

toad

© 2012-14 C Garrod, C Kästner, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:

Objects, Design and Concurrency

Design Case Study: GUI with Swing

Christian Kästner Charlie Garrod

15-214

toad 2 15-214 Kaestner

Design Goals - Summary

• 5 design goals
 Design for division of labor
 Design for understandability and maintenance
 Design for change
 Design for reuse
 Design for robustness

• 5 design strategies
 Explicit interfaces (clear boundaries)
 Information hiding(hide likely changes)
 Low coupling (reduce dependencies)
 High cohesion (one purpose per class)
 Low repr. gap (align requirements and impl.)

• 3 GRASP patterns
 Information Expert
 Creator
 Controller

toad 3 15-214 Kaestner

Learning Goals

• Understanding event-based programming

• Understanding design patterns in GUIs
 Strategy pattern
 Observer pattern
 Composite pattern
 Decorator pattern
 Template method pattern
 Façade pattern
 Model-view-controller pattern

toad 4 15-214 Kaestner

Event-based programming

• Style of programming where control-flow is driven
by (usually external) events

public void performAction(ActionEvent e) {

 List<String> lst = Arrays.asList(bar);

 foo.peek(42)

}

public void performAction(ActionEvent e) {

 bigBloatedPowerPointFunction(e);

 withANameSoLongIMadeItTwoMethods(e);

 yesIKnowJavaDoesntWorkLikeThat(e);

}

public void performAction(ActionEvent e) {

 List<String> lst = Arrays.asList(bar);

 foo.peek(40)

}

toad 5 15-214 Kaestner

Events in GUIs

• User clicks a button, presses a key

• User selects an item from a list, an item from a
menu, expands a tree

• Mouse hovers over a widget, focus changes

• Scrolling, mouse wheel turned

• Resizing a window, hiding a window

• Drag and drop

• A package arrives from a web service, connection
drops, …

• System shutdown, …

toad 6 15-214 Kaestner

Command-Line Interfaces

Scanner input = new Scanner(System.in);
while (questions.hasNext()) {
 Question q = question.next();
 System.out.println(q.toString());
 String answer = input.nextLine();
 q.respond(answer);
}

toad 7 15-214 Kaestner

Pre-Event GUIs

while (true) {
 if (isKeyDown(―Alt+Q‖)
 break;
 if (isKeyDown(―F1‖)
 openHelp();
 if (isMouseDown(10 …)
 startMovingWindow();
 …
}

toad 8 15-214 Kaestner

Event-based GUIs

//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email =
 emailField.getText();
emaillist.add(email);

toad 9 15-214 Kaestner

Event-based GUIs

//static public void main…
JFrame window = …
window.setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
window.setVisible(true);

//on add-button click:
String email =
 emailField.getText();
emaillist.add(email);

//on delete-button click:
int pos =
 emaillist.getSelectedItem();
if (pos>=0) emaillist.delete(pos);

toad 10 15-214 Kaestner

(Blocking) Interactions with Users

Game PlayerDealer

newGame

addCards

addCards

getAction

action

[action==hit] addCard

blocking
execution

toad 11 15-214 Kaestner

Interactions with Users through Events

• Do not wait for user response, react to event

• Here: Two interactions to separate events:

Game PlayerDealer

newGame

addCards

addCards

hit

addCard

toad 12 15-214 Kaestner

Event-Based GUI Model

• The program has no main loop! Continues
executing even after main method ends

• Program is idle after start until called for events

• The operating system / GUI framework processes
all keyboard/mouse/… events

• Only few events are relevant for application

• Every widget may react to its own events

• Program/widgets may register callbacks to react
to specific events

• Program ends by calling specific API, not when
the main method finishes executing

toad 13 15-214 Kaestner

Reacting to events from GUI framework

• Setup phase
 Describe how the GUI window should look
 Use libraries for windows, widgets, and
layout

 Embed specialized code for later use
 Register callbacks

• Execution
 Framework gets events from OS

•Raw events: mouse clicks, key presses,
window becomes visible, etc.

 Framework processes events
•Click at 10,40: which widget?
•Resize window: what to re-layout and
redraw?

 Triggers callback functions of corresponding
widgets (if registered)

13

GUI
Framework

OS

Application

get

event

drawing

commands

next

event

event—

mouse, key,

redraw, …

toad 14 15-214 Kaestner

Example: RabbitWorld GUI

• …hw2.lib.ui.WorldUI.main()
 Creates a top-level window
 Creates a WorldUI to go in it
 Sets some parameters
 Makes the window (and its contents) visible

• …hw2.lib.ui.WorldPanel.paintComponent()
 Called when the OS needs to show the WorldPanel (part
of WorldUI)
•Right after the window becomes visible

 super.paintComponent() draws a background
 ImageIcon.paintIcon(…) draws each item in the world

Let’s look at the code…

14

toad 15 15-214 Kaestner

GUI Frameworks in Java

• AWT
 Native widgets, only basic components, dated

• Swing
 Java rendering, rich components

• SWT + JFace
 Mixture of native widgets and Java rendering; created for
Eclipse for faster performance

• Others
 Apache Pivot, SwingX, JavaFX, …

• Different in their specific designs, but similar
overall strategies and concepts

toad 16 15-214 Kaestner

Swing

JButton

JPanel

JTextField

…

JFrame

toad 17 15-214 Kaestner

Swing has lots of widgets

• JLabel

• JButton

• JCheckBox

• JChoice

• JRadioButton

• JTextField

• JTextArea

• JList

• JScrollBar

• … and more

17

• JFrame is the Swing Window

• JPanel (aka a pane) is the container to which you add your
components (or other containers)

toad 18 15-214 Kaestner

To create a simple Swing application

• Make a Window (a JFrame)

• Make a container (a JPanel)
 Put it in the window

• Add components (Buttons, Boxes, etc.) to the
container
 Use layouts to control positioning
 Set up observers (a.k.a. listeners) to respond to events
 Optionally, write custom widgets with application-specific
display logic

• Set up the window to display the container

• Then wait for events to arrive…

18

toad 19 15-214 Kaestner

Reacting to Events

toad 20 15-214 Kaestner

Creating a Button

 //static public void main…
JFrame window = …

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(―Click me‖);
button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println(―Button clicked‖);
 }
});
panel.add(button);

window.setVisible(true);

panel to hold
the button

toad 21 15-214 Kaestner

Action Listeners

• Listeners are objects with callback functions

• Listeners can be registered with widgets

• Widgets call all registered widgets if event occurs

interface ActionListener {
 void actionPerformed(ActionEvent e);
}

class ActionEvent {
 int when;
 String actionCommand;
 int modifiers;
 Object source();
 int id;
 …
}

toad 22 15-214 Kaestner

Action Listeners

• Listeners are objects with callback functions

• Listeners can be registered with widgets

• Widgets call all registered widgets if event occurs

interface ActionListener {
 void actionPerformed(ActionEvent e);
}

class ActionEvent {
 int when;
 String actionCommand;
 int modifiers;
 Object source();
 int id;
 …
}

class AbstractButton extends JComponent {
 private List<ActionListener> listeners;
 public void addActionListener(ActionListener l) {
 listeners.add(l);
 }
 protected void fireActionPerformed(ActionEvent e) {
 for (ActionListener l: listeners)
 l.actionPerformed(e);
 }
}

toad 23 15-214 Kaestner

Alternative Button

 class MyButton extends JButton {
 public MyButton() { super(―Click me‖); }
 @Override
 protected void fireActionPerformed(ActionEvent e) {
 super.fireActionPerformed(e);
 System.out.println(―Button clicked‖);
 }
}

//static public void main…
JFrame window = …
JPanel panel = new JPanel();
window.setContentPane(panel);
panel.add(new MyButton());
window.setVisible(true);

toad 24 15-214 Kaestner

Design Discussion

• Button implementation should be reusable
 but differ in button label
 and differ in event handling
 multiple independent clients might be interested in
observing events

 basic button cannot know what to do

• Decoupling action of button from button
implementation itself

• Inheritance simple form to specialize buttons
(second example)

• Listeners are separate objects, fulfilling an
interface (first example)
 multiple listeners possible
 multiple buttons can share same listener

toad 25 15-214 Kaestner

JButton btnNewButton = new JButton("New
button");

btnNewButton.addActionListener(new
ActionListener() {
 public void actionPerformed(ActionEvent e) {
 counter.inc();
 }
});

btnNewButton.addActionListener(new
ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null,
 "button clicked", "alert",
 JOptionPane.ERROR_MESSAGE);
 }
});

toad 26 15-214 Kaestner

class MyButton extends JButton {
 Counter counter;
 public MyButton() {
 … setTitle…
 }
 protected void fireActionPerformed(ActionEvent e) {
 counter.inc();
 }
}

JButton btnNewButton = new MyButton();
panel.add(btnNewButton);

toad 27 15-214 Kaestner

public class ActionListenerPanel extends JPanel
 implements ActionListener {
 public ActionListenerPanel() { setup(); }
 private void setup() {
 button1 = new JButton(‖a‖);
 button1.addActionListener(this);
 button2 = new JButton(―b‖);
 button2.addActionListener(this);
 add(button1); add(button2);
 }
 public void actionPerformed(ActionEvent e) {
 if(e.getSource()==button1)
 display.setText(BUTTON_1);
 else if(if(e.getSource()==button1) …
 }
 …
}

toad 28 15-214 Kaestner

public class ActionListenerPanel extends JPanel
 implements ActionListener {
 public ActionListenerPanel() { setup(); }
 private void setup() {
 button1 = new JButton(‖a‖);
 button1.addActionListener(this);
 button2 = new JButton(―b‖);
 button2.addActionListener(this);
 add(button1); add(button2);
 }
 public void actionPerformed(ActionEvent e) {
 if(e.getSource()==button1)
 display.setText(BUTTON_1);
 else if(if(e.getSource()==button1) …
 }
 …
}

Cohesion?

Class responsibilities include (1) building the display, (2) wiring
buttons and listeners, (3) mapping events to proper response,
(4) perform proper response

Consider separating out event handling with different listeners

toad 29 15-214 Kaestner

The Template Method design pattern

toad 30 15-214 Kaestner

The Template Method design pattern

• Applicability
 When an algorithm consists

of varying and invariant parts
that must be customized

 When common behavior in
subclasses should be factored
and localized to avoid code
duplication

 To control subclass
extensions to specific
operations

• Consequences
 Code reuse
 Inverted ―Hollywood‖ control:

don’t call us, we’ll call you
 Ensures the invariant parts of

the algorithm are not
changed by subclasses

You may have
used this in your
virtual world

toad 31 15-214 Kaestner

Template Method in JButton

• JButton has some behavior of how to handle
events
 eg drawing the button pressed while mouse down

• Some behavior remains undefined until later ->
abstract method
 In this case, default implementation of fireActionEvent
already exists

• Template method provides specific extension
point within larger shared computation

toad 33 15-214 Kaestner

The Observer design pattern

toad 34 15-214 Kaestner

The Observer design pattern

• Applicability
 When an abstraction has two

aspects, one dependent on
the other, and you want to
reuse each

 When change to one object
requires changing others,
and you don’t know how
many objects need to be
changed

 When an object should be
able to notify others without
knowing who they are

• Consequences
 Loose coupling between

subject and observer,
enhancing reuse

 Support for broadcast
communication

 Notification can lead to
further updates, causing a
cascade effect

toad 35 15-214 Kaestner

Swing has lots of event listener interfaces:

• ActionListener

• AdjustmentListener

• FocusListener

• ItemListener

• KeyListener

• MouseListener

• TreeExpansionListener

• TextListener

• WindowListener

• …and on and on…

35

toad 36 15-214 Kaestner

Observer Pattern between Data Model and GUI

• Consider Virtual World:
 World stores all items
 GUI shows items
 GUI triggers new behavior in world
 When should the GUI update the picture?

World GUI

step

update

getData

toad 37 15-214 Kaestner

Observer Pattern between Data Model and GUI

• What if we add a warning field to the GUI that
alerts if rabbits are about to die out?

World GUI

step

update

Warning

getData

update

getData

update

toad 38 15-214 Kaestner

Observer Pattern between Data Model and GUI

• What if we add a warning field to the GUI that
alerts if rabbits are about to die out?

World GUI

step

update

Warning

getData

update

getData

update

All control within the GUI.
What if the World changes for other reasons not
triggered by the GUI?

toad 39 15-214 Kaestner

Observer Pattern between Data Model and GUI

• Alternative Design: Let the World tell the GUI if
something happened

World GUI

step

update

Warning

update(data)

update(data)

update

Inflexible to add new object to update (always
requires change to the World)

Coupling from World to specific GUI implementations

toad 40 15-214 Kaestner

Observer Pattern between Data Model and GUI

• Observer Design: Let the world tell anybody
interested about updates

World GUI

register

update

Warning

notify

notify

update

register

step

Observer pattern decouples core implementation
from GUI. Explicit interfaces, lower coupling, better
reuse, easier to change and extend, …

toad 41 15-214 Kaestner

The Observer design pattern

toad 42 15-214 Kaestner

Layout of Widgets

toad 43 15-214 Kaestner

Swing Layout Manager

see http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

toad 44 15-214 Kaestner

A naïve Implementation

• Hard-code layout algorithms

• A new layout requires changing or overriding
JPanel

class JPanel {

 protected void doLayout() {

 switch(getLayoutType()) {

 case BOX_LAYOUT: adjustSizeBox(); break;

 case BORDER_LAYOUT: adjustSizeBorder(); break;

 ...

 }

 }

 private adjustSizeBox() { … }

}

toad 45 15-214 Kaestner

Layout Manager

• A panel has a list of children

• Different layouts possible
 List of predefined layout strategies
 Own layouts possible

• Every widget has preferred size

• Delegate specific layout to a separate class
implementing an explicit interface
 Use polymorphism for extensibility

toad 46 15-214 Kaestner

Layout Managers

abstract class Container { // JPanel is a Container
 private LayoutManager layoutMgr;

 public doLayout() {
 LayoutManager m = this.layoutMgr;
 if (m!=null)
 m.layoutContainer(this);
 }
 public Component[] getComponents() { … }
}

interface LayoutManager {
 void layoutContainer(Container c);
 Dimension getMinimumLayoutSize(Container c);
 Dimension getPreferredLayoutSize(Container c);
}

panel.setLayout(new BorderLayout(0,0));

toad 47 15-214 Kaestner

Behavioral: Strategy

toad 48 15-214 Kaestner

Behavioral: Strategy

• Applicability
 Many classes differ in

only their behavior
 Client needs different

variants of an algorithm

• Consequences
 Code is more extensible

with new strategies
• Compare to conditionals

 Separates algorithm
from context
• each can vary

independently
• design for change and

reuse; reduce coupling
 Adds objects and

dynamism
• code harder to understand

 Common strategy
interface
• may not be needed for all

Strategy implementations –
may be extra overhead

toad 49 15-214 Kaestner

Tradeoffs

void sort(int[] list, String order) {

 …

 boolean mustswap;

 if (order.equals("up")) {

 mustswap = list[i] < list[j];

 } else if (order.equals("down")) {

 mustswap = list[i] > list[j];

 }

 …

}

void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) { return i>j; }}

toad 50 15-214 Kaestner

Design Goals

• Design to explicit interfaces
 Strategy: the algorithm interface

• Design for change and information hiding
 Find what varies and encapsulate it
 Allows adding alternative variations later

• Design for reuse
 Strategy class may be reused in different contexts
 Context class may be reused even if existing strategies
don’t fit

• Low coupling
 Decouple context class from strategy implementation
internals

• Side note: how do you implement the Strategy
pattern in functional languages?

toad 51 15-214 Kaestner

Template Method vs Strategy vs Observer

• Template method vs strategy pattern
 both support variations in larger common context
 Template method uses inheritance + abstract method
 Strategy uses interface and polymorphism (object
composition)

 strategy objects reusable across multiple classes; multiple
strategy objects per class possible

 Why is Layout in Swing using the Strategy pattern?

• Strategy vs observer pattern
 both use a callback mechanism
 Observer pattern supports multiple observers (0..n)
 Update method in observer triggers update; rarely
returns result

 Strategy pattern supports exactly one strategy or an
optional one if null is acceptable (0..1)

 Strategy method represents a computation; may return a
result

toad 52 15-214 Kaestner

The Strategy Pattern to Paint Borders

• contentPane.setBorder(new EmptyBorder(5, 5, 5,
5));
 Border interface has ―paintBorder‖, ―getBorderInsets‖ and
―isBorderOpague‖ methods

//alternative design

class JPanel {

 protected void paintBorder(Graphics g) {

 switch(getBorderType()) {

 case LINE_BORDER: paintLineBorder(g); break;

 case ETCHED_BORDER: paintEtchedBorder(g); break;

 case TITLED_BORDER: paintTitledBorder(g); break;

 ...

 }

 }

}

toad 53 15-214 Kaestner

The Strategy Pattern to Paint Borders

• contentPane.setBorder(new EmptyBorder(5, 5, 5,
5));
 Border interface has ―paintBorder‖, ―getBorderInsets‖ and
―isBorderOpague‖ methods

//alternative design

class JPanel {

 protected void paintBorder(Graphics g) {

 switch(getBorderType()) {

 case LINE_BORDER: paintLineBorder(g); break;

 case ETCHED_BORDER: paintEtchedBorder(g); break;

 case TITLED_BORDER: paintTitledBorder(g); break;

 ...

 }

 }

}

//actual JComponent implementation

protected void paintBorder(Graphics g) {

 Border border = getBorder();

 if (border != null)

 border.paintBorder(this, g, 0, 0, getWidth(), getHeight());

}

toad 54 15-214 Kaestner

Nesting Containers

toad 55 15-214 Kaestner

Reminder: Composite Design Pattern

• Applicability
 You want to represent part-

whole hierarchies of objects
 You want to be able to ignore

the difference between
compositions of objects and
individual objects

• Consequences
 Makes the client simple, since it

can treat objects and
composites uniformly

 Makes it easy to add new kinds
of components

 Can make the design overly
general

• Operations may not make
sense on every class

• Composites may contain
only certain components

toad 56 15-214 Kaestner

Drawing Widgets

toad 57 15-214 Kaestner

JComponent

toad 58 15-214 Kaestner

Reminder: Template Method

• Applicability
 When an algorithm consists

of varying and invariant parts
that must be customized

 When common behavior in
subclasses should be factored
and localized to avoid code
duplication

 To control subclass
extensions to specific
operations

• Consequences
 Code reuse
 Inverted ―Hollywood‖ control:

don’t call us, we’ll call you
 Ensures the invariant parts of

the algorithm are not
changed by subclasses

toad 59 15-214 Kaestner

GUI design issues

• Interfaces vs. inheritance
 Inherit from JPanel with custom drawing functionality
 Implement the ActionListener interface, register with
button

 Why this difference?

• Models and views

59

toad 60 15-214 Kaestner

GUI design: Interfaces vs. inheritance

• Inherit from JPanel with custom drawing functionality
 Subclass ―is a‖ special kind of Panel
 The subclass interacts closely with the JPanel – e.g. the subclass

calls back with super
 Accesses protected functionality otherwise not exposed
 The way you draw the subclass doesn’t change as the program

executes

• Implement the ActionListener interface, register with button
 The action to perform isn’t really a special kind of button; it’s

just a way of reacting to the button. So it makes sense to be a
separate object.

 The ActionListener is decoupled from the button. Once the
listener is invoked, it doesn’t call anything on the Button
anymore.

 We may want to change the action performed on a button
press—so once again it makes sense for it to be a separate
object

• See also Command pattern later

60

toad 61 15-214 Kaestner

Separating
Core and GUI

toad 62 15-214 Kaestner

Core vs. GUI

• Core Implementation: Application logic
 computing a result
 updating some data

• GUI
 Graphical representation of applications data
 User interactions; starting point for actions

• Design Guideline: Separate core from GUI
 Able to provide alternative GUIs
 Able to test core separately
 Keep GUI slim (no additional tests needed?)
 Multithreading: keep GUI reactive also during long
computations

 -> Design for change, design for reuse, design for
division of labor; low coupling, high cohesion

toad 63 15-214 Kaestner

World GUI

step

update

Warning

update(data)

update(data)

update

toad 64 15-214 Kaestner

Metapattern: Model-View-Controller (MVC)

Manage inputs from
user: mouse, keyboard,
menu, etc.

Manage display of
information on the
screen

Manage data related to
the application domain

toad 65 15-214 Kaestner

Model-View-Controller (MVC)

Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx

toad 66 15-214 Kaestner

Separating Application Core and GUI

• Reduce coupling

• Create core of the application working and
testable without a GUI
 Use Observer pattern to communicate information from
Core (Model) to GUI (View)

 Use Controller (Façade) to perform operations on core
 May run in separate threads (worker thread vs GUI
thread) to avoid blocking, see SwingWorker

Core

GUI

Core
Tests

GUI
Tests

toad 67 15-214 Kaestner

The Façade Design Pattern

• See GRASP Controller

• Applicability
 You want to provide a simple

interface to a complex subsystem
 You want to decouple clients from

the implementation of a
subsystem

 You want to layer your
subsystems

• Consequences
 It shields clients from the

complexity of the subsystem,
making it easier to use

 Decouples the subsystem and its
clients, making each easier to
change

 Clients that need to can still
access subsystem classes

 -> Explicit interfaces, low
coupling, information hiding,
design for reuse, design for
understandability, …

toad 68 15-214 Kaestner

Filling Lists
and Tables

toad 69 15-214 Kaestner

JList and JTree

• Lists and trees highly flexible (reusable)

• Can change rendering of cells

• Can change source of data to display

//simple use
String [] items = { ―a‖, ―b‖, ―c‖ };
JList list = new JList(items);

toad 70 15-214 Kaestner

The ListModel

• Allows list widget (view) to react to changes in
the model

//with a ListModel
ListModel model = new DefaultListModel();
model.addElement(―a‖);
JList list = new JList(model);

interface ListModel<T> {
 int getSize();
 T getElementAt(int index);
 void addListDataListener(ListDataListener l);
 void removeListDataListener(ListDataListener l);
}

toad 71 15-214 Kaestner

The ListModel

• Allows list widget (view) to react to changes in
the model

//with a ListModel
ListModel model = new DefaultListModel();
model.addElement(―a‖);
JList list = new JList(model);

interface ListModel<T> {
 int getSize();
 T getElementAt(int index);
 void addListDataListener(ListDataListener l);
 void removeListDataListener(ListDataListener l);
}

interface ListDataListener extends EventListener {
 void intervalAdded(…);
 void intervalRemoved(…);
 void contentsChanged(…);
}

toad 72 15-214 Kaestner

Scenario

• Assume we want to show all items of the virtual
world in a list and update the items

//design 1
class World implements ListModel<String> {
 List<Item> items …

 int getSize() { return items.size(); }
 String getElementAt(int index) {
 items.get(index).getName();
 }
 void addListDataListener(ListDataListener l) {…}
 protected void fireListUpdated() {…}
}

toad 73 15-214 Kaestner

Scenario

• Assume we want to show all items of the virtual
world in a list and update the items

//design 2
class World {
 DefaultListModel<Item> items …

 public getListModel() { return items; }
 public Iterable<Item> getItems() {
 return items.elements();

}

toad 74 15-214 Kaestner

Scenario

• Assume we want to show all items of the virtual
world in a list and update the items

//design 3
class WorldAdapter implements ListModel<String> {
 private final World world;
 public WorldAdapter(World w) {world = w;}

 int getSize() { return count(world.getItems()); }
 String getElementAt(int index) {
 find(world.getItems(), index);
 }
 void addListDataListener(ListDataListener l) {…}
 …
}

toad 75 15-214 Kaestner

Scenario

• Assume we want to show all items of the virtual
world in a list and update the items

+getItems()

-items

World

JList

+getSize()
+getElementAt()

WorldAdapter

+getSize()
+getElementAt()

«interface»
ListModel

+getItems()

World

JList

+getSize()
+getElementAt()

DefaultListModel

11

+getItems()
+getSize()
+getElementAt()

-items

World

JList

+getSize()
+getElementAt()

«interface»
ListModel1 2

3

toad 76 15-214 Kaestner

The Adapter Design Pattern

toad 77 15-214 Kaestner

The Adapter Design Pattern

• Applicability
 You want to use an existing

class, and its interface does
not match the one you need

 You want to create a
reusable class that
cooperates with unrelated
classes that don’t necessarily
have compatible interfaces

 You need to use several
subclasses, but it’s
impractical to adapt their
interface by subclassing each
one

•Consequences
• Exposes the functionality of an

object in another form
• Unifies the interfaces of multiple

incompatible adaptee objects
• Lets a single adapter work with

multiple adaptees in a hierarchy
• -> Low coupling, high cohesion

toad 78 15-214 Kaestner

Other Scenarios for Adapters

• You have an application
that processes data with an
Iterator. Methods are:
 boolean hasNext();
 Object next();

• You need to read that data
from a database using
JDBC. Methods are:
 boolean next();
 Object getObject(int

column);

• You might have to get the
information from other
sources in the future.

toad 79 15-214 Kaestner

Façade vs. Adapter

• Motivation
 Façade: simplify the interface
 Adapter: match an existing interface

• Adapter: interface is given
 Not typically true in Façade

• Adapter: polymorphic
 Dispatch dynamically to multiple implementations
 Façade: typically choose the implementation statically

toad 80 15-214 Kaestner

Design Goals

• Design to explicit interfaces
 Façade – a new interface for a library
 Adapter – design application to a common interface,
adapt other libraries to that

• Favor composition over inheritance
 Façade – library is composed within Façade
 Adapter – adapter object interposed between client and
implementation

• Design for change with information hiding
 Both Façade and Adapter – shields variations in the
implementation from the client

• Design for reuse
 Façade provides a simple reusable interface to subsystem
 Adapter allows to reuse objects without fitting interface

• …

toad 81 15-214 Kaestner

• Renderer of list items and table cells exchangable

• Interface TableCellRenderer

• Strategy design pattern, again

Custom Renderer

toad 82 15-214 Kaestner

Undoable
Actions

toad 83 15-214 Kaestner

Actions in GUIs

• We want to make actions
accessible in multiple places
 menu, context menu, keyboard
shortcut, …

 When disabling an action, all
places should be disabled

• We may want to undo
actions

• Separate action
execution from
presentation

• Delay, queue, or log actions
 eg macro recording, progress
bars, executing remotely,
transactions, wizards

toad 84 15-214 Kaestner

Actions in Swing

+...()

-enabled

AbstractAction

+actionPerformed()

«interface»
ActionListener

+getValue(in key)
+putValue(in key, in value)
+setEnabled()
+isEnabled()
+addPropertyChangeListener()

«interface»
Action

Keys:
Name
Icon
Short description
Long description
Key combinations
Selected

+getAction()
+setAction()

AbstractButton

* 1

JButton JMenuItem

toad 85 15-214 Kaestner

Action vs. ActionListener

• Action is self-describing (text, shortcut, icon, …)
 Can be used in many places
 e.g. log of executed commands, queue, undo list

• Action can have state (enabled, selected, …)

• Actions are synchronized in all cases where they
are used
 with observer pattern: PropertyChangeListener

toad 86 15-214 Kaestner

Implementing a Wizard

• Every step produces
some execution

• Execution is delayed
until user clicks finish

• Collect objects
representing executions
in a list

• Execute all at the end

• -> Design for change,
division of labor, and
reuse; low coupling

interface ExecuteLater {
 void execute();
}

toad 87 15-214 Kaestner

Implementing a Wizard

• Every step produces
some execution

• Execution is delayed
until user clicks finish

• Collect objects
representing executions
in a list

• Execute all at the end

• -> Design for change,
division of labor, and
reuse; low coupling

interface ExecuteLater {
 void execute();
}

class SetCompanyName implements ExecuteLater {
 private final String name;
 private final Registry registry;
 SetCompanyName(String n, Registry r) {
 name=n; registry = r;
 }
 void execute() {
 registry.writeKey(…, name);
 }
}

toad 88 15-214 Kaestner

The Command Design Pattern

toad 89 15-214 Kaestner

The Command Design Pattern

• Applicability
 Parameterize objects by an

action to perform
 Specify, queue and execute

requests at different times
 Support undo
 Support logging changes that

can be reapplied after a crash
 Structure a system around

high-level operations built
out of primitives

• Consequences
 Decouples the object that

invokes the operation from
the one that performs it

 Since commands are objects
they can be explicitly
manipulated

 Can group commands into
composite commands

 Easy to add new commands
without changing existing
code

toad 90 15-214 Kaestner

Common Commands in Java

• javax.swing.Action
 see above

• java.lang.Runnable
 Used as an explicit operation that can be passed to
threads, workers, timers and other objects or delayed or
remote execution

 see FutureTask

toad 91 15-214 Kaestner

Commands in the Virtual World

• Represent common actions
 Reusing implementation
 Validity checking of moves (e.g., MoveCommand can only
be called on moveable items; rabbits may only move
within moving range)

• Could be queued and checked separately

• Separate creation of command from its execution:
 AI: Command getNextAction(ArenaWorld)
vs
Command: void execute(World)

 Both can throw different kinds of exceptions

toad 92 15-214 Kaestner

Undoable Actions

• Remember undoable changes: Store effect with
information how to undo it in a list
 Delete command with removed text and location
 Paste command with location of added text
 Swing: UndoableEdit interface

• Provide an undo and redo implementation for
each undoable change

• Queue undoable changes in a history; provide
user interface actions for undo and redo

toad 93 15-214 Kaestner

Source: http://www.javaworld.com/article/2076698/core-java/add-an-undo-redo-function-to-your-java-apps-
with-swing.html

notice the
composite
pattern

toad 94 15-214 Kaestner

The GUI Threading Architecture

94

GUI Thread

main() thread
Create window

Set up
callbacks

Show window
(thread ends)

Loop forever:
 Get system
event
 Invoke callback

Callback code:
 Compute fibonacci
 (UI is
unresponsive)
 Show result

toad 95 15-214 Kaestner

The GUI Threading Architecture

95

GUI thread

main() thread
Create window

Set up
callbacks

Show window
(thread ends)

Loop forever:
 Get system
event
 Invoke callback

Callback code:
 create
SwingWorker
 start it executing

Worker thread

Worker thread execution:
 invoke doInBackground()
 compute fibonacci
 store result in
SwingWorker
 signal to UI that we are
done

SwingWorker

result : Long

toad 96 15-214 Kaestner

The GUI Threading Architecture

96

GUI thread

main() thread
Create window

Set up
callbacks

Show window
(thread ends)

Loop forever:
 Get system
event
 Invoke callback

Worker thread

Worker thread execution:
 invoke doInBackground()
 compute fibonacci
 store result in
SwingWorker
 signal to UI that we are
done

Invoke SwingWorker.done()
 get() result from
SwingWorker
 show result in the UI

SwingWorker

result : Long

toad 97 15-214 Kaestner

Summary

• GUIs are full of design pattern
 Strategy Pattern
 Template Method Pattern
 Composite Pattern
 Observer Pattern
 Façade Pattern
 Adapter Pattern
 Command Pattern
 Model-View-Controller Metapattern

• Swing for Java GUIs

• Separation of GUI and Core

toad 98 15-214 Kaestner

Design Challenge

• In the Point of Sales terminal the total of a sale
should be computed and coupons should be taken
into account

• Coupons and other special actions may change
over time: design for change

• Design 1-3 solutions that share common
computations, but is extensible for new coupons
or other promotions

