 
– GUI shows entities, triggers new events in simulator 
– When should the GUI update the screen? 

World GUI

step

update

getData
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A GUI design challenge, part 2 

• What if we add a warning to alert if a bus has moved? 

World GUI

step

update

Warning

getData

update

getData

update
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A GUI design challenge, part 3 

• What if the simulator world changes for reasons not caused by 
the GUI? 

World GUI

step

update

Warning

getData

update

getData

update
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A GUI design challenge, part 3:  one possible design 

• Let the World tell the GUI that something happened 
 
 
 
 

 

World GUI

step

update

Warning

update(data)

update(data)

update
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A GUI design challenge, part 3:  one possible design 

• Let the World tell the GUI that something happened 
 
 
 
 

 

World GUI

step

update

Warning

update(data)

update(data)

update

Problem:  This couples the World to the GUI implementation. 
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Core implementation vs. GUI 

• Core implementation:  Application logic 
– Computing some result, updating data 

• GUI 
– Graphical representation of data 
– Source of user interactions 

 

• Design guideline:  Avoid coupling the GUI with core application 
– Multiple UIs with single core implementation 
– Test core without UI 
– Design for change, design for reuse, design for division of labor; low 

coupling, high cohesion 
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A GUI design challenge, part 3:  one possible design 

• Let the World tell the GUI that something happened 
 
 
 
 

 

World GUI

step

update

Warning

update(data)

update(data)

update

Problem:  This couples the World to the GUI implementation. 
 



49 15-214 

Decoupling with the Observer pattern 

• Let the world tell all interested components about updates 
 
 
 
 
 
 
 

World GUI

register

update

Warning

notify

notify

update

register

step
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An architectural pattern: Model-View-Controller (MVC) 

Manage inputs from 
user: mouse, keyboard, 
menu, etc. 

Manage display of 
information on the 
screen 

Manage data related to 
the application domain 
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Model-View-Controller (MVC) 

Passive model 

Active model 

http://msdn.microsoft.com/en-us/library/ff649643.aspx 
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Separating application core and GUI, a summary 

• Reduce coupling: do not allow core to depend on UI 
• Create and test the core without a GUI 

– Use the Observer pattern to communicate information from the core 
(Model) to the GUI (View) 

Core 

GUI 

Core 
Tests 

GUI 
Tests 
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More GUI  
design challenges 
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Swing layouts 

see http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html 

The simplest, and default, layout. 
Wraps around when out of space. 

Like FlowLayout, but no wrappin  

More sophisticated layout managers 
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A naïve hard-coded implementation 

• A new layout would require changing or overriding JPanel 

class JPanel { 
     protected void doLayout() {  
 switch(getLayoutType()) {  
  case BOX_LAYOUT: adjustSizeBox(); break;  
  case BORDER_LAYOUT: adjustSizeBorder(); break;  
  ...  
 }  
     }  
     private adjustSizeBox() { … } 
} 
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A better solution:  delegate the layout responsibilities 

• Layout classes, e.g.:   
contentPane.setLayout(new FlowLayout()); 
contentPane.setLayout(new GridLayout(4,2)); 

 

• Similarly, there are border classes to draw the borders, e.g.: 
contentPane.setBorder(new EmptyBorder(5, 5, 5, 5)); 

What design 
pattern is this? 
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Recall the strategy pattern 
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Another GUI design challenge:  nesting containers 

• A JFrame contains a JPanel, which contains a JPanel (and/or 
other widgets), which contains a JPanel (and/or other widgets), 
which contains… 

What design  
pattern best 
models this? 
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Recall the composite design pattern 
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Yet another GUI design challenge:  partial customization 
JComponent. 
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Recall the template method pattern 

• Applicability 
– When an algorithm consists of 

varying and invariant parts that must 
be customized 

– When common behavior in 
subclasses should be factored and 
localized to avoid code duplication 

– To control subclass extensions to 
specific operations 

• Consequences 
– Code reuse 
– Inverted “Hollywood” control: don’t 

call us, we’ll call you 
– Ensures the invariant parts of the 

algorithm are not changed by 
subclasses 

 



62 15-214 

The Swing threading architecture 

GUI thread 
main() thread 

Create window 
Set up callbacks 
Show window 
(thread ends) 

Loop forever: 
    Get system event 
    Invoke callback 

e.g. callback code: 
    Run complex numeric algorthim 
        (Problem: UI is unresponsive) 
    Show result 
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The Swing threading architecture:  worker threads 

GUI thread 

main() thread 

Create window 
Set up callbacks 
Show window 
(thread ends) 

Loop forever: 
    Get system event 
    Invoke callback 

Callback code: 
    create SwingWorker 
    start it executing 

Worker thread 

Worker thread execution: 
    invoke doInBackground() 
         run complex numeric algorithm 
    store result in SwingWorker 
    signal to UI that we are done 

SwingWorker 
 

result : Long 
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Summary 

• GUIs are full of design patterns 
– Strategy pattern 
– Template Method pattern 
– Composite pattern 
– Observer pattern 
– Decorator pattern 
– Façade pattern 
– Adapter pattern 
– Command pattern 
– Model-View-Controller 

• Swing for Java GUIs 
• Separation of GUI and Core 
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