Objectg Analysis

SY 5
e o, e

) w SN R
K

Threagjs

toad

Spring 2014

School of
- Computer Science

institute for
I S SOFTWARE
RESEARCH

Principles of Software Construction:
Objects, Design, and Concurrency

Functional Correctness -
A Broader Perspective

Christian Kastner Charlie Garrod

© 2012-14 C Kaestner, C Garrod, J Aldrich, and W Scherlis

Learning Goals

e Writing bug reports

e Apply Hoare-style verification to object-oriented
programs

e Reason about inheritance with behavioral
subtyping

e Apply static analysis tools

e Understand the tradeoffs among testing, formal
verification and static analysis

15-214 toad B | S (B

RRRRRRRR

Bug Reports

= institute for
15-214 toad I | S [Fns

Reporting Defects

e Reproducible defects
= Easier to find and fix

= Easier to validate
= Increased confidence

e Simple and general
= More value doing the
fix

e Non-antagonistic
= State the problem
= Don't blame

toad

15-214

Bugzilla Bug 141261

Bug List: (31 of 2000 First Last Prev Mext Showlast searchresults Searchpage Enter new bug

crash - Shell create, RepositionWindow() - Unexpected Eclipse crash RT3 (Jawall ativeCrash)

Eclipse bugs
Bogsitte 2204

Last
modified:
2006-11-14
17:46:58

Hardware: | bMacintosh =

Lo Goldenbers
Reporter: Zigorg@gigaspaces. com>

[Exlipse]
Bugi: 141261

Emduct:lPIatform 'I QS:IMEIC oS j QMCC:I
Component: lﬁm = Version: I 32 'l
Status: NEW Briority: [P3 7]
Resolution: Severity: I major 'l
Silenio Quarti

NmeTSai:?:t I - ||

Assigned To: <3ilenio_Ouartif@caibm.com=

QA Contaci: I

URL: |
Summary: |crash - Shell create. Repositionindow() - Unexpected Eclipse o

Status
Whitehoard:

Keyworis: |

Attachment (Type | Created |Size | Actions

Create a Mew Attachment (proposed patch, testcase, ete))

Bug 141261 depends on: I
Bhow dependency tree
Bug 141261 hlocks: I

Votes: 0 Show votes for this bug Wote for this bug

CC: [gyrant_gayed@caibm.com
bike_Wilson{@caibm.com

paper@animecity.nu
steve_naorthover@ca.ibm.com

[T Remove selected CCs

Additional Comments:
= institute for
4 i S SOFTWARE
LB 4Ll RESEARCH

4

Social Issues in Defect Reporting

e There are differences between developer and
tester culture

e Acknowledge that testers often deliver bad news

e Work hard to detect defects locally
= Easier t0 NArrow SCOPE | & feassian bug o oo irmboxaedipes ors

' Reassign bug to default assignee and QA contact of selected component

and responsibility Commt |
" LeSS d d Versa rl d I View Bug Activity | Format For Printing | Clone This Bug

[DO n ’t m ea S u re Description: [reply] Opened: 2005-07-25 07:03
pe rformance e e e

crashed.

In te rl I ls Of defect Try adding some extension in the extensions page and then press CTRL-Z.
reports Thiz is actually two bugs imho:

1. The details is wery very poor so I really don't know what happened. b
stacktrace would kbe great for debugging.

2. The undo obwviously does not work correctly.

here is a screenshot aof the crash:
http://mnemo. minimum. se/eclipse crashes/eclipse undo crash. phng

l I don't have time for extensive reprod testing atm, mavhe someone else can'
15-214 toad aszslst with thils and see 1T they can get Che plugin.xml editor to crash using

weird combinations of editing and CTREL-Z undoinog.

Defect Tracking

e Always track defects and issues

e [ssue: Bug, feature request, or

query

= May not know which of these until
analysis is done, so track in the
same database (Bugzilla, github)

e Provides a basis for
measurement

e Provides a basis for division
of effort

e Facilitates communication
= Organized record for each issue

« Ensures problems are not
forgotten

15-214 toad

{In reply to comment #3)
> I'm sorry but we really don't have encugh details to be shle

> problem. Could you try with another WH?
>

Froblem didn't happen with another JREE - just the sun JEE.

Thiz looks like a duplicate of the bug 92250. Could you try if
with -XX:HaxPermSize=256m ?

After further investigation, sSetting the permgenspace to 1024
problem.

* This bug has bheen marked as a duplicate of 22250 **%

This problem is still occurrim g on the dependent product with !

to 10Z4M. Please investigate.

Bug List: {43 of 2000 First Last Prev WNest Show last search results Search page Enter new bug
[Eclipse] 160502 Hardware: | PC - Repor ‘tE‘l are Carty
Bug#: 05: [Tnex M @caibm com>

Product: |Flatiorm
Component: |Funtime

Status: EEOPENED
Resolution:

Add CC:

CC: |ceaty@caibm com
john_athoma@caibm.co

Version: [3.21 =
Proity: |P3 -
Sevenity: | blocker -

Target l__;[

Milestone:

platform-runtime-mboz
Assigned To: <platform-nmtime-
nbox@eclpse org>
DA Contact: |
URL: |

[Eemove selected CCs

Summary: |JVM crash at random intervals on SUSE 9with Sun JRE 1.5

Status I
Whiteboard:

Eevwords: Ivm

Attachment Type Created Size Actions
screenshot of crash | magefpeg | 2006-10-11 12:14 | 13135 KR | Edit
Create a MNew Attachment (proposed patch, testease, etc.) View Al

Bug 160502 depends on:

Show dependency tree
Bug 160502 blocks:

Votes: 0 Show votes for this bug Vete for this bug

ETTVIT ST

SOFTWARE
RESEARCH

6

Bug Tracking on GitHub

e Every GitHub project has own issue tracker (and
wiki); enable in project settings

O] This repository = Search or type a command) Explore Gist Blog Help . ckaestne +- ¥ |?
ckaestne / TypeChef @5 Unwatch ~ 6 & Unstar 15 F Fork M
Browse |ssUes Milestones
<>
EvEryone's |ssues 16 Open 11 Closed sort: Newest ~ ® |
Assigned to you 2 r~ Close | Label - || Assignee~ | Milestone -)
Created by you 14 I 11 Liveness 07
Cpened by joliebig 2 dayvs ago ;_-3 comments A
Wentioning yau 0
I O Handling of labled statements broken CParser #21 Ly
Opened by ckaestne S months ago ;_-1 comment
Ho milestone selected o~ 5]
T (O CParser creates dead nodes CParser #0
Cipened by joliebig 9 morths ago ;_-1 comiment .
Labels %
M (@ Support modules in Linux |FeatireModeiExtraction) [FX11T0 #19
I CLinker 3 Opened by ckaestne 10 months ago
CParzaer 1
T O Mormalize signatures before linking #18

N caotiirahdndalEvteartinm A

Formal Verification
of Object-Oriented Programs

= institute for
15-214 toad I | S (B

Formal Verification

e Proving the correctness of an implementation with
respect to a formal specification, using formal
methods of mathematics.

e Formally prove that all possible executions of an
implementation fulfill the specification

e Manual effort; partial automation; not
automatically decidable

= institute for
15-214 toad 9 |N]f o

Formal Specifications

/*@ requires len >= 0 && array != null && array.length == Llen;

@ ensures \result ==
@ (\sum int j;, © <= j && j < len; array[j]);
@*/

int total(int array[], int len);

P institute for
) [} SOFTWARE

15-214 toad 10

RESEARCH

Recap: Hoare-Style Verification

e Formal reasoning about program correctness
using pre- and postconditions

e Syntax: {P} S {Q}
« P and Q are predicates
= P is the precondition
=S is a program
= Q is the postcondition

e Semantics

» If we start in a state where P is true and execute S, then
S will terminate in a state where Q is true

= institute for
15-214 toad 11 o

Recap: Hoare-Logic Rules

Assignments
{PIE/X] } x:=E{P}

Composition
{P}S{Q} {Q}T{R}

{P}S; T{R}

If statement
{B&P}S{Q} {B&P}T{Q}

{P}if(B)SelseT{Q}

While loop with loop invariant P
{P&B}S{P}

{P}while(B)S{!B&P}

Consequence
P->P {P}S{Q} Q->Q
{P}>S{Q}
15-214 toad

12

institute for
SOFTWARE
RESEARCH

Hoare Triples — Examples

e { true Y x :1=5¢),

o { FXi=x+3{x=y+3)

o { FXi=x*2+34{x>1)

o { X=a Yif (x <0) then x := -x{)
o { false yx:i=3H{ ¥

o{ X< 0 }while (xI=0) x :=x-1¢{ ¥

15-214 toad 13 i Sf ﬁoFTWARE

RRRRRRRR

Hoare Triples — Examples

o { true F X
e{X=y X!
o{ XxX>-1 }X:
y if (x < 0) then x :
yx:=3{x=8 }
} while (x!=0) x :=x-1{

e { X=a
e { false
o{x<0

= N0 such triple!

15-214

5{ x=5

y

X+3{X=y+3)
X*2+3{x>1)

toad

-x { x=|a]

»

SOF
RRRRRRRR

Recap: 122 midterm

int find_peak_bin(int[] A, int n)

//@requires 0 < n && n <= \length(A);
//@requires is_peaked(A, 0, n);

//@ensures 0 <= \result && \result < n;
//@ensures gt_seg(A[\result], A, 0, \result);
//@ensures gt_seg(A[\result], A, \result+1, n);
{

int lower = 0;

int upper = n-1;

while (lower < upper)

//@loop_invariant

//@loop_invariant

int mid = lower + (upper-lower)/2;
//@assert ; /* optional */
if (A[mid] < A[mid+1])

lower = mid+1;

else //@assert ; /* optional */

upper = mid;
)
//@assert ; /* optional */

1573 e toad 15 S

RESEARCH

Class Invariants

e Properties about the fields of an object
e Established by the constructor

e Should always hold before and after execution of public
methods

e May be invalidated temporarily during method execution
public class SimpleSet { public class SimpleSet {

int contents[]; int contents[];

int size; int size;

SimpleSet(int capacity) { ... }
SimpleSet(int capacity) { ...
boolean add(int i) { ... }

boolean contains(inti) { ... }

¥

boolean add(int i) { ... }

boolean contains(inti) { ... }

f

= institute For
15-214 toad 16

Behavioral Subtyping (Liskov Substitution Principle)

Let g(X) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.

Barbara Liskov

e An object of a subclass should be substitutable for an object of its
superclass

e Known already from types:
- May use subclass instead of superclass
- Subclass can add, but not remove methods
- Overriding method must return same or subtype
- Overriding method may not throw additional exceptions

e Applies more generally to behavior:

. A subclass must fulfill all contracts that the superclass does
- Same or stronger invariants
- Same or stronger postconditions for all methods

- Same or weaker preconditions for all methods S
15-214 toa 17 [l

Behavioral Subtyping (Liskov Substitution Principle)

abstract class Vehicle { class Car extends Vehicle {
int speed, limit; int fuel;
//@ invariant speed < limit; boolean engineOn;

[/@ invariant fuel >= 0;
//@ requires speed = 0;
I/@ ensures |speed| < |\old{speed}| /@ requires fuel > 0 && ! engineOn;
void break(); I/@ ensures engineOn;
} void start() { ... }

void accelerate() { ... }

//@ requires speed != 0;
I/@ ensures |speed| < |\old{speed}|
void break() { ... }

}

Subclass fulfills the same invariants (and additional ones)
Overridden method has the same pre and postconditions

ite for

= institL
15-214 toad 18

Behavioral Subtyping (Liskov Substitution Principle)

class Car extends Vehicle { class Hybrid extends Car {
int fuel, int charge;
boolean engineOn; //@ invariant charge >= 0;

/@ invariant fuel >= O;
I/@ requires (charge > 0 || fuel > 0)

//@ requires fuel > 0 && ! engineOn; && ! engineOn;

I/@ ensures engineOn,; //@ ensures engineOn;

void start() { ... } void start() { ... }

void accelerate() { ... } void accelerate() { ... }

//@ requires speed != 0; //@ requires speed != 0;

I/@ ensures |speed| < |\old{speed} //@ ensures |speed| < |\old{speed}|

void break() { ... } //@ ensures charge > \old{charge}
} void break() { ... }

}

Subclass fulfills the same invariants (and additional ones)
Overridden method start has weaker precondition

Overridden method break has stronger postcondition
15-214 toad 19 [Ff o

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle { class Square extends Rectangle {
int h, w; Square(int w) {
super(w, w);
Rectangle(int h, int w) { }
this.h=h: this.w=w: }
}
//methods
}

Is Square a behavior subtype of Rectangle?

ite for

15-214 toad 20 sorvase

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle { class Square extends Rectangle {
//@ invariant h>0 && w>0: //@ invariant h==w;
int h, w; Square(int w) {
super(w, w);
Rectangle(int h, int w) { }
this.h=h: this.w=w: }
}
//methods
}

Is Square a behavior subtype of Rectangle?

ite for

= institL
15-214 toad 21 sormuase

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle { class Square extends Rectangle {
//@ invariant h>0 && w>0: //@ invariant h==w;
int h, w; Square(int w) {
super(w, w);

Rectangle(int h, int w) { }

this.h=h: this.w=w: }
}
void scale(int factor) {

w=w*factor;

h=h*factor;

Is Square a behavior subtype of Rectangle?

ite for

= institL C
15-214 toad 22

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle { class Square extends Rectangle {

15-214

//@ invariant h>0 && w>0; //@ invariant h==w:
int h, w; Square(int w) {
super(w, w);
Rectangle(int h, int w) { }
this.h=h; this.w=w; }
}

void scale(int factor) {
w=w*factor;
h=nh*factor;

}

void setWidth(int neww) {
w=neww;

}

Is Square a behavior subtype of Rectangle?

ite f

t d institute for
SOFTWARE
oa 23 RESEARCH

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle { class Square extends Rectangle {
//@ invariant h>0 && w>0; /@ invariant h==w;
int h, w; Square(int w) {
super(w, w);
Rectangle(int h, int w) { }
this.h=h; this.w=w; }
}
void scale(int factor) {
w=w*factor;
h=h*factor,
} class GraphicProgram {
void scaleW(Rectangle r, int factor) {
void setWidth(int neww) r.setWidth(r.getWidth() * factor);
W=Neww;)
J b
} With these methods, Square is not
a behavior subtype of Rectangle
15-214 toad 24 [s

Formal Verification of Object-Oriented Programs

e Analogue to verification of imperative programs
e Class invariants simplify specifications

e Behavioral subtyping ensures substitutability

e Proof of correctness
« All possible executions will fulfill the formal specifications
= Pen and paper proof
= Support for partially automated proofs available
(full automation not possible)

= institute for
15-214 toad 25 sormint

Static Analysis

= institute for
15-214 toad 26 [SIN s

Stupid Bugs

public class CartesianPoint {
private int x, y;
int getX() { return this.x; }
int getY() { return this.y; }
boolean equals(CartesianPoint that) {
return (this.getX()==that.getX()) &&
(this.getY() == that.getY());

ite for

= institL C
15-214 toad 27 sormuase

+J] CartesianPoint.java 22 = 8 BlTaskL 2 = 8

= I_—_I - <
= public boolean equals(CartesianPoint p) { = T E S
return (p.x==this.x) && (p.y==this.y): 0= Outlin 2 = O
} —
ERFEIR WA N

®iPro 28| @ Jav [, Dec %'Sea ElCo =3Pro [mCov & His ¥ Bug call JAana = B

FindBugs

-
0 errors, 2 warnings, 0 others
Description Resou

¥ & FindBugs Problem (OF concern) (1 item)

i CartesianPoint defines equals and uses Object.hashCode() Cartes
¥ & FindBugs Problem (Scary) (1 item)

i CartesianPoint defines equals(CartesianPoint) method and uses Object.equals{Object) Carkec
4. Bug Info 52 # S W Y = 7
CartesianPointjava: 12
-] Mavigation

CartesianPoint defines equals{CartesianPoinkt) method and uses Object.equals(Object)

Bug: CartesianPoint defines equals(CartesianPoint) method and uses
Object.equals(Object)

This class defines a covariant version of the equals() method, but inherits the
normal equals(0bject) method defined in the base java.lang.object class. The
class should probably define a boolean equals(0Object) method.

Confidence: Normal, Rank: Scary (8)
Pattern: EQ SELF USE OBJECT
Type: Eq, Category: CORRECTNESS (Correctness)

15-214

CheckStyle

15-214

i) CartesianPoint.java &2

public final class CartesianPoint {

fo

= Pro &2

private int X,Y;

CartesianPoint(int x, int y) {

this.X=x;
this.Y = y;
H

public int GetY() {

return Y;

}

public int getX() {
return X;

}

0 errors, 9 warnings, 0 others

Description
¥ & Checkstyle Problem (2 items)

''is nok followed by whitespace.

'="is not followed by whitespace.

'="is not preceded with whitespace.

File conkains tab characters (this is the first instance).
Mame 'GetY' must maktch pattern '~[a-z][a-zA-Z0-9]*5".
Mame 'X' musk match pattern '*[a-z][a-zA-Z0-9]*5".
Mame "Y' musk match pattern '*[a-z][a-zA-Z0-9]*5".

I Lo re I

ValerF= b e

CrmmiarkF Inmcark

[« Y

Bl TaskL 828 = B

T = @

=

L

® Connect Mylyn

Conneck to your task
and ALM tools or crei

Oz outlin @2 = ©
A | s e
=

v 3F CartesianPoint
g7 X:int
8 Y -int

RE'EDlI

Carte
Carte
Carte
Carte
Carte

Carte

Carte!

ek

Static Analysis

e Analyzing code without executing it (automated
inspection)

e Looks for bug patterns
o Attempts to formally verify specific aspects

e Point out typical bugs or style violations
= NullPointerExceptions
= Incorrect API use
= Forgetting to close a file/connection
= Concurrency issues
« And many, many more (over 250 in FindBugs)

e Integrated into IDE or build process

e FindBugs and CheckStyle open source, many
commercial products exist

- institute for
15-214 toad 30 sorTi:

Example FindBugs Bug Patterns

e Correct equals()

e Use of ==

e Closing streams

o [llegal casts

e Null pointer dereference

e Infinite loops

e Encapsulation problems

e Inconsistent synchronization
e Inefficient String use

e Dead store to variable

15-214 toad

RRRRRRRR

Bug finding

public Boolean decide() {
if (computeSomething()==3)
return Boolean. TRUE:;
if (computeSomething()==4)
return false;
return null:

. . BugInfo 2 % = E
BB -

Ajava: 69
+] Mavigation

Bug: FBTest.decide() has Boolean return type and returns explicit null

A method that returns either Boolean.TRUE, Boolean.FALSE or null is an accident waiting to happen.
This method can be invoked as though it returned a value of type boolean, and the compiler will insert
automatic unboxing of the Boolean value. If a null value is returned, this will result in a
NullPointerException.

Confidence: Normal, Rank: Troubling (14)
Pattern: NP BOOLEAN RETURN NULL
Type: NP, Category: BAD PRACTICE (Bad practice)

institute for
15-214 toad 32 sorTi:

Abstract Interpretation

e Static program analysis is the systematic
examination of an abstraction of a program’s
state space

e Abstraction
= Don’t track everything! (That's normal interpretation)
= Track an important abstraction

e Systematic
« Ensure everything is checked in the same way

Details on how this works in 15-313

- institute for
15-214 toad 33 et

Comparing
Quality Assurance Strategies

= institute for
15-214 toad 34

Error Reported True positive False positive
(correct analysis (annoying noise)
result)

No Error Reported RElHEOECENE True negative

(false confidence) (correct analysis
result)

Sound Analysis:
reports all defects
-> no false negatives
typically overapproximated

Complete Analysis:

every reported defect is an actual defect
-> no false positives

typically underapproximated

How does testing relate? And formal verification?

' . institute for
15-214 toad 35 sormse

P institute for

15-214 toad 36 oy] soFTware

RESEARCH

The Bad News: Rice's Theorem

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

e Every static analysis is necessarily incomplete or
unsound or undecidable (or multiple of these)

e Each approach has different tradeoffs

15-214 toad 37 [F0 s

RRRRRRRR

Soundness / Completeness / Performance Tradeoffs

e Type checking does catch a specific class of
problems (sound), but does not find all problems

e Compiler optimizations must err on the safe side
(only perform optimizations when sure it's
correct; -> complete)

e Many practical bug-finding tools analyses are

unsound and incomplete

= Catch typical problems

« May report warnings even for correct code
= May not detect all problems

e Overwhelming amounts of false negatives make
analysis useless

e Not all "bugs" need to be fixed

- institute for
15-214 toad 38 sorTi:

Testing and Proofs

e Testing e Proofs (Formal Verification)

= Observable properties = Any program property

« Verify program for one = Verify program for all
execution executions

« Manual development with = Manual development with
automated regression automated proof checkers

= Most practical approach now = Practical for small programs,

« Does not find all problems may scale up in the future
(unsound) = Sound and complete, but

not automatically decidable

e So why study proofs if they aren’t (yet) practical?

15-214

Proofs tell us how to think about program correctness
Important for development, inspection, dynamic assertions
Foundation for static analysis tools

These are just simple, automated theorem provers

Many are practical today!

t d institute for
SOFTWARE
oa 39 RESEARCH

Testing, Static Analysis, and Proofs

e Testing
= Observable properties

« Verify program for one
execution

« Manual development with
automated regression

= Most practical approach now

» Does not find all problems
(unsound)

e Static Analysis

= Analysis of all possible
executions

« Specific issues only with
conservative approx. and
bug patterns

» Tools available, useful for
bug finding

» Automated, but unsound

and/or incomplete
15-214 toad

e Proofs (Formal Verification)

= Any program property

= Verify program for all
executions

= Manual development with
automated proof checkers

= Practical for small programs,
may scale up in the future

= Sound and complete, but
not automatically decidable

What strategy to
use in your project?

te f

institute for
SOFTWARE
40 RESEARCH

Quality Assurance Summary

e Reporting and tracking bugs/issues

e Select a quality assurance strategy for functional
correctness

e Testing can find faults in specific executions

e Formal verification (Hoare-style pre/post-
conditions) can ensure correctness of all

executions
« Class Invariants and Behavioral Subtyping

e Static analysis can find issues for classes of
problems

e Soundness vs. Completeness vs. Automation

= institute For
15-214 toad 41 sormiase

