
1 15-214

School of
Computer Science

Principles of Software Construction: Objects, Design, and
Concurrency
(Part 3: Design Case Studies)

Introduction to GUIs

Jonathan Aldrich Charlie Garrod

2 15-214

Administrivia

• Homework 4a due tonight
• Homework 4b due Thursday, October 22

3 15-214

Key concepts from Tuesday

4 15-214

Key concepts from Tuesday

• Formal verification
• Testing

– Coverage metrics
– Black-box vs. white-box testing

• Static analysis

5 15-214

Key concepts from recitation yesterday

6 15-214

Key concepts from yesterday's recitation

• Discovering design patterns
• The Observer pattern

7 15-214

The Observer design pattern

8 15-214

The Observer design pattern

• Applicability
– When an abstraction has two

interdependent aspects and
you want to reuse both

– When state change to one
object requires notifying
others, without becoming
dependent on them

• Consequences
– Loose coupling between

subject and observer,
enhancing reuse

– Support for broadcast
communication

– Notification can lead to further
updates, causing a cascade
effect

9 15-214

Learning goals for today

• Understand the design challenges and common solutions for
Graphical User Interfaces (GUIs)

• Understand event-based programming
• Understand and recognize the design patterns used and how

those design patterns achieve design goals.
– Observer pattern
– Strategy pattern
– Template method pattern
– Composite pattern
– Model-view-controller
– Other common GUI design patterns not discussed here: Decorator,

Façade, Adapter, Command, …

• Diagnose problems caused by computation in the GUI threads

10 15-214

Aside: Anonymous inner classes in Java

• You can implement an interface without naming the
implementing class
– E.g.,

public interface Runnable {
 public void run();
}

public static void main(String[] args) {
 Runnable greeter = new Runnable() {
 public void run() {
 System.out.println("Hi mom!");
 }
 };

 greeter.run();
}

11 15-214

Scope within an anonymous inner class

• An anonymous inner class can access final (or effectively final)
variables in the scope where it is defined

public interface Runnable {
 public void run();
}

public static void main(String[] args) {
 final String name = "Charlie"; // final variable
 Runnable greeter = new Runnable() {
 public void run() {
 System.out.println("Hi " + name);
 }
 };

 greeter.run();
}

OK

12 15-214

Scope within an anonymous inner class

• An anonymous inner class can access final (or effectively final)
variables in the scope where it is defined

public interface Runnable {
 public void run();
}

public static void main(String[] args) {
 String name = "Charlie"; // not final, but could be
 Runnable greeter = new Runnable() {
 public void run() {
 System.out.println("Hi " + name);
 }
 };

 greeter.run();
}

OK

13 15-214

Scope within an anonymous inner class

• An anonymous inner class can access final (or effectively final)
variables in the scope where it is defined

public interface Runnable {
 public void run();
}

public static void main(String[] args) {
 String name = "Charlie"; // not final; assigned later
 Runnable greeter = new Runnable() {
 public void run() {
 System.out.println("Hi " + name);
 }
 };
 name = “Jonathan”;
 greeter.run();
}

Compile-time
error

14 15-214

Today: Introduction to Graphical User Interfaces (GUIs)

• Event-based programming
• Building a GUI using Java Swing
• Event-handling and decoupling with the Observer pattern
• GUI design challenges

– Design patterns that solve them

• Practical advice: Threading architecture of a typical GUI

15 15-214

Event-based programming

• Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

16 15-214

Examples of events in GUIs

17 15-214

Examples of events in GUIs

• User clicks a button, presses a key
• User selects an item from a list, an item from a menu, expands a

tree
• Mouse hovers over a widget, focus changes
• Scrolling, mouse wheel turned
• Resizing a window, hiding a window
• Drag and drop

• A package arrives from a web service, connection drops, …
• System shutdown, …

18 15-214

Interaction with command-line interfaces

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
 Question q = question.next();
 System.out.println(q.toString());
 String answer = input.nextLine();
 q.respond(answer);
}

19 15-214

GUIs without event-based programming

while (true) {
 if (isKeyDown(“Alt+Q”)
 break;
 if (isKeyDown(“F1”)
 openHelp();
 if (isMouseDown(10 …)
 startMovingWindow();
 …
}

20 15-214

Event-based GUIs

 //static public void main…
JFrame window = …
window.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email =
 emailField.getText();
emaillist.add(email);

21 15-214

Event-based GUIs

 //static public void main…
JFrame window = …
window.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email =
 emailField.getText();
emaillist.add(email);

//on remove-button click:
int pos =
 emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);

22 15-214

(Blocking) Interactions with users

Game PlayerDealer

newGame

addCards

addCards

getAction

action

[action==hit] addCard

blocking
execution

23 15-214

Interactions with users through events

• Do not block waiting for user response
• Instead, react to user events

e.g.:

Game PlayerDealer

newGame

addCards

addCards

hit

addCard

24 15-214

Programming an event-based GUI

• Typically use a GUI framework
– Register code (a.k.a. callbacks) to handle different

events
– Operating system / GUI framework detects events

• Determines which components are registered to
handle the event and calls the event handlers

• Your code is idle until called to handle events
– Program exits by calling some exit method

GUI
Framework

OS

Application

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, …

25 15-214

Programming an event-based GUI

• Setup phase
– Describe how the GUI window should look
– Use libraries for windows, widgets, and layout
– Embed specialized code for later use
– Register callbacks

• Execution
– Framework gets events from OS

• Raw events: mouse clicks, key presses, window
becomes visible, etc.

– Framework processes events
• Click at 10,40: which widget?
• Resize window: what to re-layout and redraw?

– Triggers callback functions of corresponding widgets
(if registered)

GUI
Framework

OS

Application

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, …

26 15-214

Example: The AlarmWindow

• …edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow
– Creates a JFrame with a JPanel to go in it
– Creates a text label and a button
– Makes the window (and its contents) visible when the alarm goes off

• When the dismiss button is clicked, its event handler hides the
window

27 15-214

Example: The CustomerManagementUI

• …rec06.customerlist.gui.CustomerManagementUI
– Creates a JFrame with a JPanel to go in it
– Makes the window (and its contents) visible

• ...rec06.customerlist.gui.CustomerManagementPanel
– Creates numerous labels and text fields, a customerAddButton
– Registers an event handler for the customerAddButton

• When the customerAddButton is clicked, its event handler gets
the text from the text fields and adds a customer to the list

28 15-214

GUI frameworks in Java

• AWT
– Native widgets, only basic components, dated

• Swing
– Java rendering, rich components

• SWT + JFace
– Mixture of native widgets and Java rendering; created for Eclipse for

faster performance

• Others

– Apache Pivot, SwingX, JavaFX, …

• Different in their specific designs, but similar overall strategies
and concepts

29 15-214

Swing

JButton

JPanel

JTextField

…

JFrame

30 15-214

Swing has many widgets

• JLabel
• JButton
• JCheckBox
• JChoice
• JRadioButton

• JTextField
• JTextArea
• JList
• JScrollBar
• … and more

• JFrame is the Swing Window

• JPanel (aka a pane) is the container to which you add your components (or
other containers)

31 15-214

To create a simple Swing application

• Make a Window (a JFrame)
• Make a container (a JPanel)

– Put it in the window

• Add components (Buttons, Boxes, etc.) to the container
– Use layouts to control positioning
– Set up observers (a.k.a. listeners) to respond to events
– Optionally, write custom widgets with application-specific display logic

• Set up the window to display the container

• Then wait for events to arrive…

32 15-214

Reacting to events

33 15-214

Creating a button

 //static public void main…
JFrame window = …

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println(“Button clicked”);
 }
});
panel.add(button);

window.setVisible(true);

34 15-214

Creating a button

 //static public void main…
JFrame window = …

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println(“Button clicked”);
 }
});
panel.add(button);

window.setVisible(true);

panel to hold
the button

35 15-214

ActionListeners

• Listeners are objects with callback functions
• Listeners can be registered to handle events on widgets
• All registered widgets are called if event occurs

interface ActionListener {
 void actionPerformed(ActionEvent e);
}

class ActionEvent {
 int when;
 String actionCommand;
 int modifiers;
 Object source();
 int id;
 …
}

36 15-214

ActionListeners

• Listeners are objects with callback functions
• Listeners can be registered to handle events on widgets
• All registered widgets are called if event occurs

interface ActionListener {
 void actionPerformed(ActionEvent e);
}

class ActionEvent {
 int when;
 String actionCommand;
 int modifiers;
 Object source();
 int id;
 …
}

class AbstractButton extends JComponent {
 private List<ActionListener> listeners;
 public void addActionListener(ActionListener l) {
 listeners.add(l);
 }
 protected void fireActionPerformed(ActionEvent e) {
 for (ActionListener l: listeners)
 l.actionPerformed(e);
 }
}

37 15-214

ActionListeners

• Listeners are objects with callback functions
• Listeners can be registered to handle events on widgets
• All registered widgets are called if event occurs

interface ActionListener {
 void actionPerformed(ActionEvent e);
}

class ActionEvent {
 int when;
 String actionCommand;
 int modifiers;
 Object source();
 int id;
 …
}

class AbstractButton extends JComponent {
 private List<ActionListener> listeners;
 public void addActionListener(ActionListener l) {
 listeners.add(l);
 }
 protected void fireActionPerformed(ActionEvent e) {
 for (ActionListener l: listeners)
 l.actionPerformed(e);
 }
}

What design
pattern is this?

38 15-214

Recall the observer design pattern

39 15-214

Design discussion

• Button implementation should be reusable but customizable
– Different button label, different event-handling

• Must decouple button's action from the button itself
• Listeners are separate independent objects

– A single button can have multiple listeners
– Multiple buttons can share the same listener

40 15-214

Swing has many event listener interfaces:

• ActionListener
• AdjustmentListener
• FocusListener
• ItemListener
• KeyListener

• MouseListener
• TreeExpansionListener
• TextListener
• WindowListener
• …and on and on…

interface ActionListener {
 void actionPerformed(ActionEvent e);
}

class ActionEvent {
 int when;
 String actionCommand;
 int modifiers;
 Object source();

41 15-214

Decoupling from
a GUI

42 15-214

A GUI design challenge

• Consider the transit simulator, implemented by a World class:
– Simulator World stores all entities
– GUI shows entities, triggers new events in simulator
– When should the GUI update the screen?

World GUI

step

update

getData

43 15-214

A GUI design challenge, part 2

• What if we add a warning to alert if a bus has moved?

World GUI

step

update

Warning

getData

update

getData

update

44 15-214

A GUI design challenge, part 3

• What if the simulator world changes for reasons not caused by
the GUI?

World GUI

step

update

Warning

getData

update

getData

update

45 15-214

A GUI design challenge, part 3: one possible design

• Let the World tell the GUI that something happened

World GUI

step

update

Warning

update(data)

update(data)

update

46 15-214

A GUI design challenge, part 3: one possible design

• Let the World tell the GUI that something happened

World GUI

step

update

Warning

update(data)

update(data)

update

Problem: This couples the World to the GUI implementation.

47 15-214

Core implementation vs. GUI

• Core implementation: Application logic
– Computing some result, updating data

• GUI
– Graphical representation of data
– Source of user interactions

• Design guideline: Avoid coupling the GUI with core application
– Multiple UIs with single core implementation
– Test core without UI
– Design for change, design for reuse, design for division of labor; low

coupling, high cohesion

48 15-214

A GUI design challenge, part 3: one possible design

• Let the World tell the GUI that something happened

World GUI

step

update

Warning

update(data)

update(data)

update

Problem: This couples the World to the GUI implementation.

49 15-214

Decoupling with the Observer pattern

• Let the world tell all interested components about updates

World GUI

register

update

Warning

notify

notify

update

register

step

50 15-214

An architectural pattern: Model-View-Controller (MVC)

Manage inputs from
user: mouse, keyboard,
menu, etc.

Manage display of
information on the
screen

Manage data related to
the application domain

51 15-214

Model-View-Controller (MVC)

Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx

52 15-214

Separating application core and GUI, a summary

• Reduce coupling: do not allow core to depend on UI
• Create and test the core without a GUI

– Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

Core

GUI

Core
Tests

GUI
Tests

53 15-214

More GUI
design challenges

54 15-214

Swing layouts

see http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

The simplest, and default, layout.
Wraps around when out of space.

Like FlowLayout, but no wrappin

More sophisticated layout managers

55 15-214

A naïve hard-coded implementation

• A new layout would require changing or overriding JPanel

class JPanel {
 protected void doLayout() {
 switch(getLayoutType()) {
 case BOX_LAYOUT: adjustSizeBox(); break;
 case BORDER_LAYOUT: adjustSizeBorder(); break;
 ...
 }
 }
 private adjustSizeBox() { … }
}

56 15-214

A better solution: delegate the layout responsibilities

• Layout classes, e.g.:
contentPane.setLayout(new FlowLayout());
contentPane.setLayout(new GridLayout(4,2));

• Similarly, there are border classes to draw the borders, e.g.:
contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));

What design
pattern is this?

57 15-214

Recall the strategy pattern

58 15-214

Another GUI design challenge: nesting containers

• A JFrame contains a JPanel, which contains a JPanel (and/or
other widgets), which contains a JPanel (and/or other widgets),
which contains…

What design
pattern best
models this?

59 15-214

Recall the composite design pattern

60 15-214

Yet another GUI design challenge: partial customization
JComponent.

61 15-214

Recall the template method pattern

• Applicability
– When an algorithm consists of

varying and invariant parts that must
be customized

– When common behavior in
subclasses should be factored and
localized to avoid code duplication

– To control subclass extensions to
specific operations

• Consequences
– Code reuse
– Inverted “Hollywood” control: don’t

call us, we’ll call you
– Ensures the invariant parts of the

algorithm are not changed by
subclasses

62 15-214

The Swing threading architecture

GUI thread
main() thread

Create window
Set up callbacks
Show window
(thread ends)

Loop forever:
 Get system event
 Invoke callback

e.g. callback code:
 Run complex numeric algorthim
 (Problem: UI is unresponsive)
 Show result

63 15-214

The Swing threading architecture: worker threads

GUI thread

main() thread

Create window
Set up callbacks
Show window
(thread ends)

Loop forever:
 Get system event
 Invoke callback

Callback code:
 create SwingWorker
 start it executing

Worker thread

Worker thread execution:
 invoke doInBackground()
 run complex numeric algorithm
 store result in SwingWorker
 signal to UI that we are done

SwingWorker

result : Long

64 15-214

Summary

• GUIs are full of design patterns
– Strategy pattern
– Template Method pattern
– Composite pattern
– Observer pattern
– Decorator pattern
– Façade pattern
– Adapter pattern
– Command pattern
– Model-View-Controller

• Swing for Java GUIs
• Separation of GUI and Core

	Principles of Software Construction: Objects, Design, and Concurrency�(Part 3: Design Case Studies)��Introduction to GUIs��Jonathan Aldrich	Charlie Garrod
	Administrivia
	Key concepts from Tuesday
	Key concepts from Tuesday
	Key concepts from recitation yesterday
	Key concepts from yesterday's recitation
	The Observer design pattern
	The Observer design pattern
	Learning goals for today
	Aside: Anonymous inner classes in Java
	Scope within an anonymous inner class
	Scope within an anonymous inner class
	Scope within an anonymous inner class
	Today: Introduction to Graphical User Interfaces (GUIs)
	Event-based programming
	Examples of events in GUIs
	Examples of events in GUIs
	Interaction with command-line interfaces
	GUIs without event-based programming
	Event-based GUIs
	Event-based GUIs
	(Blocking) Interactions with users
	Interactions with users through events
	Programming an event-based GUI
	Programming an event-based GUI
	Example: The AlarmWindow
	Example: The CustomerManagementUI
	GUI frameworks in Java
	Swing
	Swing has many widgets
	To create a simple Swing application
	Slide Number 32
	Creating a button
	Creating a button
	ActionListeners
	ActionListeners
	ActionListeners
	Recall the observer design pattern
	Design discussion
	Swing has many event listener interfaces:
	Slide Number 41
	A GUI design challenge
	A GUI design challenge, part 2
	A GUI design challenge, part 3
	A GUI design challenge, part 3: one possible design
	A GUI design challenge, part 3: one possible design
	Core implementation vs. GUI
	A GUI design challenge, part 3: one possible design
	Decoupling with the Observer pattern
	An architectural pattern: Model-View-Controller (MVC)
	Model-View-Controller (MVC)
	Separating application core and GUI, a summary
	Slide Number 53
	Swing layouts
	A naïve hard-coded implementation
	A better solution: delegate the layout responsibilities
	Recall the strategy pattern
	Another GUI design challenge: nesting containers
	Recall the composite design pattern
	Yet another GUI design challenge: partial customization
	Recall the template method pattern
	The Swing threading architecture
	The Swing threading architecture: worker threads
	Summary

