
	

	

	

Spring	
 2014	

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Distributed System Design, Part 2.
MapReduce

 Charlie Garrod Christian Kästner

2 15-­‐214

Administrivia

• Homework 5c due tonight

• Homework 6 coming tomorrow

3 15-­‐214

Road map from last time…

• Application-level communication protocols

• Frameworks for simple distributed computation
§ Remote Procedure Call (RPC)
§  Java Remote Method Invocation (RMI)

• Common patterns of distributed system design

• Complex computational frameworks
§  e.g., distributed map-reduce

4 15-­‐214

Today: Distributed system design, part 2

• Introduction to distributed systems
§ Motivation: reliability and scalability
§ Replication for reliability
§  Partitioning for scalability

• MapReduce: A robust, scalable framework for
distributed computation…
§ …on replicated, partitioned data

5 15-­‐214

6 15-­‐214

Aside: The robustness vs. redundancy curve

? redundancy
robustness

7 15-­‐214

Metrics of success

• Reliability
§ Often in terms of availability: fraction of time system is
working
• 99.999% available is "5 nines of availability"

• Scalability
§ Ability to handle workload growth

8 15-­‐214

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

9 15-­‐214

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

• Solution: Replicate data onto multiple servers

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end {alice:90,
 bob:42,
 …} client front-end

primary:

{alice:90,
 bob:42,
 …}

backup:

{alice:90,
 bob:42,
 …}

backup:

10 15-­‐214

Partitioning for scalability

• Partition data based on some property, put each
partition on a different server

client front-end
{cohen:9,
 bob:42,
 …}

client front-end

CMU server:

{alice:90,
 pete:12,
 …}

Yale server: {deb:16,
 reif:40,
 …}

MIT server:

11 15-­‐214

Master/tablet-based systems

• Dynamically allocate range-based partitions
§ Master server maintains tablet-to-server assignments
§  Tablet servers store actual data
§  Front-ends cache tablet-to-server assignments

client front-end

k-z:
{pete:12,
 reif:42}

client front-end

Tablet server 1:

a-c:
{alice:90,
 bob:42,
 cohen:9}

Tablet server 2: d-g:
{deb:16}
h-j:{ }

Tablet server 3:

{a-c:[2],
 d-g:[3,4],
 h-j:[3],
 k-z:[1]}

Master:

d-g:
{deb:16}

Tablet server 4:

12 15-­‐214

Today: Distributed system design, part 2

• Introduction to distributed systems
§ Motivation: reliability and scalability
§ Replication for reliability
§  Partitioning for scalability

• MapReduce: A robust, scalable framework for
distributed computation…
§ …on replicated, partitioned data

13 15-­‐214

Map from a functional perspective

• map(f, x[0…n-1])!
•  Apply the function f to each element of list x!

• E.g., in Python:
def square(x): return x*x !
map(square, [1, 2, 3, 4]) would return [1, 4, 9, 16]

• Parallel map implementation is trivial
§ What is the work? What is the depth?

map/reduce images src: Apache Hadoop tutorials

14 15-­‐214

Reduce from a functional perspective

• reduce(f, x[0…n-1])!
§ Repeatedly apply binary function f to pairs of items in x,
replacing the pair of items with the result until only one
item remains

§ One sequential Python implementation:
 def reduce(f, x):!
 if len(x) == 1: return x[0]!
 return reduce(f, [f(x[0],x[1])] + x[2:])!

§  e.g., in Python:
 def add(x,y): return x+y!
 reduce(add, [1,2,3,4]) !
 would return 10 as
 reduce(add, [1,2,3,4])!
 reduce(add, [3,3,4])!
 reduce(add, [6,4])!
 reduce(add, [10]) -> 10!

15 15-­‐214

Reduce with an associative binary function

• If the function f is associative, the order f is
applied does not affect the result

 1 + ((2+3) + 4) 1 + (2 + (3+4)) (1+2) + (3+4)

• Parallel reduce implementation is also easy
§ What is the work? What is the depth?

16 15-­‐214

Distributed MapReduce

• The distributed MapReduce idea is similar to (but
not the same as!):

! !reduce(f2, map(f1, x))

• Key idea: a "data-centric" architecture
§ Send function f1 directly to the data

• Execute it concurrently
§  Then merge results with reduce

• Also concurrently

• Programmer can focus on the data processing
rather than the challenges of distributed systems

17 15-­‐214

MapReduce with key/value pairs (Google style)

• Master
§ Assign tasks to workers
§  Ping workers to test for
failures

• Map workers
§ Map for each key/value pair
§ Emit intermediate key/value
pairs

• Reduce workers
§ Sort data by intermediate
key and aggregate by key

§ Reduce for each key

the shuffle:

18 15-­‐214

• E.g., for each word on the Web, count the number
of times that word occurs
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is a word, values is a list of the
number of counts of that word

MapReduce with key/value pairs (Google style)

f1(String key1, String value): !

 for each word w in value: !

 EmitIntermediate(w, 1); !

!

f2(String key2, Iterator values):!

 int result = 0;!

 for each v in values:!

 result += v;!

 Emit(key2, result);!

Map: (key1, v1) à (key2, v2)* Reduce: (key2, v2*) à (key3, v3)*

MapReduce: (key1, v1)* à (key3, v3)*

MapReduce: (docName, docText)* à (word, wordCount)*

19 15-­‐214

MapReduce architectural details

• Usually integrated with a
distributed storage system
§ Map worker executes function
on its share of the data

• Map output usually written
to worker's local disk
§ Shuffle: reduce worker often
pulls intermediate data from
map worker's local disk

• Reduce output usually
written back to distributed
storage system

1:

3: 2:

20 15-­‐214

Handling server failures with MapReduce

• Map worker failure:
§ Re-map using replica of the
storage system data

• Reduce worker failure:
§ New reduce worker can pull
intermediate data from map
worker's local disk, re-reduce

• Master failure:
§ Options:

• Restart system using
new master

• Replicate master
• …

1:

3: 2:

21 15-­‐214

The beauty of MapReduce

• Low communication costs (usually)
§  The shuffle (between map and reduce) is expensive

• MapReduce can be iterated
§  Input to MapReduce: key/value pairs in the distributed
storage system

§ Output from MapReduce: key/value pairs in the
distributed storage system

22 15-­‐214

• E.g., for person in a social network graph, output
the number of mutual friends they have
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is ???, values is a list of ???

Another MapReduce example

f1(String key1, String value): !

 !

!

f2(String key2, Iterator values):!

MapReduce: (person, friends)* à (pair of people, count of mutual friends)*

23 15-­‐214

• E.g., for person in a social network graph, output
the number of mutual friends they have
§  For Map: key1 is a person, value is the list of her friends
§  For Reduce: key2 is a pair of people, values is a list of
1s, for each mutual friend that pair has

Another MapReduce example

f1(String key1, String value): !

 for each pair of friends
!in value: !

 EmitIntermediate(pair, 1); !

!

f2(String key2, Iterator values):!

 int result = 0;!

 for each v in values:!

 result += v;!

 Emit(key2, result);!

MapReduce: (person, friends)* à (pair of people, count of mutual friends)*

24 15-­‐214

• E.g., for each page on the Web, create a list of
the pages that link to it
§  For Map: key1 is a document name, value is the
contents of that document

§  For Reduce: key2 is ???, values is a list of ???

And another MapReduce example

f1(String key1, String value): !

 !

!

f2(String key2, Iterator values):!

MapReduce: (docName, docText)* à (docName, list of incoming links)*

25 15-­‐214

Thursday

• More distributed systems..

