
	

	

	

Spring	
 2014	

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Distributed System Design, Part 3

 Charlie Garrod Christian Kästner

2 15-­‐214

Administrivia

• Homework 6…

• 15-313

3 15-­‐214

Last time…

4 15-­‐214

MapReduce with key/value pairs (Google style)

• Master
§ Assign tasks to workers
§  Ping workers to test for
failures

• Map workers
§ Map for each key/value pair
§ Emit intermediate key/value
pairs

• Reduce workers
§ Sort data by intermediate
key and aggregate by key

§ Reduce for each key

the shuffle:

5 15-­‐214

• E.g., for each word on the Web, count the number
of times that word occurs
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is a word, values is a list of the
number of counts of that word

MapReduce to count all words in a corpus

f1(String key1, String value): !

 for each word w in value: !

 EmitIntermediate(w, 1); !

!

f2(String key2, Iterator values):!

 int result = 0;!

 for each v in values:!

 result += v;!

 Emit(key2, result);!

Map: (key1, v1) à (key2, v2)* Reduce: (key2, v2*) à (key3, v3)*

MapReduce: (key1, v1)* à (key3, v3)*

MapReduce: (docName, docText)* à (word, wordCount)*

6 15-­‐214

• E.g., for pair in a social network graph, output the
number of mutual friends they have
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is a pair of people, values is a list of
1s, for each mutual friend that pair has

MapReduce to count mutual friends

f1(String key1, String value): !

 for each pair of friends
!in value: !

 EmitIntermediate(pair, 1); !

!

f2(String key2, Iterator values):!

 int result = 0;!

 for each v in values:!

 result += v;!

 Emit(key2, result);!

MapReduce: (person, friends)* à (pair of people, count of mutual friends)*

7 15-­‐214

Today: Distributed system design, part 3

• MapReduce, continued

• General distributed systems design
§  Failure models, assumptions
§ General principles
§ Replication and partitioning
§ Consistent hashing

8 15-­‐214

• E.g., for each page on the Web, count the number
of pages that link to it
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is ???, values is a list of ???

MapReduce to count incoming links

f1(String key1, String value): !

 !

!

f2(String key2, Iterator values):!

MapReduce: (docName, docText)* à (docName, number of incoming links)*

9 15-­‐214

• E.g., for each page on the Web, count the number
of pages that link to it
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is ???, values is a list of ???

MapReduce to count incoming links

f1(String key1, String value): !

 for each link in value:!

 EmitIntermediate(link, 1)!

!

f2(String key2, Iterator values):!

 int result = 0;!

 for each v in values:!

 result += v;!

 Emit(key2, result);!

!

MapReduce: (docName, docText)* à (docName, number of incoming links)*

10 15-­‐214

• E.g., for each page on the Web, create a list of
the pages that link to it
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is ???, values is a list of ???

MapReduce to create an inverted index

f1(String key1, String value): !

 for each link in value:!

 EmitIntermediate(link, key1)!

!

!

f2(String key2, Iterator values):!

 Emit(key2, values)!

MapReduce: (docName, docText)* à (docName, list of incoming links)*

11 15-­‐214

• E.g., for each pair in a social network graph, list
the mutual friends they have
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is ???, values is a list of ???

List the mutual friends

f1(String key1, String value): !

 !

!

f2(String key2, Iterator values):!

MapReduce: (person, friends)* à (pair of people, list of mutual friends)*

12 15-­‐214

• E.g., for each pair in a social network graph, list
the mutual friends they have
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is ???, values is a list of ???

List the mutual friends

f1(String key1, String value): !

 for each pair of friends
!in value: !

 EmitIntermediate(pair, key1); !

!

!

f2(String key2, Iterator values):!

 Emit(key2, values)!

MapReduce: (person, friends)* à (pair of people, list of mutual friends)*

13 15-­‐214

• E.g., for each person in a social network graph,
count their friends and friends of friends
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is ???, values is a list of ???

Count friends + friends of friends

f1(String key1, String value):!

!

!

f2(String key2, Iterator values):!

MapReduce: (person, friends)* à (person, count of f + fof)*

14 15-­‐214

• E.g., for each person in a social network graph,
count their friends and friends of friends
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is ???, values is a list of ???

Count friends + friends of friends

f1(String key1, String value): !

 for each friend1 in value:!

 EmitIntermediate(friend1, key1)!

 for each friend2 in value:!

 EmitIntermediate(friend1,
! friend2); !

!

!

f2(String key2, Iterator values):!

 distinct_values = {}!

 for each v in values:!

 if not v in distinct_values:!

 distinct_values.insert(v)!

 Emit(key2, len(distinct_values))!

MapReduce: (person, friends)* à (person, count of f + fof)*

15 15-­‐214

• E.g., for each person in a social network graph,
count their friends and friends of friends and
friends of friends of friends
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is ???, values is a list of ???

Friends + friends of friends + friends of friends of friends

f1(String key1, String value): !

 !

!

f2(String key2, Iterator values):!

 !

MapReduce: (person, friends)* à (person, count of f + fof + fofof)*

16 15-­‐214

Problem: How to reach distance 3 nodes?

• Solution: Iterative MapReduce
§ Use MapReduce to get distance 1 and distance 2 nodes
§  Feed results as input to a second MapReduce process

• Also consider:
§ Breadth-first search
§  PageRank
§ …

17 15-­‐214

Dataflow processing

• High-level languages and systems for complex
MapReduce-like processing
§  Yahoo Pig, Hive
§ Microsoft Dryad, Naiad

• MapReduce generalizations…

18 15-­‐214

Today: Distributed system design, part 3

• MapReduce, continued

• General distributed systems design
§  Failure models, assumptions
§ General principles
§ Replication and partitioning
§ Consistent hashing

19 15-­‐214

Recall passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

• Solution: Replicate data onto multiple servers

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end {alice:90,
 bob:42,
 …} client front-end

primary:

{alice:90,
 bob:42,
 …}

backup:

{alice:90,
 bob:42,
 …}

backup:

20 15-­‐214

Types of failure behaviors

• Fail-stop

• Other halting failures

• Communication failures
§ Send/receive omissions
§ Network partitions
§ Message corruption

• Performance failures
§ High packet loss rate
§  Low throughput
§ High latency

• Data corruption

• Byzantine failures

21 15-­‐214

Common assumptions about failures

• Behavior of others is fail-stop (ugh)

• Network is reliable (ugh)

• Network is semi-reliable but asynchronous

• Network is lossy but messages are not corrupt

• Network failures are transitive

• Failures are independent

• Local data is not corrupt

• Failures are reliably detectable

• Failures are unreliably detectable

22 15-­‐214

Some distributed system design goals

• The end-to-end principle
§ When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

• The robustness principle
§ Be strict in what you send, but be liberal in what you
accept from others
• Protocols
• Failure behaviors

• Benefit from incremental changes

• Be redundant
§ Data replication
§ Checks for correctness

23 15-­‐214

Replication for scalability: Client-side caching

• Architecture before replication:

§  Problem: Server throughput is too low

• Solution: Cache responses at (or near) the client
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

24 15-­‐214

Replication for scalability: Client-side caching

• Hierarchical client-side caches:

client

front-end

client

front-end

{alice:90,
 bob:42,
 …}

database server:

cache

cache

cache

client

client

cache

cache

cache

25 15-­‐214

Replication for scalability: Server-side caching

• Architecture before replication:

§  Problem: Database server throughput is too low

• Solution: Cache responses on multiple servers
§ Cache can respond to repeated read requests

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end

client front-end

{alice:90,
 bob:42,
 …}

database server: cache

cache

cache

26 15-­‐214

Cache invalidation

• Time-based invalidation (a.k.a. expiration)
§ Read-any, write-one
§ Old cache entries automatically discarded
§ No expiration date needed for read-only data

• Update-based invalidation
§ Read-any, write-all
§ DB server broadcasts invalidation message to all caches
when the DB is updated

• What are the advantages and disadvantages of
each approach?

27 15-­‐214

Cache replacement policies

• Problem: caches have finite size

• Common* replacement policies
§ Optimal (Belady's) policy

• Discard item not needed for longest time in future
§  Least Recently Used (LRU)

• Track time of previous access, discard item accessed
least recently

§  Least Frequently Used (LFU)
• Count # times item is accessed, discard item accessed
least frequently

§ Random
• Discard a random item from the cache

28 15-­‐214

Partitioning for scalability

• Partition data based on some property, put each
partition on a different server

client front-end
{cohen:9,
 bob:42,
 …}

client front-end

CMU server:

{alice:90,
 pete:12,
 …}

Yale server: {deb:16,
 reif:40,
 …}

MIT server:

29 15-­‐214

Horizontal partitioning

• a.k.a. "sharding"

• A table of data:
username school value
cohen CMU 9
bob CMU 42
alice Yale 90
pete Yale 12
deb MIT 16
reif MIT 40

30 15-­‐214

Recall: Basic hash tables

• For n-size hash table, put each item X in the
bucket: X.hashCode() % n!

0
1
2
3
4
5
6
7
8
9
10
11
12

{reif:40}

{bob:42}

{pete:12}

{deb:16}

{alice:90}

{cohen:9}

31 15-­‐214

Partitioning with a distributed hash table

• Each server stores data for one bucket

• To store or retrieve an item, front-end server
hashes the key, contacts the server storing that
bucket

client front-end
{reif:40}

client front-end

Server 0:

{bob:42}
Server 3: {pete:12,

 alice:90}

Server 5:

{ }
Server 1:

…

32 15-­‐214

Consistent hashing

• Goal: Benefit from incremental changes
§ Resizing the hash table (i.e., adding or removing a
server) should not require moving many objects

• E.g., Interpret the range of hash codes as a ring
§ Each bucket stores data for a range of the ring

• Assign each bucket an ID in the range of hash codes
• To store item X don't compute X.hashCode() % n.
Instead, place X in bucket with the same ID as or next
higher ID than X.hashCode()!

33 15-­‐214

Problems with hash-based partitioning

• Front-ends need to determine server for each
bucket
§ Each front-end stores look-up table?
§ Master server storing look-up table?
§ Routing-based approaches?

• Places related content on different servers
§ Consider range queries:
 SELECT * FROM users WHERE lastname STARTSWITH 'G'!

34 15-­‐214

Next week

• More distributed systems…

• Serializability

