Objectg Analysis

S o o,

Principles of Software Construction:
Objects, Design, and Concurrency

Threa_ds

Distributed System Design, Part 2.
MapReduce

Spring 2014

Charlie Garrod Christian Kastner

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

Administrivia

e Homework 5c due tonight

e Homework 6 coming tomorrow

-
institute for
15-214 2 sorTss

Road map from last time...

e Application-level communication protocols

e Frameworks for simple distributed computation
= Remote Procedure Call (RPC)
= Java Remote Method Invocation (RMI)

e Common patterns of distributed system design

e Complex computational frameworks
= e.g., distributed map-reduce

-
institute for
15-214 3 s

Today: Distributed system design, part 2

e Introduction to distributed systems
= Motivation: reliability and scalability
= Replication for reliability
= Partitioning for scalability

e MapReduce: A robust, scalable framework for

distributed computation...
= ...on replicated, partitioned data

]
Institute FOV
15-214 4 SOttt

v owerPoint File it View Insert Format Arrange Tools ide Show indow # elp A D = 100% (I Tue 11: arles Garro =
® P P File Edit V | F A Tools Slide Sh Wind Hel 5 G 3 2 4« [0 100%ED Tue 11:38 AM Charles Garrod Q

He
Slides
W

New Slide

etc — bash — 80x24 26-distributed-systems — bash — 80x24
Committed revision 2034. code-draft/ concurrency.pptx svn-commit.tmp
erebus$ vim todo.txt concurrency-whole.pptx concurrency2.pdf
erebus$ svn up . e A R Losnatzaanaiian s
Updating '.': ® 006 distributed-systems1.pptx
svn: E210002: Unable to ¢ ¢ = =1) = T——
ri.cmu.edu/usr@/home/char | Ly H =) | = & a2% =@ (Qr yuted-systems/
svn: E210002: To better ¢
'ssh' in the [tunnels] s
svn: E210002: Network con Slides Font Paragraph Insert
erebus$ svn up (+) . Aslv @

v

- P— . » Hv
A Home Themes Tables Charts SmartArt Transitions Animations Slide Show » A ¥ foncurrency4. pptx

> m ributed-systems
New Slide i N &E' Arrang

You need to restart your computer. Hold down the Power as back
button for several seconds or press the Restart button.

Veuillez redémarrer votre ordinateur. Maintenez la touche
de démarrage enfoncée pendant plusieurs secondes ou bien
appuyez sur le bouton de réinitialisation.

Sie mussen lhren Computer neu starten. Halten Sie dazu
die Einschalttaste einige Sekunden gedruckt oder driicken
Sie die Neustart-Taste.

AVE1—5ZBENT 2UEHNBDET, KNT—RI¥ V%
WML S0, VEYRRZ U EZBLTLEZWN,

dvl=# \q

could not save history to file "/afs/cs/usr/charlie/.psql_history": Permission d
enied

transit$ logout

Connection to transit.apt.ri closed.

garrod-dell$ logout

Connection to garrod.isri.cmu.edu closed.

erebus$

Screen Shot
2012..2 AM

Screen Shot
2012..5AM

Aside: The robustness vs. redundancy curve

robustness
redundancy

1S
- ‘A
15-214 6 [Hf o

Metrics of success

e Reliability
= Often in terms of availability: fraction of time system is
working
¢ 99,999% available is "5 nines of availability"

e Scalability
= Ability to handle workload growth

1S
Al
15-214 7 RESEARCH

A case study: Passive primary-backup replication

e Architecture before replication:

database server:

front-end \ {alice:90,

i bob:42,
front-end /)

~
~

= Problem: Database server might fail

-
institute for
15-214 8 sorTin

A case study: Passive primary-backup replication

e Architecture before replication:

f database server:
.<—> ront-end \ {alice:90,

i bob:42,
.<—>front-end / L

= Problem: Database server might fail

e Solution: Replicate data onto multiple servers

.<—> front-end primary: backup:
Ni'\{alice:%, {alice:90, |

i bob:42, _
.<—>front-end /) i bo}b.42,
| ,\, backup:

{alice:90,
bob:42,

st for
- A
15-214 I | S [[HSayv:

Partitioning for scalability

e Partition data based on some property, put each
partition on a different server

CMU server:

{cohen:9,
bob:42,

)

front-end «— >

front_end MIT server.
Yale server: {feei?_:ig !
{alice:90, R
pete:12,
)y

= institute for
15-214 10 sorTin

Master/tablet-based systems

e Dynamically allocate range-based partitions
= Master server maintains tablet-to-server assignments
= Tablet servers store actual data
= Front-ends cache tablet-to-server assignments

Master: I 1
fa-ci[2], Tablet server
d-g:[3,4], k-z:
h-j:[3], {pete: 12,
N L.

front-end reif: 425 :
Tablet server 3::

front-end Jablet server 2: g;lge:b' 163

a-C. h-j:{)
{alice: 90, J 5
bob:42, Tablet server 4:;
cohen:9} d-g: /

wens {deb:16}

Today: Distributed system design, part 2

e Introduction to distributed systems
= Motivation: reliability and scalability
= Replication for reliability
= Partitioning for scalability

e MapReduce: A robust, scalable framework for

distributed computation...
= ...on replicated, partitioned data

Pap—— it FOV
15-214 12 SOttt

Map from a functional perspective

emap(f, x[0..n-11])

e Apply the function £ to each element of list x

Input list \\ J

Mapping function

- - - - - - -~ - - -~ - -
Output list

map/reduce images src: Apache Hadoop tutorials

e E.g., in Python:
def square(x): return x*x
map (square, [1l, 2, 3, 4]) would return [1, 4, 9, 16]

e Parallel map implementation is trivial
= What is the work? What is the depth?

T i
‘A
15-214 13 RESEARCH

Reduce from a functional perspective

e reduce(f, x[0..n-11])
= Repeatedly apply binary function £ to pairs of items in x,
replacing the pair of items with the result until only one
item remains
= One sequential Python implementation:
def reduce(f, Xx):
if len(x) == 1l: return x[0]
return reduce(f, [£(x[0],x[1])] + xX[2:])

= e.g., in Python: Input list

def add(x,y): return x+y
reduce(add, [1,2,3,4])

would return 10 as Reducing function
reduce(add, [1,2,3,4])

reduce(add, [3,3,4])
reduce(add, [6,4])

Output value

reduce(add, [10]) -> 10

= Institute for
15-214 14 SOttt

Reduce with an associative binary function

e If the function £ is associative, the order £ is
applied does not affect the result

/\ /N /\/\/\
/\ 1) 2N -
/\ AN

3] [

1 +((2+3)+4) 1+ ((2+(3+4)) (1+2) + (3+4)

e Parallel reduce implementation is also easy
« What is the work? What is the depth?

15-214 15 [N}

SSSSSSSS
RRRRRRRR

Distributed MapReduce

e The distributed MapReduce idea is similar to (but

not the same as!):
reduce(f2, map(fl, x))

e Key idea: a "data-centric" architecture
= Send function f1 directly to the data
e Execute it concurrently
= Then merge results with reduce
e Also concurrently

e Programmer can focus on the data processing
rather than the challenges of distributed systems

Pap—— it FO(
15-214 16 SOttt

MapReduce with key/value pairs (Google style)

e Master
= Assign tasks to workers

= Ping workers to test for
failures

e Map workers
= Map for each key/value pair
= Emit intermediate key/value
pairs

e Reduce workers
= Sort data by intermediate
key and aggregate by key

= Reduce for each key

15-214

Node 1

EEEREH

Mapp ng process

ﬁﬁﬁﬁﬁ

Node 2

EEERL

Node 3

BiLILir

Mapp ng process

ﬁéﬁﬁﬁ

Mpp ng pro

i

the shuffle: @%

Node 1

@@@@

Rd cing pro

——

Node 2

@@@@@@

Node 3

@@@@@

Rd ing pro

Rd ing pro

m—

m

17

-
ute for
I S SOFTWARE
RESEARCH

MapReduce with key/value pairs (Google style)

e E.g., for each word on the Web, count the number

of times that word occurs

= For Map: keyl is a document name, value is the
contents of that document

= For Reduce: key2 is a word, values is a list of the
number of counts of that word

fl1(String keyl, String value): f2(String key2, Iterator values):
for each word w in value: int result = 0;
EmitIntermediate(w, 1); for each v in values:

result += v;

Emit(key2, result);

Map: (keyl, vl1) = (key2, v2)* Reduce: (key2, v2*) > (key3, v3)*
MapReduce: (keyl, vl1)* > (key3, v3)*

MapReduce: (docName, docText)* - (word, wordCount)*
15-214 18

MapReduce architectural detalils

e Usually integrated with a

distributed storage system
= Map worker executes function
on its share of the data

e Map output usually written

to worker's local disk

- Shuffle: reduce worker often ~ ______ P
pulls intermediate data from s e
| . Py 1: :

map worker's local disk d-g:3, k-z: !

/ h-j:3, > [{pete:12,
e Reduce output usually / k-z:1} reif:42)

written back to distributed ; J e
storage system | Map/reduce worker | riob.1gy |
9 Y | a-c: 3:[h-j:{ }

Map/reduce workgr

N

{alice:90,
bob:42,
\ cohen:9} '

T

- institute for
15-214 19 sorTs

Handling server failures with MapReduce

e Map worker failure:
= Re-map using replica of the
storage system data

e Reduce worker failure:
= New reduce worker can pull
intermediate data from map
worker's local disk, re-reduce

——

_ .~ Master: e
e Master failure: [aaa, | MiprEtuce worker
d-g:3, | Kz |

= Options: : h-j:3, < |{pete:12,

e Restart system using / k-z:1} Sl

new master . f ap/reduce worker
* Replicate master E Map/reduce worker %;1%5:16} i
®... @ 2]a-c 3:[h-j:{ N |
: {alice:90, |

| bob:42, :

\ cohen:9} 7

Il e e e e e

= institute for
15-214 20 sorTin

The beauty of MapReduce

e Low communication costs (usually)
= The shuffle (between map and reduce) is expensive

e MapReduce can be iterated
« Input to MapReduce: key/value pairs in the distributed
storage system
= Output from MapReduce: key/value pairs in the
distributed storage system

= institute for
15-214 21 sorTin

Another MapReduce example

e E.g., for person in a social network graph, output

the number of mutual friends they have
« For Map: keyl is a person, value is the list of her friends
» For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

MapReduce: (person, friends)* = (pair of people, count of mutual friends)*

T i
Al
15-214 22 RESEARCH

Another MapReduce example

e E.g., for person in a social network graph, output
the number of mutual friends they have
« For Map: keyl is a person, value is the list of her friends

= For Reduce: key2 is a pair of people, values is a list of
1s, for each mutual friend that pair has

fl1(String keyl, String value): f2(String key2, Iterator values):
for each pair of friends int result = 0;
in value:

for each v in values:

EmitIntermediate(pair, 1):
(P r)i result += v;

Emit(key2, result);

MapReduce: (person, friends)* = (pair of people, count of mutual friends)*

T i
Al
15-214 23 RESEARCH

And another MapReduce example

e E.g., for each page on the Web, create a list of

the pages that link to it
= For Map: keyl is a document name, value is the
contents of that document
= For Reduce: key2 is ???, values is a list of ???

fl1(String keyl, String value): f2(String key2, Iterator values):

MapReduce: (docName, docText)* - (docName, list of incoming links)*

T i
Al
15-214 24 RESEARCH

Thursday

e More distributed systems..

- institute for
15-214 25 sorTss

