
	

	

	

Spring	
 2014	

School of
Computer Science

Principles of Software Construction:
Objects, Design, and Concurrency

The Perils of Concurrency, part 3
Can't live with it.
Cant live without it. No joke.

 Charlie Garrod Christian Kästner

2 15-­‐214

Administrivia

• Homework 5b due Tuesday night
§  Turn in by Thursday, 10 April, 10:00 a.m. to be
considered as framework-supporting team

• Homework 2 Arena winners in class Tuesday

• Looking for summer research opportunities?
§ http://www.isri.cmu.edu/education/reu-se/index.html

3 15-­‐214

Today: Concurrency, part 3

• The backstory
§ Motivation, goals, problems, …

• Basic concurrency in Java
§ Explicit synchronization with threads and shared memory
§ More concurrency problems

• Higher-level abstractions for concurrency
• Data structures
• Higher-level languages and frameworks
• Hybrid approaches

• In the trenches of parallelism
§ Using the Java concurrency framework
§  Prefix-sums implementation

4 15-­‐214

Key concepts from Tuesday

• Basic concurrency in Java
§  java.lang.Runnable
§  java.lang.Thread	

• Atomicity

• Race conditions

• The Java synchronized keyword

5 15-­‐214

Basic concurrency in Java

• The java.lang.Runnable interface
void run();!

• The java.lang.Thread class
Thread(Runnable r);!
void start();!
static void sleep(long millis);!
void join();!
boolean isAlive();!
static Thread currentThread();

6 15-­‐214

Primitive concurrency control in Java

• Each Java object has an associated intrinsic lock
§ All locks are initially unowned
§ Each lock is exclusive: it can be owned by at most one
thread at a time

• The synchronized keyword forces the current
thread to obtain an object's intrinsic lock
§ E.g.,
 synchronized void foo() { … } // locks "this"!
!
 !synchronized(fromAcct) {!
! ! if (fromAcct.getBalance() >= 30) {!
 toAcct.deposit(30);!
 fromAcct.withdrawal(30);!
 }!
 }

• See SynchronizedIncrementTest.java

7 15-­‐214

Primitive concurrency control in Java

• java.lang.Object allows some coordination via
the intrinsic lock:
void wait();!
void wait(long timeout);!
void wait(long timeout, int nanos);!
void notify();!
void notifyAll();!

• See Blocker.java, Notifier.java, NotifyExample.java

8 15-­‐214

Primitive concurrency control in Java

• Each lock can be owned by only one thread at a
time

• Locks are re-entrant: If a thread owns a lock, it
can lock the lock multiple times

• A thread can own multiple locks
synchronized(lock1) {!
 // do stuff that requires lock1!
!
 synchronized(lock2) {!
 // do stuff that requires both locks!
 }!
!
 // …!
}

9 15-­‐214

Another concurrency problem: deadlock

• E.g., Alice and Bob, unaware of each other, both
need file A and network connection B
§ Alice gets lock for file A
§ Bob gets lock for network connection B
§ Alice tries to get lock for network connection B, and waits…
§ Bob tries to get lock for file A, and waits…

• See Counter.java and DeadlockExample.java

10 15-­‐214

Detecting deadlock with the waits-for graph

• The waits-for graph represents dependencies
between threads
§ Each node in the graph represents a thread
§ A directed edge T1->T2 represents that thread T1 is
waiting for a lock that T2 owns

• Deadlock has occurred iff the waits-for graph
contains a cycle

a
b

c

d

f

e

h

g

i

11 15-­‐214

Deadlock avoidance algorithms

• Prevent deadlock instead of detecting it
§ E.g., impose total order on all locks, require locks
acquisition to satisfy that order
• Thread:
 acquire(lock1)

 acquire(lock2)
 acquire(lock9)
 acquire(lock42) // now can't acquire lock30, etc…

12 15-­‐214

Avoiding deadlock with restarts

• One option: If thread needs a lock out of order,
restart the thread
§ Get the new lock in order this time

• Another option: Arbitrarily kill and restart long-
running threads

13 15-­‐214

Another concurrency problem: livelock

• In systems involving restarts, livelock can occur
§  Lack of progress due to repeated restarts

• Starvation: when some task(s) is(are) repeatedly
restarted because of other tasks

14 15-­‐214

Concurrency control in Java

• Using primitive synchronization, you are
responsible for correctness:
§ Avoiding race conditions
§  Progress (avoiding deadlock)

• Java provides tools to help:
§  volatile fields
§  java.util.concurrent.atomic!
§  java.util.concurrent!
§  Java concurrency framework

15 15-­‐214

The java.util.concurrent.atomic package

• Concrete classes supporting atomic operations
§  AtomicInteger!

!int get();!
!void set(int newValue);!
!int getAndSet(int newValue);!
!int getAndAdd(int delta);!
!…!

§  AtomicIntegerArray!
§  AtomicBoolean!
§  AtomicLong!
§  …!

16 15-­‐214

The java.util.concurrent package

• Interfaces and concrete thread-safe data
structure implementations
§  ConcurrentHashMap!
§  BlockingQueue!

• ArrayBlockingQueue!
• SynchronousQueue!

§  CopyOnWriteArrayList!
§  …

• Other tools for high-performance multi-threading
§  ThreadPools and Executor services!
§  Locks and Latches

17 15-­‐214

java.util.concurrent.ConcurrentHashMap!

• Implements java.util.Map<K,V>!
§ High concurrency lock striping

• Internally uses multiple locks, each dedicated to a
region of the hash table

• Locks just the part of the table you actually use
• You use the ConcurrentHashMap like any other map…

Locks

Hashtable

18 15-­‐214

java.util.concurrent.BlockingQueue!

• Implements java.util.Queue<E>!

• java.util.concurrent.SynchronousQueue
§ Each put directly waits for a corresponding poll!
§  Internally uses wait/notify!

• java.util.concurrent.ArrayBlockingQueue!
§  put blocks if the queue is full
§  poll blocks if the queue is empty
§  Internally uses wait/notify

19 15-­‐214

The CopyOnWriteArrayList!

• Implements java.util.List<E>!

• All writes to the list copy the array storing the list
elements

20 15-­‐214

The power of immutability

• Recall: Data is mutable if it can change over time.
Otherwise it is immutable.
§  Primitive data declared as final is always immutable

• After immutable data is initialized, it is immune
from race conditions

21 15-­‐214

Concurrency at the language level

• Consider:
int sum = 0;!
Iterator i = coll.iterator();!
while (i.hasNext()) {!
 sum += i.next();!
}

• In python:
sum = 0;!
for item in coll:!
 sum += item!
!

22 15-­‐214

The Java happens-before relation

• Java guarantees a transitive, consistent order for
some memory accesses
§ Within a thread, one action happens-before another
action based on the usual program execution order

§ Release of a lock happens-before acquisition of the same
lock

§  Object.notify happens-before Object.wait returns
§  Thread.start happens-before any action of the started
thread

§ Write to a volatile field happens-before any subsequent
read of the same field

§ …

• Assures ordering of reads and writes
§ A race condition can occur when reads and writes are not
ordered by the happens-before relation

23 15-­‐214

Parallel quicksort in Nesl
function quicksort(a) =!
 if (#a < 2) then a!
 else!
 let pivot = a[#a/2];!
 lesser = {e in a| e < pivot}; !!
 equal = {e in a| e == pivot}; !
 greater = {e in a| e > pivot}; !
 result = {quicksort(v): v in [lesser,greater]};!
 in result[0] ++ equal ++ result[1];
• Operations in {} occur in parallel

• What is the total work? What is the depth?
§ What assumptions do you have to make?

24 15-­‐214

Prefix sums (a.k.a. inclusive scan)

• Goal: given array x[0…n-1], compute array of the
sum of each prefix of x!
[sum(x[0…0]), !
 sum(x[0…1]), !
 sum(x[0…2]), !
 … !
 sum(x[0…n-1])]

• e.g., x =! [13, 9, -4, 19, -6, 2, 6, 3]!

 prefix sums: [13, 22, 18, 37, 31, 33, 39, 42]!

25 15-­‐214

Parallel prefix sums

• Intuition: If we have already computed the partial
sums sum(x[0…3]) and sum(x[4…7]), then we can
easily compute sum(x[0…7])!

• e.g., x =! [13, 9, -4, 19, -6, 2, 6, 3]

26 15-­‐214

Parallel prefix sums algorithm, winding

• Computes the partial sums in a more useful manner!

[13, 9, -4, 19, -6, 2, 6, 3]!

!

[13, 22, -4, 15, -6, -4, 6, 9]

27 15-­‐214

Parallel prefix sums algorithm, winding

• Computes the partial sums in a more useful manner!

[13, 9, -4, 19, -6, 2, 6, 3]!

!

[13, 22, -4, 15, -6, -4, 6, 9]

[13, 22, -4, 37, -6, -4, 6, 5]

28 15-­‐214

Parallel prefix sums algorithm, winding

• Computes the partial sums in a more useful manner!

[13, 9, -4, 19, -6, 2, 6, 3]!

!

[13, 22, -4, 15, -6, -4, 6, 9]

[13, 22, -4, 37, -6, -4, 6, 5]

[13, 22, -4, 37, -6, -4, 6, 42]

 …

29 15-­‐214

Parallel prefix sums algorithm, unwinding

• Now unwinds to calculate the other sums!

[13, 22, -4, 37, -6, -4, 6, 42]

[13, 22, -4, 37, -6, 33, 6, 42]

30 15-­‐214

Parallel prefix sums algorithm, unwinding

• Now unwinds to calculate the other sums

[13, 22, -4, 37, -6, -4, 6, 42]

[13, 22, -4, 37, -6, 33, 6, 42]

[13, 22, 18, 37, 31, 33, 39, 42]

• Recall, we started with:!

[13, 9, -4, 19, -6, 2, 6, 3]!

31 15-­‐214

Parallel prefix sums

• Intuition: If we have already computed the partial
sums sum(x[0…3]) and sum(x[4…7]), then we can
easily compute sum(x[0…7])!

• e.g., x =! [13, 9, -4, 19, -6, 2, 6, 3]

• Pseudocode:
prefix_sums(x):!
 for d in 0 to (lg n)-1: // d is depth!
 parallelfor i in 2d-1 to n-1, by 2d+1: !
 x[i+2d] = x[i] + x[i+2d]!
!
 for d in (lg n)-1 to 0:!
 parallelfor i in 2d-1 to n-1-2d, by 2d+1:!
 if (i-2d >= 0):!
 x[i] = x[i] + x[i-2d]!

32 15-­‐214

Parallel prefix sums algorithm, in code

• An iterative Java-esque implementation:
void computePrefixSums(long[] a) {!
 for (int gap = 1; gap < a.length; gap *= 2) {!
 parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {!
 a[i+gap] = a[i] + a[i+gap];!
 }!
 }!
 for (int gap = a.length/2; gap > 0; gap /= 2) {!
 parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {!
 a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);!
 }!
 }!

33 15-­‐214

Parallel prefix sums algorithm, in code

• A recursive Java-esque implementation:
void computePrefixSumsRecursive(long[] a, int gap) {!
 if (2*gap – 1 >= a.length) {!
 return;!
 }!
!
 parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {!
 a[i+gap] = a[i] + a[i+gap];!
 }!
!
 computePrefixSumsRecursive(a, gap*2);!
!
 parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {!
 a[i] = a[i] + ((i-gap >= 0) ? a[i-gap] : 0);!
 }!
}!

34 15-­‐214

Parallel prefix sums algorithm

• How good is this?

35 15-­‐214

Parallel prefix sums algorithm

• How good is this?
§ Work: O(n)
§ Depth: O(lg n)

• See Main.java,
PrefixSumsNonconcurrentParallelWorkImpl.java

36 15-­‐214

Goal: parallelize the PrefixSums implementation

• Specifically, parallelize the parallelizable loops
parfor(int i=gap-1; i+gap<a.length; i += 2*gap) {!
 a[i+gap] = a[i] + a[i+gap];!
}!

• Partition into multiple segments, run in different
threads
for(int i=left+gap-1; i+gap<right; i += 2*gap) {!
 a[i+gap] = a[i] + a[i+gap];!
}

37 15-­‐214

Recall the Java primitive concurrency tools

• The java.lang.Runnable interface
void run();!

• The java.lang.Thread class
Thread(Runnable r);!
void start();!
static void sleep(long millis);!
void join();!
boolean isAlive();!
static Thread currentThread();

38 15-­‐214

Recall the Java primitive concurrency tools

• The java.lang.Runnable interface
void run();!

• The java.lang.Thread class
Thread(Runnable r);!
void start();!
static void sleep(long millis);!
void join();!
boolean isAlive();!
static Thread currentThread();

• The java.util.concurrent.Callable<V> interface
§  Like java.lang.Runnable but can return a value
V call();!

39 15-­‐214

A framework for asynchronous computation

• The java.util.concurrent.Future<V> interface
V get();!
V get(long timeout, TimeUnit unit);!
boolean isDone();!
boolean cancel(boolean mayInterruptIfRunning);!
boolean isCancelled();!

• The java.util.concurrent.ExecutorService
interface
Future submit(Runnable task);!
Future<V> submit(Callable<V> task);!
List<Future<V>> invokeAll(Collection<Callable<V>>

! tasks);!
!
Future<V> invokeAny(Collection<Callable<V>>!
 ! ! ! ! ! ! ! !tasks);!

40 15-­‐214

Executors for common computational patterns

• From the java.util.concurrent.Executors class
static ExecutorService newSingleThreadExecutor();!
static ExecutorService newFixedThreadPool(int n);!
static ExecutorService newCachedThreadPool();!
static ExecutorService newScheduledThreadPool(int n);!

• Aside: see NetworkServer.java (later)

41 15-­‐214

Fork/Join: another common computational pattern

• In a long computation:
§  Fork a thread (or more) to do some work
§  Join the thread(s) to obtain the result of the work

42 15-­‐214

Fork/Join: another common computational pattern

• In a long computation:
§  Fork a thread (or more) to do some work
§  Join the thread(s) to obtain the result of the work

• The java.util.concurrent.ForkJoinPool class
§  Implements ExecutorService !
§ Executes java.util.concurrent.ForkJoinTask<V> or

 java.util.concurrent.RecursiveTask<V> or
 java.util.concurrent.RecursiveAction!

43 15-­‐214

The RecursiveAction abstract class
public class MyActionFoo extends RecursiveAction {!
 public MyActionFoo(…) {!
 store the data fields we need!
 }!
!
 @Override!
 public void compute() {!
 if (the task is small) {!
 do the work here;!
 return;!
 }!
!
 invokeAll(new MyActionFoo(…), // smaller!
 new MyActionFoo(…), // tasks!
 …); // …!
 }!
}!

44 15-­‐214

A ForkJoin example

• See PrefixSumsParallelImpl.java,
PrefixSumsParallelLoop1.java, and
PrefixSumsParallelLoop2.java

• See the processor go, go go!!

45 15-­‐214

Parallel prefix sums algorithm

• How good is this?
§ Work: O(n)
§ Depth: O(lg n)

• See PrefixSumsSequentialImpl.java

46 15-­‐214

Parallel prefix sums algorithm

• How good is this?
§ Work: O(n)
§ Depth: O(lg n)

• See PrefixSumsSequentialImpl.java
§ n-1 additions
§ Memory access is sequential

• For PrefixSumsNonsequentialImpl.java
§ About 2n useful additions, plus extra additions for the loop
indexes

§ Memory access is non-sequential

• The punchline: Constants matter.

47 15-­‐214

Next time…

