
	

	

	

Spring	
 2014	

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

Distributed System Design, Part 1

 Charlie Garrod Christian Kästner

2 15-­‐214

Administrivia

• Homework 5b due tonight
§  Turn in by Thursday, 10 April, 10:00 a.m. to be
considered as framework-supporting team

§ Can turn in as late as Thursday, 10 April, 11:59 p.m.

• Homework 5c due next Tuesday
§ 2 late days total for Homework 5
§ Can turn in as late as Thursday, 17 April, 11:59 p.m.

• Homework 2 arena…

3 15-­‐214

Today: Distributed system design

• Java networking fundamentals

• Introduction to distributed systems
§ Motivation: reliability and scalability
§  Failure models
§  Techniques for:

• Reliability (availability)
• Scalability
• Consistency

4 15-­‐214

Recall the java.io.PrintStream

• java.io.PrintStream: Allows you to
conveniently print common types of data
void close();!
void flush();!
void print(String s);!
void print(int i);!
void print(boolean b);!
void print(Object o);!
…!
void println(String s);!
void println(int i);!
void println(boolean b);!
void println(Object o);!
…

5 15-­‐214

The fundamental I/O abstraction: a stream of data

• java.io.InputStream
void close();!
abstract int read();!
int read(byte[] b);

• java.io.OutputStream
void close();!
void flush();!
abstract void write(int b);!
void write(byte[] b);

• Aside: If you have an OutputStream you can
construct a PrintStream:
PrintStream(OutputStream out);!
PrintStream(File file);!
PrintStream(String filename);!
…!

6 15-­‐214

Our destination: Distributed systems

• Multiple system components (computers)
communicating via some medium (the network)

• Challenges:
§ Heterogeneity
§ Scale
§ Geography
§ Security
§ Concurrency
§  Failures

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf

7 15-­‐214

Communication protocols

• Agreement between parties
for how communication
should take place
§  e.g., buying an airline ticket
through a travel agent

Friendly greeting.

Muttered reply.

Destination?

Pittsburgh.

Thank you.

(courtesy of http://www.cs.cmu.edu/~dga/15-440/F12/lectures/02-internet1.pdf

8 15-­‐214

Abstractions of a network connection

IP

TCP | UDP | …

HTTP | FTP | …

HTML | Text | JPG | GIF | PDF | …

data link layer

physical layer

9 15-­‐214

Packet-oriented and stream-oriented connections

• UDP: User Datagram Protocol
§ Unreliable, discrete packets of data

• TCP: Transmission Control Protocol
§ Reliable data stream

10 15-­‐214

Internet addresses and sockets

• For IP version 4 (IPv4) host address is a 4-byte
number
§  e.g. 127.0.0.1
§ Hostnames mapped to host IP addresses via DNS
§ ~4 billion distinct addresses

• Port is a 16-bit number (0-65535)
§ Assigned conventionally

• e.g., port 80 is the standard port for web servers

• In Java:
§  java.net.InetAddress!
§  java.net.Inet4Address!
§  java.net.Inet6Address!
§  java.net.Socket!
§  java.net.InetSocket!

11 15-­‐214

Networking in Java

• The java.net.InetAddress:
static InetAddress getByName(String host);!
static InetAddress getByAddress(byte[] b);!
static InetAddress getLocalHost();

• The java.net.Socket:
Socket(InetAddress addr, int port);!
boolean isConnected();!
boolean isClosed();!
void close();!
InputStream getInputStream();!
OutputStream getOutputStream();

• The java.net.ServerSocket:
ServerSocket(int port);!
Socket accept();!
void close();!
…!

12 15-­‐214

Simple sockets demos

• NetworkServer.java

• A basic chat system:
§  TransferThread.java
§  TextSocketClient.java
§  TextSocketServer.java

13 15-­‐214

Higher levels of abstraction

• Application-level communication protocols

• Frameworks for simple distributed computation
§ Remote Procedure Call (RPC)
§  Java Remote Method Invocation (RMI)

• Common patterns of distributed system design

• Complex computational frameworks
§  e.g., distributed map-reduce

14 15-­‐214

Today

• Java networking fundamentals

• Introduction to distributed systems
§ Motivation: reliability and scalability
§  Failure models
§  Techniques for:

• Reliability (availability)
• Scalability
• Consistency

15 15-­‐214

16 15-­‐214

Aside: The robustness vs. redundancy curve

? redundancy
robustness

17 15-­‐214

Metrics of success

• Reliability
§ Often in terms of availability: fraction of time system is
working
• 99.999% available is "5 nines of availability"

• Scalability
§ Ability to handle workload growth

18 15-­‐214

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

19 15-­‐214

A case study: Passive primary-backup replication

• Architecture before replication:

§  Problem: Database server might fail

• Solution: Replicate data onto multiple servers

client front-end {alice:90,
 bob:42,
 …} client front-end

database server:

client front-end {alice:90,
 bob:42,
 …} client front-end

primary:

{alice:90,
 bob:42,
 …}

backup:

{alice:90,
 bob:42,
 …}

backup:

20 15-­‐214

Passive primary-backup replication protocol

1.  Front-end issues request with unique ID to
primary DB

2.  Primary checks request ID
§  If already executed request, re-send response and exit
protocol

3.  Primary executes request and stores response

4.  If request is an update, primary DB sends
updated state, ID, and response to all backups

§ Each backup sends an acknowledgement

5.  After receiving all acknowledgements, primary
DB sends response to front-end

21 15-­‐214

Issues with passive primary-backup replication

• If primary DB crashes, front-ends need to agree
upon which unique backup is new primary DB
§  Primary failure vs. network failure?

• If backup DB becomes new primary, surviving
replicas must agree on current DB state

• If backup DB crashes, primary must detect failure
to remove the backup from the cluster
§ Backup failure vs. network failure?

• If replica fails* and recovers, it must detect that it
previously failed

• Many subtle issues with partial failures

• …

22 15-­‐214

More issues…

• Concurrency problems?
§ Out of order message delivery?

• Time…

• Performance problems?
§ 2n messages for n replicas
§  Failure of any replica can delay response
§ Routine network problems can delay response

• Scalability problems?
§ All replicas are written for each update, but primary DB
responds to every request

23 15-­‐214

Types of failure behaviors

• Fail-stop

• Other halting failures

• Communication failures
§ Send/receive omissions
§ Network partitions
§ Message corruption

• Performance failures
§ High packet loss rate
§  Low throughput
§ High latency

• Data corruption

• Byzantine failures

24 15-­‐214

Common assumptions about failures

• Behavior of others is fail-stop (ugh)

• Network is reliable (ugh)

• Network is semi-reliable but asynchronous

• Network is lossy but messages are not corrupt

• Network failures are transitive

• Failures are independent

• Local data is not corrupt

• Failures are reliably detectable

• Failures are unreliably detectable

25 15-­‐214

Some distributed system design goals

• The end-to-end principle
§ When possible, implement functionality at the end nodes
(rather than the middle nodes) of a distributed system

• The robustness principle
§ Be strict in what you send, but be liberal in what you
accept from others
• Protocols
• Failure behaviors

• Benefit from incremental changes

• Be redundant
§ Data replication
§ Checks for correctness

26 15-­‐214

Next time…

• MapReduce

