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Administrivia 

• Homework 6, homework 6, homework 6… 

• Upcoming: 
§  This week:  Distributed systems and data consistency 
§ Next week:  TBD and guest lecture 
§  Final exam:  Monday, May 12th, 5:30 – 8:30 p.m. UC 
McConomy 

§  Final exam review session:  Saturday, May 10th, 6 – 8 
p.m. PH 100 
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Last time… 
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Today:  Distributed system design, part 4 

• General distributed systems design 
§  Failure models, assumptions 
§ General principles 
§ Replication and partitioning 
§ Consistent hashing 
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Types of failure behaviors 

• Fail-stop 

• Other halting failures 

• Communication failures 
§ Send/receive omissions 
§ Network partitions 
§ Message corruption 

• Performance failures 
§ High packet loss rate 
§  Low throughput 
§ High latency 

• Data corruption 

• Byzantine failures 
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Common assumptions about failures 

• Behavior of others is fail-stop (ugh) 

• Network is reliable (ugh) 

• Network is semi-reliable but asynchronous 

• Network is lossy but messages are not corrupt 

• Network failures are transitive 

• Failures are independent 

• Local data is not corrupt 

• Failures are reliably detectable 

• Failures are unreliably detectable 
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Some distributed system design goals 

• The end-to-end principle 
§ When possible, implement functionality at the end nodes 
(rather than the middle nodes) of a distributed system 

• The robustness principle 
§ Be strict in what you send, but be liberal in what you 
accept from others 
• Protocols 
• Failure behaviors 

• Benefit from incremental changes 

• Be redundant 
§ Data replication 
§ Checks for correctness 
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Replication for scalability:  Client-side caching 

• Architecture before replication: 

§  Problem:  Server throughput is too low 

• Solution:  Cache responses at (or near) the client 
§ Cache can respond to repeated read requests 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

database server: 

client front-end 

client front-end 

{alice:90, 
  bob:42, 
  …} 

database server: cache 

cache 
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Replication for scalability:  Client-side caching 

• Hierarchical client-side caches: 

client 

front-end 

client 

front-end 

{alice:90, 
  bob:42, 
  …} 

database server: 

cache 

cache 

cache 

client 

client 

cache 

cache 

cache 
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Replication for scalability:  Server-side caching 

• Architecture before replication: 

§  Problem:  Database server throughput is too low 

• Solution:  Cache responses on multiple servers 
§ Cache can respond to repeated read requests 

client front-end {alice:90, 
  bob:42, 
  …} client front-end 

database server: 

client front-end 

client front-end 

{alice:90, 
  bob:42, 
  …} 

database server: cache 

cache 

cache 
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Cache invalidation 

• Time-based invalidation  (a.k.a. expiration) 
§ Read-any, write-one 
§ Old cache entries automatically discarded 
§ No expiration date needed for read-only data 

• Update-based invalidation 
§ Read-any, write-all 
§ DB server broadcasts invalidation message to all caches 
when the DB is updated 

• What are the advantages and disadvantages of 
each approach? 
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Cache replacement policies 

• Problem:  caches have finite size 

• Common* replacement policies 
§ Optimal (Belady's) policy 

• Discard item not needed for longest time in future 
§  Least Recently Used (LRU) 

• Track time of previous access, discard item accessed 
least recently 

§  Least Frequently Used (LFU) 
• Count # times item is accessed, discard item accessed 
least frequently 

§ Random 
• Discard a random item from the cache 
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Partitioning for scalability 

• Partition data based on some property, put each 
partition on a different server 

client front-end 
{cohen:9, 
  bob:42, 
  …} 

client front-end 

CMU server: 

{alice:90, 
  pete:12, 
  …} 

Yale server: {deb:16, 
  reif:40, 
  …} 

MIT server: 
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Horizontal partitioning 

• a.k.a. "sharding" 

• A table of data: 
username school value 
cohen CMU 9 
bob CMU 42 
alice Yale 90 
pete Yale 12 
deb MIT 16 
reif MIT 40 
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Recall:  Basic hash tables 

• For n-size hash table, put each item X in the  
bucket: X.hashCode() % n!

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

{reif:40} 
 
 
{bob:42} 
 
{pete:12} 
 
 
 
 
 
{deb:16} 
 

 
  
  
 
{alice:90} 
  
 
 
 
 
{cohen:9}  
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Partitioning with a distributed hash table 

• Each server stores data for one bucket 

• To store or retrieve an item, front-end server 
hashes the key, contacts the server storing that 
bucket 

client front-end 
{reif:40} 

client front-end 

Server 0: 

{bob:42} 
Server 3: {pete:12, 

  alice:90} 

Server 5: 

{         } 
Server 1: 

… 
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Consistent hashing 

• Goal:  Benefit from incremental changes 
§ Resizing the hash table (i.e., adding or removing a 
server) should not require moving many objects 

• E.g., Interpret the range of hash codes as a ring 
§ Each bucket stores data for a range of the ring 

• Assign each bucket an ID in the range of hash codes 
• To store item X don't compute X.hashCode() % n.  
Instead, place X in bucket with the same ID as or next 
higher ID than X.hashCode()!
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Problems with hash-based partitioning 

• Front-ends need to determine server for each 
bucket 
§ Each front-end stores look-up table? 
§ Master server storing look-up table? 
§ Routing-based approaches? 

• Places related content on different servers 
§ Consider range queries:   
 SELECT * FROM users WHERE lastname STARTSWITH 'G'!
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Master/tablet-based systems 

• Dynamically allocate range-based partitions 
§ Master server maintains tablet-to-server assignments 
§  Tablet servers store actual data 
§  Front-ends cache tablet-to-server assignments 

client front-end 

k-z: 
{pete:12, 
  reif:42} 

client front-end 

Tablet server 1: 

a-c: 
{alice:90, 
  bob:42, 
  cohen:9} 

Tablet server 2: d-g: 
{deb:16} 
h-j:{      } 

Tablet server 3: 

{a-c:[2], 
 d-g:[3,4], 
 h-j:[3], 
 k-z:[1]} 

Master: 

d-g: 
{deb:16} 

Tablet server 4: 
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Combining approaches 

• Many of these approaches are orthogonal 

• E.g., For master/tablet systems: 
§ Masters are often partitioned and replicated 
§  Tablets are replicated 
§ Meta-data frequently cached 
§ Whole master/tablet system can be replicated 
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Thursday 

• Serializability 


