Objectg Analysis

S o o,

Threa_ds

Principles of Software Construction:
Objects, Design, and Concurrency

The Perils of Concurrency, part 2

Can't live with it
Cant live without it.

Spring 2014

Charlie Garrod Christian Kastner

School of
Computer Science

@
institute for
I S SOFTWARE
RESEARCH

Administrivia

e Midterm exam returned at end of class today

e Homework 5a due tomorrow, 8:59 a.m.
= 5b due the next Tuesday (08 April)
e Turn in by Thursday, 10 April, 10:00 a.m. to be
considered as framework-supporting team
= 5¢ due the following Tuesday (15 April)

e Do you want to be a Software Engineer?

]
Institute FO(
15-214 2 SOttt

The foundations of the Software Engineering minor

e Core computer science fundamentals
e Building good software

e Organizing a software project
= Development teams, customers, and users
= Process, requirements, estimation, management, and
methods

e The larger context of software
= Business, society, policy

e ENngineering experience

e Communication skills
= Written and oral

)
Institute For
15-214 3 sortvs

SE minor requirements

e Prerequisite: 15-214

e TWO core courses
= 15-313 (fall semesters)
« 15-413 (spring semesters)

e Three electives
= Technical
= Engineering
= Business or policy

e Software engineering internship + reflection
=« 8+ weeks in an industrial setting, then
- 17-413

- institute for
15-214 4 sorTs

To apply to be a Software Engineering minor

e Email jonathan.aldrich@cs.cmu.edu and
poprocky@cs.cmu.edu
= Your name, Andrew ID, class year, QPA, and minor/majors
« Why you want to be a software engineer
» Proposed schedule of coursework

e Spring applications due by Friday, 11 Apr 2014
= Only 15 SE minors accepted per graduating class

e More information at:
= http://isri.cmu.edu/education/undergrad/

1S (s
15-214 5 RESEARCH

Key concepts from last Tuesday

1€ 1 P
15'214 6 RESEARCH

Realizing the potential

A A A A

> > > \ >
concurrency

time

e Possible metrics of success
= Breadth: extent of simultaneous activity
e width of the shape
=« Depth (or span): length of longest computation
e height of the shape
= Work: total effort required
e area of the shape

e Typical goals in parallel algorithm design?
= First minimize depth (total time we wait), then minimize work

i< r
15-214 7

Today: Concurrency, part 2

e The backstory
= Motivation, goals, problems, ...

e Basic concurrency in Java
« Explicit synchronization with threads and shared memory
= More concurrency problems

e Coming soon:
« Higher-level abstractions for concurrency
e Data structures
e Higher-level languages and frameworks
e Hybrid approaches

T i
Al
15-214 8 RESEARCH

Amdahl’s law: How good can the depth get?

e [deal parallelism with N processors:
- Speedup = N Speedup by Amdahl's Law (P=1024)

1,200.00

e In reality, some work is always
inherently sequential

= Let F be the portion of the total e

task time that is inherently 60000 -

sequential

J‘ 200.00

*Speedup = TIA_F)N

065% 4
0.75% 4
0.85% 4
0.95% 4
1.05%

-3 -3
6 ¢ 8
o o o
Serial Percent

0.00%
0.05%
0.15% 4
0.25% 4

= Suppose F = 10%. What is the max speedup? (you choose N)
e As N approaches co, 1/(0.1 + 0.9/N) approaches 10.

'- site for
CJ ‘A
15 214 9 I S RESEARCH

Using Amdahl’s law as a design guide

20.00

- , | AT
e For a given algorithm, suppose .. [s orion || ‘
- N processors - 4 =% 1
- Problem size M AL
- Sequential portion F e
T
e An obvious question: I —

= What happens to speedup as N scales?

e Another important question:
« What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore’s
Law; from now on, it will be driven by Amdahl’s Law."
— Doron Rajwan, Intel Corp

- institute for
15-214 10 sorTs

Abstractions of concurrency

e Processes
= Execution environment is isolated
e Processor, in-memory state, files, ...
« Inter-process communication typically slow, via message
passing
e Sockets, pipes, ...

e Threads

= Execution environment is shared
= Inter-thread communication typically fast, via shared state

Process Process
Thread Thread Thread Thread

El Stte]

= institute for
15-214 11 sorTin

Aside: Abstractions of concurrency

e What you see: Process
= State is all shared Thread Thread

Stte]

e A (slightly) more accurate view of the hardware:
= Separate state stored in

registers and caches Process
= Shared state stored in
caches and memory Thread Thread

- institute for
15-214 12 sorTs

Basic concurrency in Java

e The java.lang.Runnable interface
void run();

e The java.lang.Thread class
Thread (Runnable r);

void start();

static void sleep(long millis);
void join();

boolean isAlive();

static Thread currentThread();

e See IncrementTest.java

- institute for
15-214 13 sorTs

Atomicity

e An action is atomic if it is indivisible
= Effectively, it happens all at once
e No effects of the action are visible until it is complete
e No other actions have an effect during the action

e In Java, integer increment is not atomic

1. Load data from variable i
? is actually 2. Increment data by 1

3. Store data to variable i

al=rr

- institute for
15-214 14 sorTs

One concurrency problem: race conditions

e A race condition is when multiple threads access
shared data and unexpected results occur
depending on the order of their actions

e E.g., from IncrementTest.java:
= Suppose classbData starts with the value 41.:

Thread A: One possible interleaving of actions:
classData++; 1A. Load data(41) from classData
Thread B: 1B. Load data(41) from classData
classData++; 2A. Increment data(41) by 1 -> 42

2B. Increment data(41) by 1 -> 42
3A. Store data(42) to classbData
3B. Store data(42) to classbData

- institute for
15-214 15 sorTs

Race conditions in real life

e E.g., check-then-act on the highway

PPy institute for
o) B SOFTWARE
=Ll RESEARCH

15-214 16

Race conditions in real life

e E.g., check-then-act at the bank
= The "debit-credit problem"”

Alice, Bob, Bill, and the Bank

e A. Alice to pay Bob $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bob
3. Take $30 from Alice

o B. Alice to pay Bill $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bill
3. Take $30 from Alice

o If Alice starts with $40, can
Bob and Bill both get $30?

T i
Al
15'214 17 RESEARCH

Race conditions in real life

e E.g., check-then-act at the bank
= The "debit-credit problem"”

Alice, Bob, Bill, and the Bank

e A. Alice to pay Bob $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bob
3. Take $30 from Alice

o B. Alice to pay Bill $30
= Bank actions
1. Does Alice have $30 ?
2. Give $30 to Bill
3. Take $30 from Alice

w>wm > >
WWN RN~

o If Alice starts with $40, can
Bob and Bill both get $30?

T i
Al
15'214 18 RESEARCH

Race conditions in your real life

e E.g., check-then-act in simple code

public class StringConverter {
private Object o;
public void set(Object o) {
this.o = o;

}

public String get() {
if (o == null) return "null”;
return o.toString();

}

= See StringConverter.java, Getter.java, Setter.java

- institute for
15-214 19 sorTs

Some actions are atomic
Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = 1i;

e What are the possible values for ans?

- institute for
15-214 20 sorTs

Some actions are atomic
Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = 1i;

e What are the possible values for ans?

i: 00000...00000111 |

- institute for
15-214 21 sorTs

Some actions are atomic
Precondition: Thread A: Thread B:

int 1 = 7; 1 = 42; ans = i;

e What are the possible values for ans?

i: 00000...00000111 |

iz

e In Java:
= Reading an int variable is atomic
= Writing an int variable is atomic

= Thankfully, ans:_ IS not possible

- institute for
15-214 22 sorTs

Bad news: some simple actions are not atomic

e Consider a single 64-bit 1ong value

« Concurrently:

e Thread A writing high bits and low bits
e Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long i = 10000000000; i = 42; ans = 1i;
ans: (10000000000)
(42)

ans.:

(10000000042 or ...)

ans.:

- institute for
15-214 23 sorTs

Primitive concurrency control in Java

e Each Java object has an associated intrinsic lock
= All locks are initially unowned

= Each lock is exclusive: it can be owned by at most one
thread at a time

e The synchronized keyword forces the current

thread to obtain an object's intrinsic lock
- E.g.,

synchronized void foo() { .. } // locks "this"

synchronized(fromAcct) {
if (fromAcct.getBalance() >= 30) {
toAcct.deposit(30);
fromAcct.withdrawal(30);

}
e See SynchronizedIncrementTest.java

- institute for
15-214 24 sorTs

Primitive concurrency control in Java

e java.lang.Object allows some coordination via
the intrinsic lock:
void wait();
void wait(long timeout);
void wait(long timeout, int nanos);
void notify();
void notifyAll();

e See Blocker.java, Notifier.java, NotifyExample.java

- institute for
15-214 25 sorTs

Primitive concurrency control in Java

e Each lock can be owned by only one thread at a
time

e Locks are re-entrant: If a thread owns a lock, it
can lock the lock multiple times

e A thread can own multiple locks
synchronized(lockl) {
// do stuff that requires lockl

synchronized(lock2) {
// do stuff that requires both locks

}
// ..

Pap—— it FO(
15-214 26 SOttt

Another concurrency problem: deadlock

e E.g., Alice and Bob, unaware of each other, both

need file A and network connection B
= Alice gets lock for file A

= Bob gets lock for network connection B

= Alice tries to get lock for network connection B, and waits...
= Bob tries to get lock for file A, and waits...

e See Counter.java and DeadlockExample.java

Pap—— it FO(
15-214 27 SOttt

Dealing with deadlock (abstractly, not with Java)

e Detect deadlock
= Statically?
= Dynamically at run time?

e Avoid deadlock

e Alternative approaches
= Automatic restarts
= Optimistic concurrency control

15-214

28

Institute FOV
SOFTWARE
RESEARCH

Detecting deadlock with the waits-for graph

e The waits-for graph represents dependencies

between threads
= Each node in the graph represents a thread

= A directed edge T1->T2 represents that thread T1 is
waiting for a lock that T2 owns

e Deadlock has occurred iff the waits-for graph
contains a cycle
b

@\ @\@
% -

- institute for
15-214 29 sorTs

Deadlock avoidance algorithms

e Prevent deadlock instead of detecting it
= E.g., impose total order on all locks, require locks
acquisition to satisfy that order
e Thread:
acquire(lockl)
acquire(lock?)
acquire(lock9)
acquire(lock42) // now can't acquire lock30, etc...

= institute for
15-214 30 sorTin

Avoiding deadlock with restarts

e One option: If thread needs a lock out of order,

restart the thread
= Get the new lock in order this time

e Another option: Arbitrarily kill and restart long-
running threads

15-214 31 [FHI o

Avoiding deadlock with restarts

e One option: If thread needs a lock out of order,

restart the thread
= Get the new lock in order this time

e Another option: Arbitrarily kill and restart long-
running threads

e Optimistic concurrency control
= e.g., with a copy-on-write system
= Don't lock, just detect conflicts later
e Restart a thread if a conflict occurs

Pap—— it FOV
15-214 32 s

Another concurrency problem: livelock

e [n systems involving restarts, livelock can occur
= Lack of progress due to repeated restarts

e Starvation: when some task(s) is(are) repeatedly
restarted because of other tasks

- institute for
15-214 33 sorTs

Concurrency control in Java

e Using primitive synchronization, you are

responsible for correctness:
= Avoiding race conditions
= Progress (avoiding deadlock)

e Java provides tools to help:
= volatile fields
= java.util.concurrent.atomic
= java.util.concurrent

- institute for
15-214 34 sorTs

The power of immutability

e Recall: Data is mutable if it can change over time.

Otherwise it is immutable.
» Primitive data declared as final is always immutable

e After immutable data is initialized, it is immune
from race conditions

- institute for
15-214 35 sorTs

The Java happens-before relation

e Java guarantees a transitive, consistent order for

SOme Mmemory aCCesses

= Within a thread, one action happens-before another
action based on the usual program execution order

= Release of a lock happens-before acquisition of the same
lock

= Object.notify happens-before Object.wait returns

 Thread.start happens-before any action of the started
thread

= Write to a volatile field happens-before any subsequent
read of the same field

e Assures ordering of reads and writes

= A race condition can occur when reads and writes are not
ordered by the happens-before relation

= institute for
15-214 36 sorTin

The java.util.concurrent.atomic package

e Concrete classes supporting atomic operations
= AtomicInteger
int get();
void set(int newValue);
int getAndSet(int newValue);
int getAndAdd(int delta);

= AtomicIntegerArray
= AtomicBoolean
= AtomicLong

T i
Al
15'214 37 RESEARCH

The java.util.concurrent package

e Interfaces and concrete thread-safe data

structure implementations
= ConcurrentHashMap
= BlockingQueue
e ArrayBlockingQueue
e SynchronousQueue
= CopyOnWriteArrayList

e Other tools for high-performance multi-threading
» ThreadPools and Executor Services
= Locks and Latches

- institute for
15-214 38 sorTs

java.util.concurrent.ConcurrentHashMap

e Implements java.util.Map<K, V>
= High concurrency lock striping
e Internally uses multiple locks, each dedicated to a
region of the hash table
e Locks just the part of the table you actually use
e You use the ConcurrentHashMap like any other map...

B~y

Locks

ki

Hashtable
= Institute for
15-214 39 SO

java.util.concurrent.BlockingQueue

e Implements java.util.Queue<E>

e java.util.concurrent.SynchronousQueue
= Each put directly waits for a corresponding poll
= Internally uses wait/notify

e java.util.concurrent.ArrayBlockingQueue
= put blocks if the queue is full
» poll blocks if the queue is empty
= Internally uses wait/notify

- institute for
15-214 a0 sorTs

The CopyOnWriteArrayList

e Implements java.util.List<E>

e All writes to the list copy the array storing the list
elements

= institute for
15-214 a1 MYl o

