Threagjs

15-214
toad

School of
Computer Science

L
institute for
I S SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design and Concurrency

Just enough UML

Christian Kastner Charlie Garrod

With slides from Klaus Ostermann

Learning Goals

e Basic fluency in UML

e Ability to communicate with class diagrams and
interaction diagrams

= ey stitute for
15-214 Kaestner toad 2 SOFTWARE

RESEARCH

UML

e Unified Modeling Language

e Graphical Notation to describe classes, objects,
behavior, and more

e You will need:
= Class Diagrams

= Interaction Diagrams (Sequence and Communication
Diagrams)

= institute For
15-214 Kaestner toad 3 SE A

Goal of Modeling

e Modeling is primarily for communication
= with yourself
« with team members
= with customers

e Agree on common understanding
e Forces to clarify understanding (relationships etc)

e \Visual representation scales better than code
= abstraction

e Mostly used for informal communication

= institute for
15-214 Kaestner toad 4 SCETARE

Class Diagrams

e A class diagram describes the types of objects in
a system and the various kinds of static

relationships between them
= Associations
= Subtypes

e Class diagrams also show the attributes,
names/types of operations, and constraints that
restrict how objects are connected

institute for

15-214 Kaestner toad s [o

RESEARCH

Class Diagrams

Example

15-214 Kaestner

Order Multiplicity: mandatory
dateReceived Customer
isPrepaid
number : String | * 1 name
price : Money / address
dlspatch() Association creditRating():String
close()
1 \\ Generalization Class
{if Order.customer.creditRating is
“poor,” then Order.isPrepaid
must be true} f
Constraint Corporate Personal
Customer Customer
. contactName creditCard#
Attributes “—m|creditRating
creditLimit
{creditRating() ==
Role . upoorr.-
Name] remind()
\ Operations billForMonth(Integer)
*
. Muitiplicity:
i'ggln?s * - Many-valued
sales rep 0..1 W Multiplicity:
optional
Ol'del' Line Employee
quanu% Integer
rice : Mon e]?/
1sSatlsf1ed oolean| , 1
Product

Three ways to use class diagrams

e Conceptual: Draw a diagram that represents the

concepts in the domain under study
« Conceptual classes reflect concepts in the domain
= Little or no regard for software that might implement it

e Specification: Describing the interfaces of the

software, not the implementation
« Software classes representing candidates for implem.

= Often confused in OO since classes combine both
interfaces and implementation

e Implementation: Diagram describes actual
implementation classes

e Understanding the intended perspective is crucial
to drawing and reading class diagrams, even
though the lines between them are not sharp

= institute for
15-214 Kaestner toad 7 SERu AR

Associations

e Associations represent relationships between
instances of classes

e Conceptual perspective: Associations represent
conceptual relationships

e Specification perspective: Associations represent
responsibilities

e Implementation perspective: Associations
represent pointers/fields between related classes

= e titute for
15-214 Kaestner toad 8 SOFTWARE

RESEARCH

Associations

e Each association has two ends
=« Each end can be named with a label called role name
= An end also has a multiplicity: How many objects
participate in the given relationship
e General case: give upper and lower bound in
lower..upper notation
e Abbreviations: * = 0O..infinity, 1 = 1..1
e Most common multiplicities: 1, *, 0..1

e In the specification perspective, one can infer
existence and names (if naming conventions
exist) of methods to navigate the associations, for
example:

Class Order {
public Customer getCustomer() ;
public Set<OrderLine> getOrderlLines() ;

-
institute for
15-21 } o i

Associations

e In the implementation perspective we can
conclude existence of pointers in both directions
between related classes

class Order {
private Customer _ customer;
private Set<OrderLine> orderLines;

}

class Customer {
private Set<Order> orders;

= institute for
15-214 Kaestner toad 10 SOFTWARE

RESEARCH

Associations
Unidirectional vs bidirectional

e Arrows in association lines indicate navigability
« Only one arrow: unidirectional association
« No or two arrows: bidirectional association

e Specification perspective: Indicates navigation
operations in interfaces

e Implementation perspective: Indicates which
objects contain the pointers to the other objects

e Arrows serve no useful purpose in conceptual
perspective

e For bidirectional associations, the two navigations
must be inverses of each other

= institute for
15-214 Kaestner toad 11 SERu AR

Unidirectional

Associations

15-214 Kaestner

Order
dateReceived Customer
isPrepaid
number : String 1 | hame
price : Money = address
close() A
1 \
\
{if Order.customer.creditRating is
“poor,” then Order.isPrepaid
must be true}
Corporate Personal
Customer Customer
contactName creditCard#
creditRating
creditLimit
' {creditRating()
remind() == "poor”}
billForMonth(Integer)
*
line
. *
items salesrep | 0.1
Order Line Employee
qu.anti%: Integer
rice : Mone

1sSatisfied : Boolean|

————= Product

REAL RESEARCH

Class Diagrams: Attributes

e Attributes are very similar to associations

= Conceptual level: A customer’s name attribute indicates
that customers have names

= Specification level: Attribute indicates that a customer
object can tell you its name
« Implementation level: customer has a field (aka instance
variable) for its name
« UML syntax for attributes:
visibility name : type = defaultValue
e Details may be omitted

= institute for
15-214 Kaestner toad 13 SOFTWARE

RESEARCH

Class Diagrams: Attributes vs Associations

e Attributes describe non-object-oriented data
= Integers, strings, booleans, ...

e From conceptual perspective this is the only
difference

e Specification and implementation perspective:
= Attributes imply navigability from type to attribute only

« Implied that type contains solely its own copy of the
attribute objects

= institute For
15-214 Kaestner toad 14 SE A

Class Diagrams: Operations

e Operations are the processes that a class knows
to carry out

e Most obviously correspond to methods on a class

e Full syntax:
visibility name(parameter-list) : return-type
= Visibility is + (public), # (protected), or - (private)
= name is a string

« parameter-list contains comma-separated parameters
whose syntax is similar to that for attributes
e Can also specificy direction: input (in), output(out), or
both (inout)
e Default: in
= return-type is comma-separated list of return types
(usually only one)

= institute for
15-214 Kaestner toad 15 SOFTWARE

RESEARCH

Class Diagrams: Constraint Rules

e Arbitrary constraints can be added by putting
them inside braces({})

e Mostly formulated in informal natural language

e UML also provides a formal Object Constraint
Language (OCL)

e Constraints should be implemented as assertions
in your programming language

15-214 Kaestner toad 16 [H e

RRRRRRRR

Object Diagrams

1€ COTHIECLIULLS ULV CTLL UM JLLLD (AL Lt aases -~ ==

Party * children
location

| 1 parent

Organization

engigegring : Organization Person

location = “Boston”

tools : Organization apps : Organization
location = “Chicago” location = “Saba”

/pare\“f\ I(Class diagram that

Don : Person John : Person belongs to the object
location = “Champaign”| |location = “Champaign” dia gram)

— s 2w 1 Tl Tanntmannnn ALl D waar

15-214 Kaestner toad 17 Sorvinse

RESEARCH

Aggregation vs Composition

{ordered} Composition

— Point <= /

3.% 1
1 >— @ Circle
Folygon <> S radius
* »*
Style \
1 color "jf_ Aggregation
isFilled

e Aggregation expresses “part-of” relationships, but
rather vague semantics

e Composition is stronger: Part object live and die
with the whole

= institute for
15-214 Kaestner toad 18 RESEARCH

Abstract classes and methods

Windows Window

toFront()
toBack()

Window
{abstract}

X11 Window

Text I
Editor —=|toFront()

toBack() toFront()
toBack()

Dependency Mac Window

toFront()
toBack()

e UML convention for abstract classes/methods: Italicize
name of abstract item or use {abstract} constraint
15-214 Kaestner toad 19 Sﬂét%f%

RESEARCH

Interfaces and Lollipop notation

«interface»
InputStream Datalnput <=7 -~-—| OrderReader

--———— Generalization i
| Dependency
_

DatalnputStream [— —— Realization
Interface
~
Datalnput (E-% — OrderReader
DatalnputStream
Dependency
InputStream J)

institute for
15-214 Kaestner toad 20 SO TR

RESEARCH

Interaction Diagrams

e Interaction diagrams describe how groups of
objects collaborate in some behavior

e Two kinds of interaction diagrams: sequence
diagrams and communication diagrams

= ey stitute for
15-214 Kaestner toad 21 SOFTWARE

RESEARCH

Seqguence Diagram Example

15-214 Kaest

an Order Entry
wi - an Order an Order Line a Stock Item
i f 1
— Pprepare (} | |
By |
) prepare () | |
Object
L |
hasStock :=
Message check () |
Condition
lteration
[hasStock]
remove() | needsReorder:=
> needsToReorder()
~— Self-Call
Return
[needsReorder]
new
Item
e — — — L ,
| |
[hasStock] new! [a Delivery
7J | | !
T | | i
| | | | Creation |
I
I I |) |
Deletion

22

institute for
SOFTWARE
RESEARCH

Seqguence Diagrams

e \Vertical line is called lifeline

e Each message represented by an arrow between

lifelines
« Labeled at minimum with message name
= Can also include arguments and control information

= Can show self-call by sending the message arrow back to
the same lifeline

e Can add condition which indicates when message
is sent, such as [needsReorder]

e Can add iteration marker which shows that a
message is sent many times to multiple receiver
objects

= institute For
15-214 Kaestner toad 23 SE A

Communication Diagram Example

: Order Entry Window &——— QObject

l 1: prepare() <#————— Message

: Order Sequence Number

i 2*[for all order lines]: prepare() 5. needsReorder := needToReorder()

3: hasStock := check () Sélf-Delegation
4: [hasStock]: remove() T m

Macallan line : Order Line - Macallan stock : Stock Item

6 [needsReorder]: new
7 [hasStock]: new

: Delivery Item : Reorder Item

15-214 Kaestner toad 20 [s

RESEARCH

Communication Diagram Example: Decimal Numbering System

: Order Entry Window

l 1: prepare()

: Order

ll.l*[for all order lines}: prepare()

Sequence Number

'

1.1.2.1: needsReorder =
needToReordert)

1.1.1: hasStock := check ()
1.1.2: [hasStock]: remove() m

Macallan line : Order Line

l 1.1.3: [hasStock]: new

: Delivery Item

15-214 naesuier ™00 = - = oo wuu

+

Macallan stock : Stock Item

1.1.2.2 [needsReorder]:
new

: Reorder Item

institute for
SOFTWARE
25 I.EII RESEARCH

Seguence vs Communication Diagrams

e Sequence diagrams are better to visualize the
order in which things occur

e Communication diagrams also illustrate how
objects are statically connected

e Communication diagrams often are more compact

e You should generally use interaction diagrams
when you want to look at the behavior of several
objects within a single use case.

= ey stitute for
15-214 Kaestner toad 26 SOFTWARE

RESEARCH

The UML universe

e There is a lot more to the UML than what we have
shown here
= More diagram types

e State diagrams, activity diagrams, use cases,
deployment diagrams, ...

= More notational features in all diagram types
e Stereotypes, parameterized classes, ...

e We will touch some UML features not shown here
during the course and will explain them as needed

= institute for
15-214 Kaestner toad 27 SOFTARE

RESEARCH

UML Misconceptions and Limitations

e UML is not language-independent. It /s a language, as
the L in UML suggests.

e This language is something like a high-level “best-of”

of common OO programming language features

= [t contains notation for features that are only available in
some (or even no) programming language (such as: dynamic
classification)

= Every OO language has features that have no corresponding
notation in the UML (e.g. wildcards in Java)

« The same UML notation may have a different meaning in
different OO languages (e.g. visibility)

e The UML has no clearly defined semantics. This is both

a limitation and a feature
= Good for informal diagrams, bad for formal specifications

e No consensus in the community about the scenarios
where UML is useful

= institute For
15-214 Kaestner toad 28 SE A

Literature

e Shalloway and Trott. Design Patterns Explained.

Addison-Wesley. 2005
= brief introduction only

e Craig Larman, Applying UML and Patterns,

Prentice Hall, 2004

= detailed introduction of class diagrams and interaction
diagrams

« detailed guidelines for modeling (e.g., when to use an
association and when to use an attribute)

e Martin Fowler. UML Distilled. Addison-Wesley.
2003

« detailed introduction to UML including many other
diagrams and advanced concepts

= institute for
15-214 Kaestner toad 29 SO TR

RESEARCH

