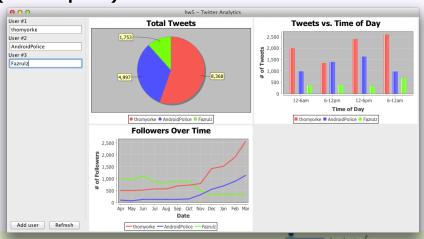


Principles of Software Construction: Objects, Design, and Concurrency

The Perils of Concurrency

Can't live with it.

Cant live without it.


Spring 2014

Charlie Garrod Christian Kästner

Administrivia

- Homework 4c (GUI + redesign) due tonight
 - Remember to add an ant run target
- 2nd midterm exam Thursday
 - Review session Wednesday (26 March) PH100 7-9 p.m.
- Homework 5 released tomorrow
 - Must select partner(s) by Thursday (27 March)
 - 5a due next Wednesday (02 April)
 - 5b due the following Tuesday (08 April)
 - 5c due the following Tuesday (15 April)

ISI institute for SOFTWARE RESEARCH

Key concepts from last week

ISI institute for SOFTWARE RESEARCH

15-214 **3**

The four course themes

Threads and concurrency

- Concurrency is a crucial system abstraction
- E.g., background computing while responding to users
- Concurrency is necessary for performance
- Multicore processors and distributed computing
- Our focus: application-level concurrency
- Cf. functional parallelism (150, 210) and systems concurrency (213)

Object-oriented programming

- For flexible designs and reusable code
- A primary paradigm in industry basis for modern frameworks
- Focus on Java used in industry, some upper-division courses

Analysis and modeling

- Practical specification techniques and verification tools
- Address challenges of threading, correct library usage, etc.

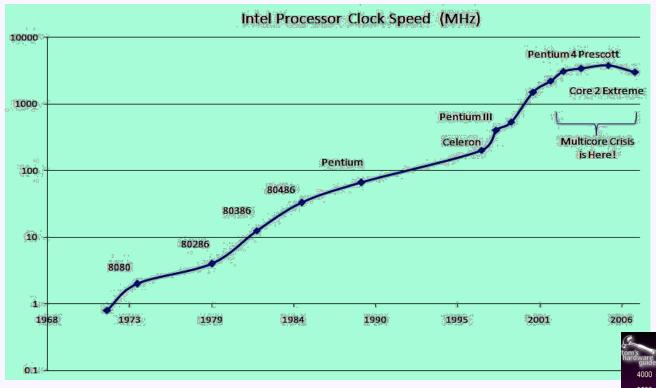
Design

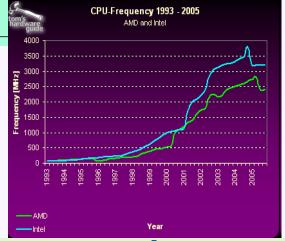
- Proposing and evaluating alternatives
- Modularity, information hiding, and planning for change
- Patterns: well-known solutions to design problems

ISI institute for SOFTWARE RESEARCH

Today: Concurrency, part 1

- The backstory
 - Motivation, goals, problems, ...
- Basic concurrency in Java
 - Synchronization
- Coming soon (but not today):
 - Higher-level abstractions for concurrency
 - Data structures
 - Computational frameworks


institute for SOFTWARE RESEARCH

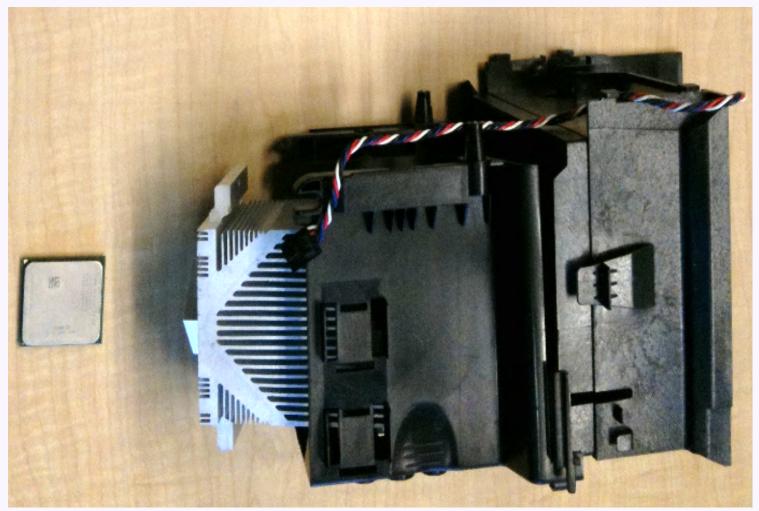

Learning goals

- Understand concurrency as a source of complexity in software
- Know common abstractions for parallelism and concurrency, and the trade-offs among them
 - Explicit concurrency
 - Write thread-safe concurrent programs in Java
 - Recognize data race conditions
 - Know common thread-safe data structures, including high-level details of their implementation
 - Understand trade-offs between mutable and immutable data structures
 - Know common uses of concurrency in software design

institute for SOFTWARE RESEARCH

Processor speeds over time

ISI institute for SOFTWARE RESEARCH


Power requirements of a CPU

- Approx.: Capacitance * Voltage² * Frequency
- To increase performance:
 - More transistors, thinner wires: more C
 - More power leakage: increase V
 - Increase clock frequency F
 - Change electrical state faster: increase V
- Problem: Power requirements are super-linear to performance
 - Heat output is proportional to power input

institute for SOFTWARE RESEARCH

One option: fix the symptom

• Dissipate the heat

One option: fix the symptom

- Better: Dissipate the heat with liquid nitrogen
 - Overclocking by Tom's Hardware's 5 GHz project

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html

institute for SOFTWARE RESEARCH

15-214 **10**

Another option: fix the underlying problem

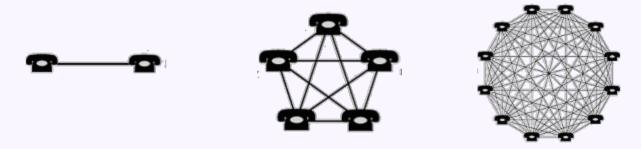
- Reduce heat by limiting power input
 - Adding processors increases power requirements linearly with performance
 - Reduce power requirement by reducing the frequency and voltage
 - Problem: requires concurrent processing

ISI institute for SOFTWARE RESEARCH

Aside: Three sources of disruptive innovation

- Growth crosses some threshold
 - e.g., Concurrency: ability to add transistors exceeded ability to dissipate heat
- Colliding growth curves
 - Rapid design change forced by jump from one curve onto another
- Network effects
 - Amplification of small triggers leads to rapid change

institute for SOFTWARE RESEARCH


Aside: The threshold for distributed computing

- Too big for a single computer?
 - Forces use of distributed architecture
 - Shifts responsibility for reliability from hardware to software
 - Allows you to buy larger cluster of cheap flaky machines instead of expensive slightly-less-flaky machines
 - -Revolutionizes data center design

institute for SOFTWARE RESEARCH

Aside: Network effects

- Metcalfe's rule: network value grows quadratically in the number of nodes
 - a.k.a. Why my mom has a Facebook account
 - n(n-1)/2 potential connections for n nodes

- Creates a strong imperative to merge networks
 - Communication standards, USB, media formats, ...

institute for SOFTWARE RESEARCH

Concurrency

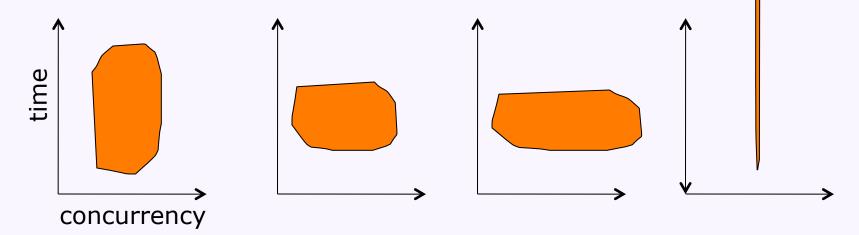
- Simply: doing more than one thing at a time
 - In software: more than one point of control
 - Threads, processes
- Resources simultaneously accessed by more than one thread or process

IST institute for SOFTWARE RESEARCH

Concurrency then and now

- In the past multi-threading was just a convenient abstraction
 - GUI design: event threads
 - Server design: isolate each client's work
 - Workflow design: producers and consumers
- Now: must use concurrency for scalability and performance

Image Name	Threads	С
IPSSVC.EXE	86	(
svchost.exe	82	(
System	80	(
afsd_service.exe	51	(
Rtvscan.exe	47	(
winlogon.exe	39	(
explorer.exe	20	(
ccEvtMgr.exe	19	(
svchost.exe	18	(
lsass.exe	18	(
tabtip.exe	17	(
svchost.exe	17	(
firefox.exe	16	(
services.exe	16	(
thunderbird.exe	15	(
csrss.exe	13	(
tcserver.exe	10	(
KeyboardSurroga	10	(
spoolsv.exe	10	(
tvt_reg_monitor	10	(
svchost.exe	10	(
POWERPNT.EXE	9	(
taskmgr.exe	8	(
VPTray.exe	8	(
S24EvMon.exe	8	(
EvtEng.exe	8	(
emacs.exe	7	(
tvtsched.exe	7	(
ibmpmsvc.exe	7	(
AcroRd32.exe	. 7	(
vpngui.exe	6	(
cvpnd.exe	6	(
AluSchedulerSvc	6	(
ccSetMgr.exe	6	(
svchost.exe	6	(
wisptis.exe	5	
alg.exe	5	
TPHKMGR.exe	5	
ASRSVC.exe	5	(


ISI institute for software research

Problems of concurrency

- Realizing the potential
 - Keeping all threads busy doing useful work
- Delivering the right language abstractions
 - How do programmers think about concurrency?
 - Aside: parallelism vs. concurrency
- Non-determinism
 - Repeating the same input can yield different results

institute for SOFTWARE RESEARCH

Realizing the potential

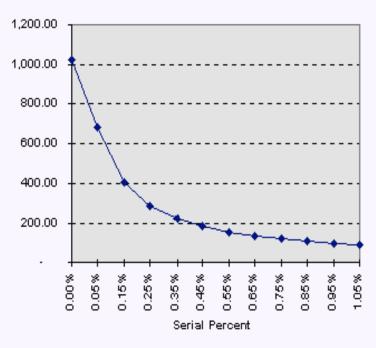
- Possible metrics of success
 - Breadth: extent of simultaneous activity
 - width of the shape
 - Depth (or span): length of longest computation
 - height of the shape
 - Work: total effort required
 - area of the shape
- Typical goals in parallel algorithm design?

institute for SOFTWARE RESEARCH

Realizing the potential

- Possible metrics of success
 - Breadth: extent of simultaneous activity
 - width of the shape

concurrency

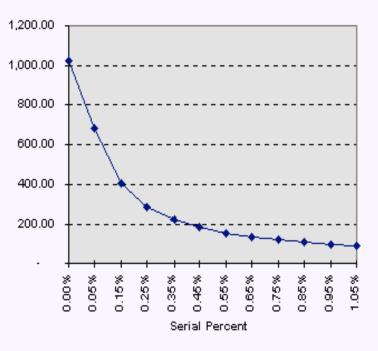

- Depth (or span): length of longest computation
 - height of the shape
- Work: total effort required
 - area of the shape
- Typical goals in parallel algorithm design?
 - First minimize depth (total time we wait), then minimize work

institute for SOFTWARE RESEARCH

Amdahl's law: How good can the depth get?

- Ideal parallelism with N processors:
 - Speedup = №
- In reality, some work is always inherently sequential
 - Let F be the portion of the total task time that is inherently sequential
 - Speedup = $\frac{1}{F + (1 F)/N}$

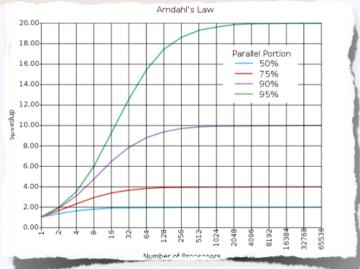
Speedup by Amdahl's Law (P=1024)



• Suppose F = 10%. What is the max speedup? (you choose N)

Amdahl's law: How good can the depth get?

- Ideal parallelism with N processors:
 - Speedup = №
- In reality, some work is always inherently sequential
 - Let F be the portion of the total task time that is inherently sequential
 - Speedup = $\frac{1}{F + (1 F)/N}$


Speedup by Amdahl's Law (P=1024)

- Suppose F = 10%. What is the max speedup? (you choose N)
 - As N approaches ∞ , 1/(0.1 + 0.9/N) approaches 10.

Using Amdahl's law as a design guide

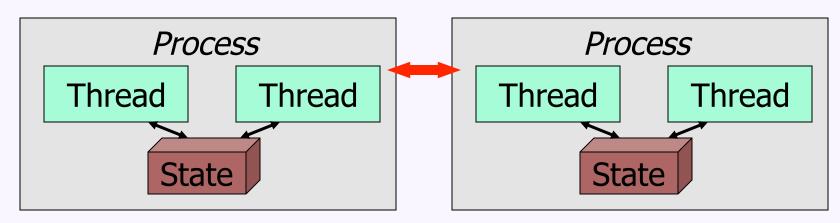
- For a given algorithm, suppose
 - N processors
 - Problem size M
 - Sequential portion F

- An obvious question:
 - What happens to speedup as N scales?
- Another important question:
 - What happens to F as problem size M scales?

"For the past 30 years, computer performance has been driven by Moore's Law; from now on, it will be driven by Amdahl's Law."

— Doron Rajwan, Intel Corp

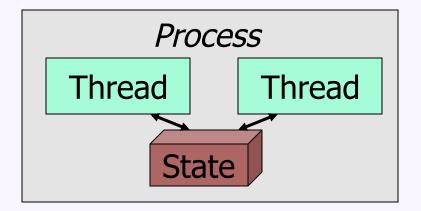
institute for SOFTWARE RESEARCH

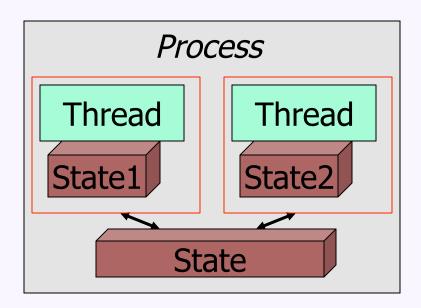

Abstractions of concurrency

Processes

- Execution environment is isolated
 - Processor, in-memory state, files, ...
- Inter-process communication typically slow, via message passing
 - Sockets, pipes, ...

Threads


- Execution environment is shared
- Inter-thread communication typically fast, via shared state


institute for SOFTWARE RESEARCH

Aside: Abstractions of concurrency

- What you see:
 - State is all shared

- A (slightly) more accurate view of the hardware:
 - Separate state stored in registers and caches
 - Shared state stored in caches and memory

ISI institute for SOFTWARE RESEARCH

15-214 **24**

Basic concurrency in Java

- The java.lang.Runnable interface void run();
- The java.lang.Thread class

See IncrementTest.java

Atomicity

- An action is atomic if it is indivisible
 - Effectively, it happens all at once
 - No effects of the action are visible until it is complete
 - No other actions have an effect during the action
- In Java, integer increment is not atomic

i++; is actually

- 1. Load data from variable i
- 2. Increment data by 1
- 3. Store data to variable i

institute for SOFTWARE RESEARCH

One concurrency problem: race conditions

- A race condition is when multiple threads access shared data and unexpected results occur depending on the order of their actions
- E.g., from IncrementTest.java:
 - Suppose classData starts with the value 41:

Thread A:

classData++;

Thread B:

classData++;

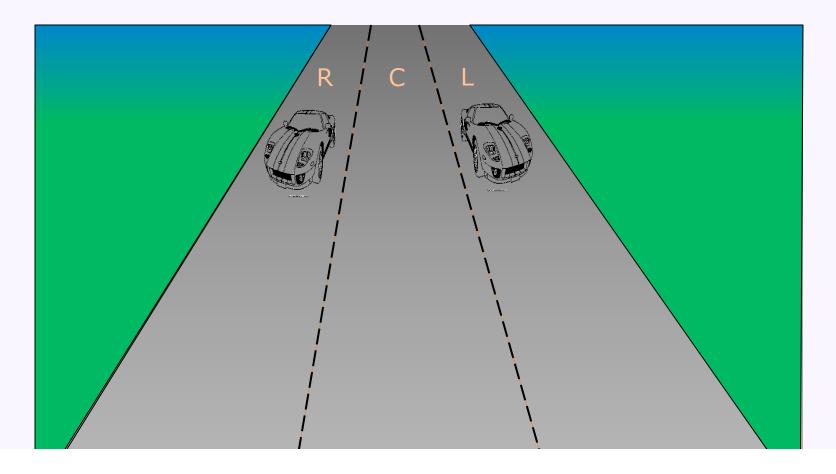
One possible interleaving of actions:

1A. Load data(41) from classData

1B. Load data(41) from classData

2A. Increment data(41) by $1 \rightarrow 42$

2B. Increment data(41) by 1 -> 42


3A. Store data(42) to classData

3B. Store data(42) to classData

Race conditions in real life

• E.g., check-then-act on the highway

Race conditions in real life

- E.g., check-then-act at the bank
 - The "debit-credit problem"

Alice, Bob, Bill, and the Bank

- A. Alice to pay Bob \$30
 - Bank actions
 - 1. Does Alice have \$30?
 - 2. Give \$30 to *Bob*
 - 3. Take \$30 from Alice
- B. Alice to pay Bill \$30
 - Bank actions
 - 1. Does Alice have \$30?
 - 2. Give \$30 to Bill
 - 3. Take \$30 from *Alice*
- If Alice starts with \$40, can Bob and Bill both get \$30?

institute for SOFTWARE RESEARCH

Race conditions in real life

- E.g., check-then-act at the bank
 - The "debit-credit problem"

Alice, Bob, Bill, and the Bank

- A. Alice to pay Bob \$30
 - Bank actions
 - 1. Does Alice have \$30?
 - 2. Give \$30 to Bob
 - 3. Take \$30 from Alice
- B. Alice to pay Bill \$30
 - Bank actions
 - 1. Does Alice have \$30?
 - 2. Give \$30 to Bill
 - 3. Take \$30 from Alice
- If Alice starts with \$40, can Bob and Bill both get \$30?

A.1

A.2

B.1

B.2

A.3

B.3!

institute for SOFTWARE RESEARCH

Race conditions in your real life

• E.g., check-then-act in simple code

```
public class StringConverter {
    private Object o;
    public void set(Object o) {
        this.o = o;
    }
    public String get() {
        if (o == null) return "null";
        return o.toString();
    }
}
```

See StringConverter.java, Getter.java, Setter.java

ISI institute for SOFTWARE RESEARCH

Some actions are atomic

Precondition:

Thread A:

Thread B:

int
$$i = 7$$
;

$$i = 42;$$

ans = i;

What are the possible values for ans?

Some actions are atomic

Precondition:

Thread A:

Thread B:

int
$$i = 7$$
;

$$i = 42;$$

ans = i;

What are the possible values for ans?

i: 00000...0000111

:

i: 00000...00101010

Some actions are atomic

Precondition:

Thread A:

Thread B:

int
$$i = 7$$
;

$$i = 42;$$

ans = i;

What are the possible values for ans?

i: 00000...0000111

:

i: 00000...00101010

- In Java:
 - Reading an int variable is atomic
 - Writing an int variable is atomic

Thankfully,

ans: 00000...00101111

is not possible

institute for SOFTWARE RESEARCH

Bad news: some simple actions are not atomic

Consider a single 64-bit long value

high bits

low bits

- Concurrently:
 - Thread A writing high bits and low bits
 - Thread B reading high bits and low bits

Precondition:

long i = 10000000000;

Thread A:

i = 42;

Thread B:

ans = i;

ans: 01001...0000000

ans: 00000...00101010

ans: 01001...00101010

(10000000000)

(42)

(1000000042 or ...)

institute for SOFTWARE RESEARCH

Thursday:

More concurrency

institute for SOFTWARE RESEARCH

15-214 36