
	

	

	

Spring	
 2014	

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Distributed System Design, Part 4

 Charlie Garrod Christian Kästner

2 15-­‐214

Administrivia

• Homework 6, homework 6, homework 6…

• Upcoming:
§  This week: Distributed systems and data consistency
§ Next week: TBD and guest lecture
§  Final exam: Monday, May 12th, 5:30 – 8:30 p.m. UC
McConomy

§  Final exam review session: Saturday, May 10th, 6 – 8
p.m. PH 100

3 15-­‐214

Last time…

4 15-­‐214

Today: Distributed system design, part 4

• General distributed systems design
§  Failure models, assumptions
§ General principles
§ Replication and partitioning
§ Consistent hashing

5 15-­‐214

Types of failure behaviors

• Fail-stop

• Other halting failures

• Communication failures
§ Send/receive omissions
§ Network partitions
§ Message corruption

• Performance failures
§ High packet loss rate
§  Low throughput
§ High latency

• Data corruption

• Byzantine failures

6 15-­‐214

Common assumptions about failures

• Behavior of others is fail-stop (ugh)

• Network is reliable (ugh)

• Network is semi-reliable but asynchronous

• Network is lossy but messages are not corrupt

• Network failures are transitive

• Failures are independent

• Local data is not corrupt

• Failures are reliably detectable

• Failures are unreliably detectable

7 15-­‐214

Some distributed system design goals

• The end-to-end principle
§ When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

• The robustness principle
§ Be strict in what you send, but be liberal in what you
accept from others
• Protocols
• Failure behaviors

• Benefit from incremental changes

• Be redundant
§ Data replication
§ Checks for correctness

8 15-­‐214

Replication for scalability: Client-side caching

• Architecture before replication:

§  Problem: Server throughput is too low

• Solution: Cache responses at (or near) the client
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

9 15-­‐214

Replication for scalability: Client-side caching

• Hierarchical client-side caches:

client

front-end

client

front-end

{alice:90,
 bob:42,
 …}

database server:

cache

cache

cache

client

client

cache

cache

cache

10 15-­‐214

Replication for scalability: Server-side caching

• Architecture before replication:

§  Problem: Database server throughput is too low

• Solution: Cache responses on multiple servers
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

cache

11 15-­‐214

Cache invalidation

• Time-based invalidation (a.k.a. expiration)
§ Read-any, write-one
§ Old cache entries automatically discarded
§ No expiration date needed for read-only data

• Update-based invalidation
§ Read-any, write-all
§ DB server broadcasts invalidation message to all caches
when the DB is updated

• What are the advantages and disadvantages of
each approach?

12 15-­‐214

Cache replacement policies

• Problem: caches have finite size

• Common* replacement policies
§ Optimal (Belady's) policy

• Discard item not needed for longest time in future
§  Least Recently Used (LRU)

• Track time of previous access, discard item accessed
least recently

§  Least Frequently Used (LFU)
• Count # times item is accessed, discard item accessed
least frequently

§ Random
• Discard a random item from the cache

13 15-­‐214

Partitioning for scalability

• Partition data based on some property, put each
partition on a different server

client front-end
{cohen:9,
 bob:42,
 …}

client front-end

CMU server:

{alice:90,
 pete:12,
 …}

Yale server: {deb:16,
 reif:40,
 …}

MIT server:

14 15-­‐214

Horizontal partitioning

• a.k.a. "sharding"

• A table of data:
username school value
cohen CMU 9
bob CMU 42
alice Yale 90
pete Yale 12
deb MIT 16
reif MIT 40

15 15-­‐214

Recall: Basic hash tables

• For n-size hash table, put each item X in the
bucket: X.hashCode() % n!

0
1
2
3
4
5
6
7
8
9
10
11
12

{reif:40}

{bob:42}

{pete:12}

{deb:16}

{alice:90}

{cohen:9}

16 15-­‐214

Partitioning with a distributed hash table

• Each server stores data for one bucket

• To store or retrieve an item, front-end server
hashes the key, contacts the server storing that
bucket

client front-end
{reif:40}

client front-end

Server 0:

{bob:42}
Server 3: {pete:12,

 alice:90}

Server 5:

{ }
Server 1:

…

17 15-­‐214

Consistent hashing

• Goal: Benefit from incremental changes
§ Resizing the hash table (i.e., adding or removing a
server) should not require moving many objects

• E.g., Interpret the range of hash codes as a ring
§ Each bucket stores data for a range of the ring

• Assign each bucket an ID in the range of hash codes
• To store item X don't compute X.hashCode() % n.
Instead, place X in bucket with the same ID as or next
higher ID than X.hashCode()!

18 15-­‐214

Problems with hash-based partitioning

• Front-ends need to determine server for each
bucket
§ Each front-end stores look-up table?
§ Master server storing look-up table?
§ Routing-based approaches?

• Places related content on different servers
§ Consider range queries:
 SELECT * FROM users WHERE lastname STARTSWITH 'G'!

19 15-­‐214

Master/tablet-based systems

• Dynamically allocate range-based partitions
§ Master server maintains tablet-to-server assignments
§  Tablet servers store actual data
§  Front-ends cache tablet-to-server assignments

client front-end

k-z:
{pete:12,
 reif:42}

client front-end

Tablet server 1:

a-c:
{alice:90,
 bob:42,
 cohen:9}

Tablet server 2: d-g:
{deb:16}
h-j:{ }

Tablet server 3:

{a-c:[2],
 d-g:[3,4],
 h-j:[3],
 k-z:[1]}

Master:

d-g:
{deb:16}

Tablet server 4:

20 15-­‐214

Combining approaches

• Many of these approaches are orthogonal

• E.g., For master/tablet systems:
§ Masters are often partitioned and replicated
§  Tablets are replicated
§ Meta-data frequently cached
§ Whole master/tablet system can be replicated

21 15-­‐214

Thursday

• Serializability

