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Administrivia 

• Homework 6, homework 6, homework 6… 
§ Due Thursday, 11:59 p.m. 
§ May turn in as late as Saturday, 11:59 p.m. 

• Final exam review session 
§ Saturday, May 10th, 6 – 8 p.m., PH 100 

• Final exam 
§ Monday, May 12th, 5:30 – 8:30 p.m., UC McConomy 

• Faculty course evaluations 
§ https://cmu.smartevals.com/ 

• TA feedback(?) 
§ Email from Greg Kesden coming soon(?) 
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Last time… 
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Data consistency 

• Suppose D is the database for some application and 
ϕ is a function from database states to {true, false} 
§ We call ϕ an integrity constraint for the application if ϕ(D) is 
true if the state D is "good" 

§ We say a database state D is consistent if ϕ(D) is true for 
all integrity constraints ϕ 

§ We say D is inconsistent if ϕ(D) is false for any integrity 
constraint ϕ 

• Transaction ACID properties: 
§ Atomicity:   All or nothing 
§ Consistency:   Application-dependent as before 
§  Isolation:   Each transaction runs as if alone 
§ Durability:   Database will not abort or undo work of 

   a transaction after it confirms the commit 



 
5 15-­‐214 

The CAP theorem for distributed systems 

• For any distributed system you want… 
§ Consistency 
§ Availability 
§  tolerance of network Partitions 

• …but you can support at most two of the three 
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Today:  Case study in consistency, and PageRank 

• Google's PageRank algorithm 

• Ruminations on data consistency 
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A "university" search, circa 1997 
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<TITLE>Carnegie Mellon University - Computing Services 
- Network Group</TITLE> 

 

<CENTER><IMG ALT="Carnegie Mellon University - 
Computing Services - Network Group“             
SRC="http:/icons/campnet.jpg"></CENTER><P>  

 

<H2>Departments</H2>  

<DL>  

  <DD> <IMG SRC="http://www.net.cmu.edu/icons/
greenball.gif">  <A HREF="http://www.net.cmu.edu/
datacomm/home.html"> <B> Data Communications</B></A>  

… 

Traditional information retrieval 

• 1997’s http://www.net.cmu.edu: 
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Improving IR with citation counts 

• If a page is important, other pages link to it 
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PageRank:  weighted citations 

• If a page is important, other important pages link to 
it 

… 
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PageRank:  weighted citations 

• If a page is important, other important pages link to 
it 

§  e.g., 
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PageRank:  weighted citations 

• If a page is important, other important pages link to 
it 

§  e.g., 
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PageRank:  weighted citations 

• If a page is important, other important pages link to 
it 

§  e.g., 
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PageRank:  weighted citations 

• If a page is important, other important pages link to 
it 

§  Is this well-defined? 
§ How do we compute it? 
§ How do we compute it efficiently? 
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The WWW as a graph as a matrix 
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The WWW as a graph as a matrix 

0 1 0 0 

0 0 1/2 1/2 

0 1 0 0 

1/3 1/3 1/3 0 

• PageRanks R = [r1, r2, … rn] solve the linear 
equation R = R * W 
§  R is an eigenvector of the Web 
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The power method 

• (under some conditions) To find an eigenvector v 
of a matrix M 
§ Start with some approximation of v:  v0 
§ Compute repeatedly: 

   



 
18 15-­‐214 

• Assign some initial PageRank R 

• While R hasn't converged, compute “next” 
PageRanks from the previous PageRanks 

The power method for PageRank 

PageRank(G,delta)	
  
	
  	
  	
  	
  Initialize	
  R	
  =	
  something,	
  R’	
  =	
  0	
  
	
  	
  	
  	
  while	
  (R	
  –	
  R’	
  >	
  delta)	
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  R[v]	
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  (R’[u]	
  /	
  out-­‐deg(u))	
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A PageRank example 
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Convergence of the power method 

Theorem:   

 For any initial PageRanks summing to 1, the 
power method will converge to a well-defined, 
unique solution if the transition matrix W is 
stochastic, aperiodic, and irreducible 
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A stochastic transition matrix 

• A transition matrix is stochastic if all rows sum to 
1 
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A stochastic transition matrix 

• A transition matrix is stochastic if all rows sum to 
1 

0 0 0 0 
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A stochastic transition matrix 

• A transition matrix is stochastic if all rows sum to 
1 
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An aperiodic transition matrix 

• A transition matrix is periodic if there is an integer 
k > 1 such that the interval between visits of two 
vertices is always a multiple of k 
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An aperiodic transition matrix 

• A transition matrix is periodic if there is an integer 
k > 1 such that the interval between visits of a 
vertex is always a multiple of k 
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An irreducible transition matrix 

• The transition matrix is irreducible if it’s possible 
to (eventually) reach each state from any other 
state 
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An irreducible transition matrix 

• The transition matrix is irreducible if it’s possible 
to (eventually) reach each state from any other 
state 
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Computing PageRank efficiently 

• Can keep Web graph on disk 
§  PageRanks in RAM 
§ Do not store modifications that made W stochastic, 
aperiodic, and irreducible 

§ Use smart initial PageRanks 

• Can partition Web graph between computers 
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Aside:  Problems with PageRank 
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Problem with PageRank computation… 

• In spring 2000, Google's web-crawling system 
failed too frequently to update their web index 
§  Their solution:  Google File System and MapReduce 
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Problem with PageRank computation… 

• In spring 2000, Google's web-crawling system 
failed too frequently to update their web index 
§  Their solution:  Google File System and MapReduce 

• How bad is this web service outage? 
§ …in terms of data consistency 
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Data consistency at Facebook 

• Replication for scalability: 
§ Read-any, write-all 
§  Palo Alto, CA is primary replica 

§ Aside:  A 2010 conversation: 
Academic researcher:  What would happen if X occurred? 
Facebook engineer:  We don't know.  X hasn't happened 
yet but it would be bad.  
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Data consistency at Amazon 

• Strict data consistency increases real costs 
Amazon engineer:  "'Usually ships in 2-3 days'?  What does 
that mean?  Absolutely nothing."  
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A common reality:  Relaxed data consistency 

• Relaxed in time 
§ E.g., Time-to-live in a data cache 

• Relaxed in value 
§  I.e., within some error bound from the correct value 

• Other consistency guarantees 
§ E.g., Causal consistency  
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Summary 

• Google makes $billions by treating us all like 
random surfers 
§  PageRank as iterative, weighted citation rankings 

• WWW graph modifications needed to compute 
PageRank 

• Data consistency can be more than a boolean 
function 
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Thursday… 

• Guest lecture by Claire Le Goues 


