Principles of Software Construction: Objects, Design, and

Concurrency
(Part 3: Design Case Studies)

Introduction to GUIs

Jonathan Aldrich Charlie Garrod

School of

Computer Science
=

institute for
I S SOFTWARE
RESEARCH

= institute for
15-214 1 SN

Administrivia

e Homework 4a due tonight
e Homework 4b due Thursday, October 22

ite for

= institL -
15-214 2 sorTinse

Key concepts from Tuesday

-
institute for
15-214 3 it

Key concepts from Tuesday

e Formal verification

 Testing
— Coverage metrics
— Black-box vs. white-box testing

e Static analysis

ite for

= institL
15-214 4 sorTinse

Key concepts from recitation yesterday

te for

= institute
15-214 5 sorTinse

Key concepts from yesterday's recitation

e Discovering design patterns
e The Observer pattern

ite for

= institL
15-214 6 sorTinse

The Observer design pattern

«stereatvpes #slereatvpes
Subject Observer
{abstract } abs EWET“S___ {intefface }
+altach[observer; Qbserver] ;woid »— | +lpdate() {abstract }
+Detach[observer: Dbserver] :woid
+Motify]
A)
) I,
Maotif] {
forall o on abservers §
o pdate[];
h
stereatvpes «slerentypes
ConcreteSubject ConcreteObserver
1
+z1bjectState: State S +lpdate[]
+GelStale]] State subject
+3SetState[stake: State) ;wvoid

15-214

7

institute for
SOFTWARE
RESEARCH

The Observer design pattern

e Applicability

— When an abstraction has two e Tereyoe
Interdependent aSpECtS and +.Mta;:h[nhserif1|::sl:t}ml:§§wer]:'-.:'uid '3"1'3'5’““3:’3 +Updﬂle[i{-::r:t?£:f‘fcii
you wWa nt to reuse both :agtﬁh][nhsewerﬂhsewer]:vu:uiu:l

— When state change to one R L
ObJECt reqUIreS nOtIfylng NDIEEE{B]JI{D on observers |

1 H o Lpdate(];
others, without becoming | pate(;
dependent on them
* Consequences | |
astereatypes astereatypes

— Loose cou pllng between ConcreteSubject 1 ConcreteObserver
subject and observer, SISO o SVTEEY
enha nc|ng reuse +5SetState(statbe: State] :woid

— Support for broadcast
communication

— Notification can lead to further
updates, causing a cascade
effect

institute for
15-214 8

Learning goals for today

 Understand the design challenges and common solutions for
Graphical User Interfaces (GUIs)

 Understand event-based programming

 Understand and recognize the design patterns used and how
those design patterns achieve design goals.

Observer pattern
Strategy pattern
Template method pattern
Composite pattern
Model-view-controller

Other common GUI design patterns not discussed here: Decorator,
Facade, Adapter, Command, ...

e Diagnose problems caused by computation in the GUI threads

15-214

ite f

institute tor
RESEARCH

Aside: Anonymous inner classes in Java

 You can implement an interface without naming the
implementing class

— E.g.,
public interface Runnable {
public void run();

¥

public static void main(String[] args) {
Runnable greeter = new Runnable() {
public void run() A
System.out.println("Hi mom!");

}
}s

greeter.run();

ite for

= institL C
15-214 10 sorTinse

Scope within an anonymous inner class

e An anonymous inner class can access final (or effectively final)
variables in the scope where it is defined

public interface Runnable {
public void run();

¥

public static void main(String[] args) {
final String name = "Charlie"; // final variable
Runnable greeter = new Runnable() {
public void run() A
System.out.println("Hi " + name);

}
}s \

greeter.run();

OK

ite for

} = institL C
15214 11 sorTinse

Scope within an anonymous inner class

e An anonymous inner class can access final (or effectively final)
variables in the scope where it is defined

public interface Runnable {
public void run();

¥

public static void main(String[] args) {
String name = "Charlie"; // not final, but could be
Runnable greeter = new Runnable() {
public void run() {
System.out.println("Hi " + name);

}
}s \

greeter.run();

OK

ite for

} = institL C
15214 12 sorTinse

Scope within an anonymous inner class

e An anonymous inner class can access final (or effectively final)
variables in the scope where it is defined

public interface Runnable {
public void run();

¥

public static void main(String[] args) {
String name = "Charlie"; // not final; assigned Later
Runnable greeter = new Runnable() {
public void run() {
System.out.println("Hi " + name);

}
}s \

name = ‘“Jonathan”;)]
Compile-time
greeter.run();
error
ite f

} - institute tor
15214 13 L

Today: Introduction to Graphical User Interfaces (GUIs)

e Event-based programming

e Building a GUI using Java Swing

 Event-handling and decoupling with the Observer pattern
e GUI design challenges

— Design patterns that solve them

e Practical advice: Threading architecture of a typical GUI

> |

-
institute tor
15-214 14 L

Event-based programming

e Style of programming where control-flow is driven by (usually
external) events

public void performAction(ActionEvent e) {
List<String> Ist = Arrays.asList(bar); & pouctoin Fle Gt Viw lmen Forms\ Aringe Toos SideShon Winig § el
foo.peek(42) e

s © 9

3T 4 @ emED Thll33AM Chares Garrod Qi

3

public void performAction(ActionEvent e) {
bigBloatedPowerPointFunction(e);
withANameSoLongIMade I tTwoMethods(e) ;
yeslKnowJavaDoesntWorkLikeThat(e);

¥

public void performAction(ActionEvent e) {
List<String> Ist = Arrays.asList(bar);
foo.peek(40)

3

institute for
15-214 15 it

Examples of events in GUIs

- institute for
15-214 16 it

Examples of events in GUIs

e User clicks a button, presses a key

e User selects an item from a list, an item from a menu, expands a
tree

 Mouse hovers over a widget, focus changes
e Scrolling, mouse wheel turned
e Resizing a window, hiding a window

e Dragand drop

A package arrives from a web service, connection drops, ...
e System shutdown, ...

ite for

= institL C
15-214 17 sorTinse

Interaction with command-line interfaces

Terminal — O

File Edit View Search Terminal Help

scripts/kconfig/conf arch/x86/Kconfig
*

Linux Kernel Configuration

*
*
*
*

General setup

Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?]
Local version - append to kernel release (LOCALVERSION) []
Automatically append version information to the version string (LOCALVERSION_AUT
0) [N/y/?]y
Kernel compression mode
> 1. Gzip (KERNEL noucams
2Rl PCClE Scanner input = new Scanner(System.in);
3. LZMA (KERNEL . i
FIRPLNCGE M While (questions.hasNext()) {
choice[1-47]: 3

support for pagin Question g = question.next();
system V IPC (SYS : : .
e o G System.out.printIn(q.toString());
BSD Process Accou String answer = input.nextLine();
Export task/proce

1y g.respond(answer);

Enable per-task

GUIs without event-based programming

File Edit View S3Search BRun

Debug Options UWindow Help §

ndex

ontents
You have a royalty-free right to use, modify, repr

and distribute the szample applications and toolkit eyboard
Viswal Basic for M3-D05S (and-sor any modified versi
in any way you find useful, provided that you agre|EEiyilise F1
Microsoft has no warranty, obligations or liabilit|Eeii-agI/ge=ay\ shift+F1
any of the sample applications or toolkits. T torial

1

"SINCLUDE: 'clock.bi’ . .
- SRR if (iskeyDown(“Alt+Q”)
ONST FALSE = 0

ONST TRUE = NOT FALSE break;
ONST ALARMSOUND = “MBTZ55L1f g fe

if (iskeyDown(“F1”)
IM SHARED AlarmTinme AS STRII .
IM SHARED TimeFnmt AS STRING openHelp();

if (isMouseDown(10 ...)
startMovingWindow();

Event-based GUIs

£ Form Preview [ContactEditor]

Name //static public void main...
First Hame: || JFrame window = ...
Tile: window.setDefaultCloseOperation(
Display Formati | tem | WindowConstants.EXIT_ON_CLOSE);
Co window.setVisible(true);

fAdd

E-mail Address:

Ikem 1 Edit

Ikem 2

Ikem 3 Remave

Ikem 4

Them S Advanced
//on add-button click:
String email =

Mail Forrnat: e
emaillist.add(email);

l LIk,]1 Lancel]

- institute for
15-214 OO | S [R

Event-based GUIs

£ Form Preview [ContactEditor] [Z”E|[E|
Name //static public void main...
First Mame: | | JFrame WindOW = ...
Title:

window.setDefaultCloseOperation(
WindowConstants.EXIT _ON_CLOSE);

Display Farmat: | Ikem 1

E-ma window.setVisible(true);
E-mail Address: Add
Ikem 1 Edit
Ikem 2
Ikem 3 Femove
Ikem 4
Them S fdvanced
//on add-button click:
— String ema //on remove-button click:
(CYHTML () Plain Te €M int POsS =
emaillist.al emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);

15-214 m institute for

SOFTWARE
21 LEC AN RESEARCH

(Blocking) Interactions with users

"4
Player
I Ll
newGame | :
S |
|
| |
: |
| |
| |
i . »
' / getAction \ | :
: I > blocking
| action | execution
| |
e 7
: [action==hit] addCard |
|
|
|
|
|

institute for
SOFTWARE
RESEARCH

- _-_¥

15-214

Interactions with users through events

Do not block waiting for user response
* Instead, react to user events

e.g..
Game Dealer Player

newGame : : :
p | |

: addCards : :

| |

| > |

| addCards |

| | |

| | o

| | |

| | |

| | |

| | |

| | |

| | |

hit ' ' '

| | |

P | |

| addCard |

1524 i i > [i

Programming an event-based GUI

e Typically use a GUI framework

— Register code (a.k.a. callbacks) to handle different
events

— Operating system / GUI framework detects events

e Determines which components are registered to
handle the event and calls the event handlers

e Your code is idle until called to handle events
— Program exits by calling some exit method

15-214

Application

event—
mouse, key,
redraw, ...

drawing
commands

GUI
Framework

get
event

0S

-
institute for
B sOFTWARE
24 Al RESEARCH

Programming an event-based GUI

e Setup phase
— Describe how the GUI window should look
— Use libraries for windows, widgets, and layout
— Embed specialized code for later use
— Register callbacks

 Execution
— Framework gets events from OS

* Raw events: mouse clicks, key presses, window
becomes visible, etc.

— Framework processes events
e Click at 10,40: which widget?
e Resize window: what to re-layout and redraw?

— Triggers callback functions of corresponding widgets
(if registered)

15-214

Application

event—
mouse, key,
redraw, ...

drawing
commands

GUI
Framework

get
event

0S

-
e ctitute for
25 i C [SOFTWARE
Al RESEARCH

Example: The AlarmWindow

e ..edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow
— Creates a JFrame with a JPanel to goin it
— Creates a text label and a button
— Makes the window (and its contents) visible when the alarm goes off

e When the dismiss button is clicked, its event handler hides the
window

ite for

= institL C
15-214 26 sorTinse

Example: The CustomerManagementUl

e ...recO6.customerlist.gui.CustomerManagementUl
— Creates a JFrame with a JPanel to goin it
— Makes the window (and its contents) visible

e ...recO6.customerlist.gui.CustomerManagementPanel
— Creates numerous labels and text fields, a customerAddButton

— Registers an event handler for the customerAddButton

e When the customerAddButton is clicked, its event handler gets
the text from the text fields and adds a customer to the list

ite for

= institL C
15-214 27 sorTinse

GUI frameworks in Java

o AWT

— Native widgets, only basic components, dated
* Swing

— Java rendering, rich components

e SWT + JFace

— Mixture of native widgets and Java rendering; created for Eclipse for
faster performance

e QOthers
— Apache Pivot, SwingX, JavaFX, ...

e Different in their specific designs, but similar overall strategies
and concepts

- institute for
15-214 28 AN

Swing

JFrame

JPanel

JButton

JTextField

15-214

MenuWidgetl MenuWidget2

ToolbarButton| [v] ToolbarCheckBox

PanelCaption

Panel [SelectedTab | OtherTab
Item 1 ® RadioButtonl [] UncheckedCheckBox
ftem 2) RadioButton2 CheckedCheckBox
Item 3 q
tem 4) RadioButton3] InactiveCheckBox
[tem 5 i) InactiveRadio
Button . i
TextField | TextArea
|----|||-----| |
Item 1 -

29

institute for
SOFTWARE
RESEARCH

Swing has many widgets

e JLabel e JTextField

* JButton * JTextArea

e JCheckBox e JList

e JChoice e JScrollBar
e JRadioButton e ...and more

e JFrame is the Swing Window

e JPanel (aka a pane) is the container to which you add your components (or
other containers)

- institute for
15-214 30 it

To create a simple Swing application

e Make a Window (a JFrame)
e Make a container (a JPanel)
— Putitin the window

 Add components (Buttons, Boxes, etc.) to the container

— Use layouts to control positioning
— Set up observers (a.k.a. listeners) to respond to events
— Optionally, write custom widgets with application-specific display logic

e Set up the window to display the container

e Then wait for events to arrive...

ite for

= institL C
15-214 31 sorTinse

Reacting to events

Creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.out.println(“Button clicked”);

}
O
panel.add(button);

window.setVisible(true);

- institute for
15-214 33 e

Creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e)
System.out.println(“Button clicked”);

}
O
panel.add(button);

window.setVisible(true);

- = insti for
) ,CJ institute
15-214 34 S

ActionListeners

e Listeners are objects with callback functions
e Listeners can be registered to handle events on widgets
e All registered widgets are called if event occurs

interface ActionListener {
void actionPerformed(ActionEvent e);

}

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

- institute for
15-214 35 it

ActionListeners

e Listeners are objects with callback functions
e Listeners can be registered to handle events on widgets
e All registered widgets are called if event occurs

interface ActionListener {
void actionPerformed(ActionEvent e);

}

class ActionEvent {

class AbstractButton extends JComponent {
private List<ActionListener> listeners;
public void addActionListener(ActionListener 1) {
listeners.add(1l);
}
protected void fireActionPerformed(ActionEvent e) {
for (ActionListener 1l: listeners)
1l.actionPerformed(e);

15-2] }

ActionListeners What design
pattern is this?

e Listeners are objects with callback functions
e Listeners can be registered to handle events on widgets
e All registered widgets are called if event occurs

interface ActionListener {
void actionPerformed(ActionEvent e);

}

class ActionEvent {

class AbstractButton extends JComponent {
private List<ActionListener> listeners;
public void addActionListener(ActionListener 1) {
listeners.add(1l);
}
protected void fireActionPerformed(ActionEvent e) {
for (ActionListener 1l: listeners)
1l.actionPerformed(e);

15-2] }

Recall the observer design pattern

«stereatvpes #slereatvpes
Subject Observer
{abstract } abs EWET“S___ {intefface }
+altach[observer; Qbserver] ;woid »— | +lpdate() {abstract }
+Detach[observer: Dbserver] :woid
+Motify]
A)
) I,
Maotif] {
forall o on abservers §
o pdate[];
h
stereatvpes «slerentypes
ConcreteSubject ConcreteObserver
1
+z1bjectState: State S +lpdate[]
+GelStale]] State subject
+3SetState[stake: State) ;wvoid

15-214

sz [Hi

institute for
SOFTWARE
RESEARCH

Design discussion

e Button implementation should be reusable but customizable

— Different button label, different event-handling
e Must decouple button's action from the button itself
e Listeners are separate independent objects

— A single button can have multiple listeners
— Multiple buttons can share the same listener

ite for

= institL C
15-214 39 sorTinse

Swing has many event listener interfaces:

ActionListener
AdjustmentListener
FocusListener
ltemListener
KeyListener

Mouselistener
TreeExpansionlListener
TextListener
WindowlListener

...and on and on...

interface ActionListener {

void actionPerformed(ActionEvent e);

¥

15-214

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();

Decoupling from
a GUI

A GUI design challenge

e Consider the transit simulator, implemented by a World class:
— Simulator World stores all entities
— GUI shows entities, triggers new events in simulator
— When should the GUI update the screen?

World Ul

step

getData

ey b

|
|
|
|
|
|
|
|
> update
|
ite for

= institL C
15-214 42 sorTinse

A GUI design challenge, part 2

e What if we add a warning to alert if a bus has moved?

World GUI Warning

step

getData

D update

: update

|
getData

/N T T T T TN TN T

update

-

ite for

= institL -
15-214 43 sorTinse

A GUI design challenge, part 3

e What if the simulator world changes for reasons not caused by
the GUI?

World GUI Warning

step

|
|
|
|
getData :
|

D update

: update

|
getData

update

/N T T T T TN TN T

-

ite for

= institL -
15-214 44 sorTinse

A GUI design challenge, part 3: one possible design

e Let the World tell the GUI that something happened

15-214

World

=

step

update(data)

E> update

update(data)

Warning

Rt ettt wiaky \CEt

update

institute for

-
SOFTWARE
45 I sr RESEARCH

A GUI design challenge, part 3: one possible design

e Let the World tell the GUI that something happened

World GUI Warning
|
step :
|
update(data) :
——) g
D update

update(data)

> update

e it el

——— N]

Problem: This couples the World to the GUI implementation.

- institute for
15-214 a6 AN

Core implementation vs. GUI

e Core implementation: Application logic

— Computing some result, updating data

e GUI
— Graphical representation of data
— Source of user interactions

e Design guideline: Avoid coupling the GUI with core application
— Multiple Uls with single core implementation

— Test core without Ul

— Design for change, design for reuse, design for division of labor; low
coupling, high cohesion

- institute for
15-214 a7

A GUI design challenge, part 3: one possible design

e Let the World tell the GUI that something happened

World GUI Warning
|
step :
|
update(data) :
——) g
D update

update(data)

> update

e it el

——— N]

Problem: This couples the World to the GUI implementation.

- institute for
15-214 48 AN

Decoupling with the Observer pattern

e Let the world tell all interested components about updates

15-214

Warning

;(ED update

World GUI
| |
| register ,
< |
| .
> register
A |
|
> step |
N . '
| notify '
| N
i 4
|
|
|
|
|
|

.

49

update

institute for
SOFTWARE
RESEARCH

An architectural pattern: Model-View-Controller (MVC)

(Manage inputs from
user: mouse, keyboard,

= ———— Controller menu, etc.
' ' h
I
Model :
A Y

cecclh sessesen View

Manage display of
information on the
screen

Manage data related to
the application domain

- institute for
15-214 50 L

Model-View-Controller (MVC)

Passive model :Controller Model View
T | T
handleEvent ° ' '
———————————— Controller ! !
I 1
w T service I 1
' 1
Model I >U :
' i
A" I 1
Jh' update i
____________ View T >
D < getData
I
_— i T
I 1 L}
Active model Model View
I -------------------------- [:mltm”ar I .
| I handieEwvent . ’
I v ' ' ' :
1 Motify
v .| <<interface>> I - ' :
Model = = Observer I update !
+Update() 1 -
‘OI\ y gailData
. » v
S Sininlininiulinlainl View [____Dgtﬂ____
http://msdn.microsoft.com/en-us/library/ff649643.aspx _—I-' :
1 = ginstitute for
15-214 : 51 oL

Separating application core and GUI, a summary

e Reduce coupling: do not allow core to depend on Ul

e (Create and test the core without a GUI

— Use the Observer pattern to communicate information from the core
(Model) to the GUI (View)

=) institute for
S ﬂ SOF TWARE
Al RESEARCH

15-214

More GUI
design challenges

Swing layouts

BoxLayoutDemo [= |[B(X]

B3 FlowLayoutDemo H=]E3 Button 1
Button 1 Button 2 Button 3 Long-Mamed Button 4 b} Button 2
Button 3

The simplest, and default, layout. Long-Named Button 4
Wraps around when out of space. u

Like FlowLayout, but no wrappir

GridLayoutDemo
_ BorderLayoutDemo
Bullor| Butter 2 Button 1 (PAGE_START)
Button 3 Long-Mamed Button 4
Button 3 (LINE_START) Button 2 (CEMTER]) S (LINE_EMD)
a

Harizantal gap: Wartical gap:

Long-Mamed Button 4 (PAGE_EMD)

u w |0 ¥ | Apply gaps

More sophisticated layout managers

see http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

15-214 54

-
e ctitute for
SOFTWARE
Al RESEARCH

A naive hard-coded implementation

class JPanel {
protected void dolLayout() {
switch(getLayoutType()) {
case BOX LAYOUT: adjustSizeBox(); break;
case BORDER_LAYOUT: adjustSizeBorder(); break;

¥

}
private adjustSizeBox() { .. }

¥

A new layout would require changing or overriding JPanel

ite for

= institL C
15-214 55 sorTinse

A better solution: delegate the layout responsibilities

e Layout classes, e.g.:
contentPane.setlLayout(new FlowlLayout());
contentPane.setlLayout(new GridLayout(4,2));

e Similarly, there are border classes to draw the borders, e.g.:
contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));

What design
pattern is this?

ite for

= institL C
15-214 56 sorTinse

Recall the strategy pattern

«stereatvpes
Context

atralegg_

+ontextint erface| |

15-214

sterealypes
Strateqgy
{intetfface }

+Alqanthmlnterfac el] { abstract ¥

T

«slereolypes
ConcreteStrategy

+&lgorithrnint erface]]

it

institute tor
SOFTWARE
57 RESEARCH

f

Another GUI design challenge: nesting containers

A JFrame contains a JPanel, which contains a JPanel (and/or
other widgets), which contains a JPanel (and/or other widgets),
which contains...

Message [ﬁj H

,f:‘: i:, Ec-r.d erLayout()
GridLayout{1,0)
Panel 1 Panel 2
GridLayout{1,0)
Panel 3Panel 4Panel 5{Panel 6

oK What design
pattern best
models this?

- institute for
15-214 58 it

Recall the composite designh pattern

15-214

#stereatypes
Client

#stereabypes
Component
Labstract } children
+addicompanent: Component] ; vaid n
+Remove[camponent: Component] - boolean
+GetChild{index: int] : Companent
+perakion]]
#sbereatypes #sbereatypes
L eaf Composite
+peration|] +Add[companent: Component] s woid e

+Remave[component: Camponent] : boolean

+GetChildlindex:int] : Component

+0perakion(]

Operation(] §

forall gin children {
g.operation(];

59

institute for
SOFTWARE
RESEARCH

Yet another GUI design challenge: partial customization

JComponent.

public woid paint (Graphics)

Inwoked by Swing to draw components. Applications should neot invoke paint
directly, but should tnstead use the repaint method to schedule the component for
redrawing.

Thiz method actually delegates the work of painting to three protected methoda:
paintCDmpDnent,paintEDrder,&ﬂdpaintﬂhildren.ThEFTEEaHEdinthEGrdm'
listed to ensure that children appear on top of component itself. Generally speaking,
the component and its children should not paint in the tnsets area allocated to the

border. Subclasses can st override this method, as always. & subclass that just wants
to specialize the Ul (look and feel) delegate's paint method should just overnde -
pailntComponent.
Overrides:
paintinlﬂaSSCDntainer
Parameters:
o - the Graphics context in which to paint
see Also:

paintComponent [Java.awt . Graphics),

1 paintbBorder (Java.awt.craphics), paintChildren(java.awt . craphics), &g
] CH

B R N e N N N Ll L Lt L L R L L P — R R Lt Rt = o T LT o EIELE o

Recall the template method pattern

e Applicability
— When an algorithm consists of

varying and invariant parts that must
be customized

— When common behavior in

subclasses should be factored and
localized to avoid code duplication

— To control subclass extensions to

specific operations

* Consequences
— Code reuse
— Inverted “Hollywood” control: don’t

call us, we’ll call you

— Ensures the invariant parts of the

15-214

algorithm are not changed by
subclasses

satereotvpes
AbstractClass
{abstract }

+Tetnplatebdethod(] {final }
#PrimitiveCperation] | {abstract }

satereotvpes
ConcreteClass

APrrmitiveCperation])

Ternplatebdethod(] {

E‘ﬁmitive@pemlinn[];

1

61

institute for
SOFTWARE
RESEARCH

The Swing threading architecture

main() thread

Create window
Set up callbacks
Show window

(thread ends)

15-214

GUI thread

Loop forever:
Get system event
Invoke callback

e.g. callback code:
Run complex numeric algorthim
(Problem: Ul is unresponsive)

Show result

PP stifyte

{Ol

WARE

SOFT
RESEAR

£h

The Swing threading architecture: worker threads

main() thread

Create window
Set up callbacks
Show window
(thread ends)

GUI threadFrisa s

Get system event
Invoke callback

Callback code:
create SwingWorker
start it executing

Worker thread

Worker thread execution:
invoke dolnBackground()

SwingWorker

run complex numeric algorithm
store result in SwingWorker
signal to Ul that we are done

result : Long

PP inctitute for

SOFTWARE
RESEARCH

15-214 63

Summary

e GUIs are full of design patterns

Strategy pattern
Template Method pattern
Composite pattern
Observer pattern
Decorator pattern

Facade pattern

Adapter pattern
Command pattern
Model-View-Controller

e Swing for Java GUIs

e Separation of GUI and Core

15-214

64

institute for
SOFTWARE
RESEARCH

	Principles of Software Construction: Objects, Design, and Concurrency�(Part 3: Design Case Studies)��Introduction to GUIs��Jonathan Aldrich	Charlie Garrod
	Administrivia
	Key concepts from Tuesday
	Key concepts from Tuesday
	Key concepts from recitation yesterday
	Key concepts from yesterday's recitation
	The Observer design pattern
	The Observer design pattern
	Learning goals for today
	Aside: Anonymous inner classes in Java
	Scope within an anonymous inner class
	Scope within an anonymous inner class
	Scope within an anonymous inner class
	Today: Introduction to Graphical User Interfaces (GUIs)
	Event-based programming
	Examples of events in GUIs
	Examples of events in GUIs
	Interaction with command-line interfaces
	GUIs without event-based programming
	Event-based GUIs
	Event-based GUIs
	(Blocking) Interactions with users
	Interactions with users through events
	Programming an event-based GUI
	Programming an event-based GUI
	Example: The AlarmWindow
	Example: The CustomerManagementUI
	GUI frameworks in Java
	Swing
	Swing has many widgets
	To create a simple Swing application
	Slide Number 32
	Creating a button
	Creating a button
	ActionListeners
	ActionListeners
	ActionListeners
	Recall the observer design pattern
	Design discussion
	Swing has many event listener interfaces:
	Slide Number 41
	A GUI design challenge
	A GUI design challenge, part 2
	A GUI design challenge, part 3
	A GUI design challenge, part 3: one possible design
	A GUI design challenge, part 3: one possible design
	Core implementation vs. GUI
	A GUI design challenge, part 3: one possible design
	Decoupling with the Observer pattern
	An architectural pattern: Model-View-Controller (MVC)
	Model-View-Controller (MVC)
	Separating application core and GUI, a summary
	Slide Number 53
	Swing layouts
	A naïve hard-coded implementation
	A better solution: delegate the layout responsibilities
	Recall the strategy pattern
	Another GUI design challenge: nesting containers
	Recall the composite design pattern
	Yet another GUI design challenge: partial customization
	Recall the template method pattern
	The Swing threading architecture
	The Swing threading architecture: worker threads
	Summary

