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Learning Goals 

• Writing bug reports 

• Apply Hoare-style verification to object-oriented 
programs 

• Reason about inheritance with behavioral 
subtyping 

• Apply static analysis tools 

• Understand the tradeoffs among testing, formal 
verification and static analysis 
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Bug Reports 
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Reporting Defects 

• Reproducible defects 
 Easier to find and fix 
 Easier to validate  
 Increased confidence 
 

• Simple and general 
 More value doing the  
fix 
 

• Non-antagonistic 
 State the problem 
 Don't blame  
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Social Issues in Defect Reporting 

• There are differences between developer and 
tester culture 

• Acknowledge that testers often deliver bad news 

• Work hard to detect defects locally 
 Easier to narrow scope  
and responsibility 

 Less adversarial  

• Don’t measure 
performance 
in terms of defect 
reports 
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Defect Tracking 

• Always track defects and issues 

• Issue: Bug, feature request, or  
query 
 May not know which of these until  
analysis is done, so track in the  
same database (Bugzilla, github) 

• Provides a basis for  
measurement 

• Provides a basis for division  
of effort 

• Facilitates communication 
 Organized record for each issue 
 Ensures problems are not  
forgotten 
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Bug Tracking on GitHub 

• Every GitHub project has own issue tracker (and 
wiki); enable in project settings 
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Formal Verification 
of Object-Oriented Programs 
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Formal Verification 

• Proving the correctness of an implementation with 
respect to a formal specification, using formal 
methods of mathematics. 

• Formally prove that all possible executions of an 
implementation fulfill the specification 

 

• Manual effort; partial automation; not 
automatically decidable 
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Formal Specifications 

/*@ requires len >= 0 && array != null && array.length == len; 
  @ 
  @ ensures \result ==  
  @            (\sum int j;  0 <= j && j < len;  array[j]); 
  @*/ 
int total(int array[], int len); 
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Recap: Hoare-Style Verification 

• Formal reasoning about program correctness 
using pre- and postconditions 

 

• Syntax: {P} S {Q} 
 P and Q are predicates 
 P is the precondition 
 S is a program 
 Q is the postcondition 

 

• Semantics 
 If we start in a state where P is true and execute S, then 
S will terminate in a state where Q is true 
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Recap: Hoare-Logic Rules 

Assignments 
{ P[E/x] } x:= E { P } 

Composition 
{ P } S { Q }     { Q } T { R }     
---------------------------------- 
        { P } S; T { R } 

If statement 
{ B & P } S { Q }     { !B & P } T { Q } 
---------------------------------------------- 
       { P } if (B) S else T { Q } 

While loop with loop invariant P 
        { P & B } S { P }  
----------------------------------- 
 { P } while (B) S { !B & P } 

Consequence 
P -> P'      { P } S { Q }       Q -> Q'   
-------------------------------------------- 
            { P' } S { Q' } 
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Hoare Triples – Examples  

• { true } x := 5 {  } 

• {  } x := x + 3 { x = y + 3 } 

• {  } x := x * 2 + 3 { x > 1 } 

• { x=a } if (x < 0) then x := -x {  } 

• { false } x := 3 {  } 

• { x < 0 } while (x!=0) x := x-1 {  } 
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Hoare Triples – Examples  

• { true } x := 5 { x=5 } 

• { x = y } x := x + 3 { x = y + 3 } 

• { x > -1 } x := x * 2 + 3 { x > 1 } 

• { x=a } if (x < 0) then x := -x { x=|a| } 

• { false } x := 3 { x = 8 } 

• { x < 0 } while (x!=0) x := x-1 {  } 
 no such triple! 
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Recap: 122 midterm 

int find_peak_bin(int[] A, int n) 

//@requires 0 < n && n <= \length(A); 

//@requires is_peaked(A, 0, n); 

//@ensures 0 <= \result && \result < n; 

//@ensures gt_seg(A[\result], A, 0, \result); 

//@ensures gt_seg(A[\result], A, \result+1, n); 

{ 

int lower = 0; 

int upper = n-1; 

while (lower < upper) 

 //@loop_invariant ____________________________ ; 

 //@loop_invariant ____________________________ ; 

{ 

 int mid = lower + (upper-lower)/2; 

 //@assert ________________ ; /* optional */ 

 if (A[mid] < A[mid+1]) 

  lower = mid+1; 

 else //@assert ______ ; /* optional */ 

  upper = mid; 

} 

//@assert _______________________ ; /* optional */ 

return lower; 

} 
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Class Invariants 

 Properties about the fields of an object 

 Established by the constructor 

 Should always hold before and after execution of public 
methods 

 May be invalidated temporarily during method execution 

public class SimpleSet { 
 
    int contents[]; 
    int size; 
 
    //@ ensures sorted(contents); 
    SimpleSet(int capacity) { … } 
 
    //@ requires sorted(contents); 
    //@ ensures sorted(contents); 
    boolean add(int i) { … } 
 
    //@ requires sorted(contents);  
    //@ ensures sorted(contents); 
    boolean contains(int i) { … } 
} 

public class SimpleSet { 
 
    int contents[]; 
    int size; 
 
    //@invariant sorted(contents); 
 
    SimpleSet(int capacity) { … } 
 
    boolean add(int i) { … } 
 
    boolean contains(int i) { … } 
} 
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Behavioral Subtyping (Liskov Substitution Principle) 

 

Let q(x) be a property provable about objects x of type T. Then q(y) 

should be provable for objects y of type S where S is a subtype of T. 

Barbara Liskov 

 An object of a subclass should be substitutable for an object of its 
superclass 

 Known already from types: 

• May use subclass instead of superclass 

• Subclass can add, but not remove methods 

• Overriding method must return same or subtype 

• Overriding method may not throw additional exceptions 

 Applies more generally to behavior: 

• A subclass must fulfill all contracts that the superclass does 

• Same or stronger invariants 

• Same or stronger postconditions for all methods 

• Same or weaker preconditions for all methods 
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Behavioral Subtyping (Liskov Substitution Principle) 

abstract class Vehicle { 

 int speed, limit; 

 //@ invariant speed < limit; 

 

 //@ requires speed != 0; 

 //@ ensures |speed| < |\old{speed}| 

 void break(); 

} 

class Car extends Vehicle { 

 int fuel; 

 boolean engineOn; 

 //@ invariant fuel >= 0; 

 

 //@ requires fuel > 0 && ! engineOn; 

 //@ ensures engineOn; 

 void start() { … } 

 

 void accelerate() { … } 

 

 //@ requires speed != 0; 

 //@ ensures |speed| < |\old{speed}| 

 void break() { … } 

} 

Subclass fulfills the same invariants (and additional ones) 

Overridden method has the same pre and postconditions 
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Behavioral Subtyping (Liskov Substitution Principle) 

class Car extends Vehicle { 

 int fuel; 

 boolean engineOn; 

 //@ invariant fuel >= 0; 

 

 //@ requires fuel > 0 && ! engineOn; 

 //@ ensures engineOn; 

 void start() { … } 

 

 void accelerate() { … } 

 

 //@ requires speed != 0; 

 //@ ensures |speed| < |\old{speed}| 

 void break() { … } 

} 

class Hybrid extends Car { 

 int charge; 

 //@ invariant charge >= 0; 

 

 //@ requires (charge > 0 || fuel > 0)  

    && ! engineOn; 

 //@ ensures engineOn; 

 void start() { … } 

 

 void accelerate() { … } 

 

 //@ requires speed != 0; 

 //@ ensures |speed| < |\old{speed}| 

 //@ ensures charge > \old{charge} 

 void break() { … } 

} 

Subclass fulfills the same invariants (and additional ones) 

Overridden method start has weaker precondition 

Overridden method break has stronger postcondition 
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Behavioral Subtyping (Liskov Substitution Principle) 

class Rectangle { 

 int h, w; 

  

 Rectangle(int h, int w) { 

  this.h=h; this.w=w; 

 } 

 

 //methods 

} 

class Square extends Rectangle { 

 Square(int w) { 

  super(w, w); 

 } 

} 

Is Square a behavior subtype of Rectangle? 
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Behavioral Subtyping (Liskov Substitution Principle) 

class Rectangle { 

 //@ invariant h>0 && w>0; 

 int h, w; 

  

 Rectangle(int h, int w) { 

  this.h=h; this.w=w; 

 } 

 

 //methods 

} 

class Square extends Rectangle { 

 //@ invariant h==w; 

 Square(int w) { 

  super(w, w); 

 } 

} 

Is Square a behavior subtype of Rectangle? 
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Behavioral Subtyping (Liskov Substitution Principle) 

class Rectangle { 

 //@ invariant h>0 && w>0; 

 int h, w; 

  

 Rectangle(int h, int w) { 

  this.h=h; this.w=w; 

 } 

 

 void scale(int factor) { 

  w=w*factor; 

  h=h*factor; 

 } 

} 

class Square extends Rectangle { 

 //@ invariant h==w; 

 Square(int w) { 

  super(w, w); 

 } 

} 

Is Square a behavior subtype of Rectangle? 
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Behavioral Subtyping (Liskov Substitution Principle) 

class Rectangle { 

 //@ invariant h>0 && w>0; 

 int h, w; 

  

 Rectangle(int h, int w) { 

  this.h=h; this.w=w; 

 } 

 

 void scale(int factor) { 

  w=w*factor; 

  h=h*factor; 

 } 

 

 void setWidth(int neww) { 

  w=neww; 

 } 

} 

class Square extends Rectangle { 

 //@ invariant h==w; 

 Square(int w) { 

  super(w, w); 

 } 

} 

Is Square a behavior subtype of Rectangle? 
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Behavioral Subtyping (Liskov Substitution Principle) 

class Rectangle { 

 //@ invariant h>0 && w>0; 

 int h, w; 

  

 Rectangle(int h, int w) { 

  this.h=h; this.w=w; 

 } 

 

 void scale(int factor) { 

  w=w*factor; 

  h=h*factor; 

 } 

 

 void setWidth(int neww) { 

  w=neww; 

 } 

} 

class Square extends Rectangle { 

 //@ invariant h==w; 

 Square(int w) { 

  super(w, w); 

 } 

} 

With these methods, Square is not  

a behavior subtype of Rectangle 

← Invalidates stronger  

 invariant (w==h) in subclass 

class GraphicProgram { 
    void scaleW(Rectangle r, int factor) { 
        r.setWidth(r.getWidth() * factor); 
    } 
} 
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Formal Verification of Object-Oriented Programs 

• Analogue to verification of imperative programs 

• Class invariants simplify specifications 

• Behavioral subtyping ensures substitutability 

 

• Proof of correctness 
 All possible executions will fulfill the formal specifications 
 Pen and paper proof 
 Support for partially automated proofs available  
(full automation not possible) 
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Static Analysis 
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Stupid Bugs 

 

public class CartesianPoint { 
 private int x, y; 
 int getX() { return this.x; } 
 int getY() { return this.y; } 
 boolean equals(CartesianPoint that) { 
  return (this.getX()==that.getX()) &&  
   (this.getY() == that.getY()); 
 } 
} 
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Static Analysis 

• Analyzing code without executing it (automated 
inspection) 

• Looks for bug patterns 

• Attempts to formally verify specific aspects 

• Point out typical bugs or style violations 
 NullPointerExceptions 
 Incorrect API use 
 Forgetting to close a file/connection 
 Concurrency issues 
 And many, many more (over 250 in FindBugs) 

• Integrated into IDE or build process 

• FindBugs and CheckStyle open source, many 
commercial products exist 
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Example FindBugs Bug Patterns 

•Correct equals() 

•Use of == 

•Closing streams 

• Illegal casts 

•Null pointer dereference 

• Infinite loops 

•Encapsulation problems 

• Inconsistent synchronization 

• Inefficient String use 

•Dead store to variable 
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Bug finding 



toad 33 15-214 

Abstract Interpretation 

• Static program analysis is the systematic 
examination of an abstraction of a program’s 
state space 

• Abstraction 
 Don’t track everything! (That’s normal interpretation) 
 Track an important abstraction 

• Systematic 
 Ensure everything is checked in the same way 

Details on how this works in 15-313 
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Comparing  
Quality Assurance Strategies 
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Error exists No error exists 

Error Reported True positive 
(correct analysis 
result) 

False positive 
(annoying noise) 

No Error Reported False negative 
(false confidence) 

True negative 
(correct analysis 
result) 

How does testing relate? And formal verification?  

Sound Analysis:  
 reports all defects 
 -> no false negatives 
 typically overapproximated 
 
Complete Analysis: 
 every reported defect is an actual defect  
 -> no false positives 
 typically underapproximated 
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Defects reported by  
Sound Analysis 

All Defects 

Defects 
reported by 
Complete 
Analysis 

Unsound 
and 
Incomplete 
Analysis 
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The Bad News: Rice's Theorem 

• Every static analysis is necessarily incomplete or 
unsound or undecidable (or multiple of these) 

• Each approach has different tradeoffs 

"Any nontrivial property about the 
language recognized by a Turing 
machine is undecidable.“ 

Henry Gordon Rice, 1953 
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Soundness / Completeness / Performance Tradeoffs 

• Type checking does catch a specific class of 
problems (sound), but does not find all problems 

• Compiler optimizations must err on the safe side 
(only perform optimizations when sure it's 
correct; -> complete) 

• Many practical bug-finding tools analyses are 
unsound and incomplete 
 Catch typical problems 
 May report warnings even for correct code 
 May not detect all problems 

• Overwhelming amounts of false negatives make 
analysis useless 

• Not all "bugs" need to be fixed 
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Testing and Proofs 

• Testing 
 Observable properties 
 Verify program for one 

execution 
 Manual development with 

automated regression 
 Most practical approach now 
 Does not find all problems 

(unsound) 

• Proofs (Formal Verification) 
 Any program property 
 Verify program for all 

executions 
 Manual development with 

automated proof checkers 
 Practical for small programs, 

may scale up in the future 
 Sound and complete, but 

not automatically decidable 

 So why study proofs if they aren’t (yet) practical? 
 Proofs tell us how to think about program correctness 
 Important for development, inspection, dynamic assertions 
 Foundation for static analysis tools 
 These are just simple, automated theorem provers 
 Many are practical today! 
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Testing, Static Analysis, and Proofs 

• Testing 
 Observable properties 
 Verify program for one 

execution 
 Manual development with 

automated regression 
 Most practical approach now 
 Does not find all problems 

(unsound) 
 

• Static Analysis 
 Analysis of all possible 

executions 
 Specific issues only with 

conservative approx. and 
bug patterns 

 Tools available, useful for 
bug finding 

 Automated, but unsound 
and/or incomplete 

• Proofs (Formal Verification) 
 Any program property 
 Verify program for all 

executions 
 Manual development with 

automated proof checkers 
 Practical for small programs, 

may scale up in the future 
 Sound and complete, but 

not automatically decidable 

What strategy to 
use in your project? 
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Quality Assurance Summary 

• Reporting and tracking bugs/issues 

• Select a quality assurance strategy for functional 
correctness 

• Testing can find faults in specific executions 

• Formal verification (Hoare-style pre/post-
conditions) can ensure correctness of all 
executions 
 Class Invariants and Behavioral Subtyping 

• Static analysis can find issues for classes of 
problems 

• Soundness vs. Completeness vs. Automation 


