

toad

Spring 2014

© 2012-14 C Kaestner, C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Functional Correctness –

 A Broader Perspective

Christian Kästner Charlie Garrod

toad 2 15-214

Learning Goals

• Writing bug reports

• Apply Hoare-style verification to object-oriented
programs

• Reason about inheritance with behavioral
subtyping

• Apply static analysis tools

• Understand the tradeoffs among testing, formal
verification and static analysis

toad 3 15-214

Bug Reports

toad 4 15-214 4

Reporting Defects

• Reproducible defects
 Easier to find and fix
 Easier to validate
 Increased confidence

• Simple and general
 More value doing the
fix

• Non-antagonistic
 State the problem
 Don't blame

toad 5 15-214

Social Issues in Defect Reporting

• There are differences between developer and
tester culture

• Acknowledge that testers often deliver bad news

• Work hard to detect defects locally
 Easier to narrow scope
and responsibility

 Less adversarial

• Don’t measure
performance
in terms of defect
reports

toad 6 15-214

Defect Tracking

• Always track defects and issues

• Issue: Bug, feature request, or
query
 May not know which of these until
analysis is done, so track in the
same database (Bugzilla, github)

• Provides a basis for
measurement

• Provides a basis for division
of effort

• Facilitates communication
 Organized record for each issue
 Ensures problems are not
forgotten

toad 7 15-214

Bug Tracking on GitHub

• Every GitHub project has own issue tracker (and
wiki); enable in project settings

toad 8 15-214

Formal Verification
of Object-Oriented Programs

toad 9 15-214

Formal Verification

• Proving the correctness of an implementation with
respect to a formal specification, using formal
methods of mathematics.

• Formally prove that all possible executions of an
implementation fulfill the specification

• Manual effort; partial automation; not
automatically decidable

toad 10 15-214

Formal Specifications

/*@ requires len >= 0 && array != null && array.length == len;
 @
 @ ensures \result ==
 @ (\sum int j; 0 <= j && j < len; array[j]);
 @*/
int total(int array[], int len);

toad 11 15-214

Recap: Hoare-Style Verification

• Formal reasoning about program correctness
using pre- and postconditions

• Syntax: {P} S {Q}
 P and Q are predicates
 P is the precondition
 S is a program
 Q is the postcondition

• Semantics
 If we start in a state where P is true and execute S, then
S will terminate in a state where Q is true

toad 12 15-214

Recap: Hoare-Logic Rules

Assignments
{ P[E/x] } x:= E { P }

Composition
{ P } S { Q } { Q } T { R }

 { P } S; T { R }

If statement
{ B & P } S { Q } { !B & P } T { Q }
--
 { P } if (B) S else T { Q }

While loop with loop invariant P
 { P & B } S { P }

 { P } while (B) S { !B & P }

Consequence
P -> P' { P } S { Q } Q -> Q'
--
 { P' } S { Q' }

toad 13 15-214

Hoare Triples – Examples

• { true } x := 5 { }

• { } x := x + 3 { x = y + 3 }

• { } x := x * 2 + 3 { x > 1 }

• { x=a } if (x < 0) then x := -x { }

• { false } x := 3 { }

• { x < 0 } while (x!=0) x := x-1 { }

toad 14 15-214

Hoare Triples – Examples

• { true } x := 5 { x=5 }

• { x = y } x := x + 3 { x = y + 3 }

• { x > -1 } x := x * 2 + 3 { x > 1 }

• { x=a } if (x < 0) then x := -x { x=|a| }

• { false } x := 3 { x = 8 }

• { x < 0 } while (x!=0) x := x-1 { }
 no such triple!

toad 15 15-214

Recap: 122 midterm

int find_peak_bin(int[] A, int n)

//@requires 0 < n && n <= \length(A);

//@requires is_peaked(A, 0, n);

//@ensures 0 <= \result && \result < n;

//@ensures gt_seg(A[\result], A, 0, \result);

//@ensures gt_seg(A[\result], A, \result+1, n);

{

int lower = 0;

int upper = n-1;

while (lower < upper)

 //@loop_invariant ____________________________ ;

 //@loop_invariant ____________________________ ;

{

 int mid = lower + (upper-lower)/2;

 //@assert ________________ ; /* optional */

 if (A[mid] < A[mid+1])

 lower = mid+1;

 else //@assert ______ ; /* optional */

 upper = mid;

}

//@assert _______________________ ; /* optional */

return lower;

}

toad 16 15-214

Class Invariants

 Properties about the fields of an object

 Established by the constructor

 Should always hold before and after execution of public
methods

 May be invalidated temporarily during method execution

public class SimpleSet {

 int contents[];
 int size;

 //@ ensures sorted(contents);
 SimpleSet(int capacity) { … }

 //@ requires sorted(contents);
 //@ ensures sorted(contents);
 boolean add(int i) { … }

 //@ requires sorted(contents);
 //@ ensures sorted(contents);
 boolean contains(int i) { … }
}

public class SimpleSet {

 int contents[];
 int size;

 //@invariant sorted(contents);

 SimpleSet(int capacity) { … }

 boolean add(int i) { … }

 boolean contains(int i) { … }
}

toad 17 15-214

Behavioral Subtyping (Liskov Substitution Principle)

Let q(x) be a property provable about objects x of type T. Then q(y)

should be provable for objects y of type S where S is a subtype of T.

Barbara Liskov

 An object of a subclass should be substitutable for an object of its
superclass

 Known already from types:

• May use subclass instead of superclass

• Subclass can add, but not remove methods

• Overriding method must return same or subtype

• Overriding method may not throw additional exceptions

 Applies more generally to behavior:

• A subclass must fulfill all contracts that the superclass does

• Same or stronger invariants

• Same or stronger postconditions for all methods

• Same or weaker preconditions for all methods

toad 18 15-214

Behavioral Subtyping (Liskov Substitution Principle)

abstract class Vehicle {

 int speed, limit;

 //@ invariant speed < limit;

 //@ requires speed != 0;

 //@ ensures |speed| < |\old{speed}|

 void break();

}

class Car extends Vehicle {

 int fuel;

 boolean engineOn;

 //@ invariant fuel >= 0;

 //@ requires fuel > 0 && ! engineOn;

 //@ ensures engineOn;

 void start() { … }

 void accelerate() { … }

 //@ requires speed != 0;

 //@ ensures |speed| < |\old{speed}|

 void break() { … }

}

Subclass fulfills the same invariants (and additional ones)

Overridden method has the same pre and postconditions

toad 19 15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Car extends Vehicle {

 int fuel;

 boolean engineOn;

 //@ invariant fuel >= 0;

 //@ requires fuel > 0 && ! engineOn;

 //@ ensures engineOn;

 void start() { … }

 void accelerate() { … }

 //@ requires speed != 0;

 //@ ensures |speed| < |\old{speed}|

 void break() { … }

}

class Hybrid extends Car {

 int charge;

 //@ invariant charge >= 0;

 //@ requires (charge > 0 || fuel > 0)

 && ! engineOn;

 //@ ensures engineOn;

 void start() { … }

 void accelerate() { … }

 //@ requires speed != 0;

 //@ ensures |speed| < |\old{speed}|

 //@ ensures charge > \old{charge}

 void break() { … }

}

Subclass fulfills the same invariants (and additional ones)

Overridden method start has weaker precondition

Overridden method break has stronger postcondition

toad 20 15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {

 int h, w;

 Rectangle(int h, int w) {

 this.h=h; this.w=w;

 }

 //methods

}

class Square extends Rectangle {

 Square(int w) {

 super(w, w);

 }

}

Is Square a behavior subtype of Rectangle?

toad 21 15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {

 //@ invariant h>0 && w>0;

 int h, w;

 Rectangle(int h, int w) {

 this.h=h; this.w=w;

 }

 //methods

}

class Square extends Rectangle {

 //@ invariant h==w;

 Square(int w) {

 super(w, w);

 }

}

Is Square a behavior subtype of Rectangle?

toad 22 15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {

 //@ invariant h>0 && w>0;

 int h, w;

 Rectangle(int h, int w) {

 this.h=h; this.w=w;

 }

 void scale(int factor) {

 w=w*factor;

 h=h*factor;

 }

}

class Square extends Rectangle {

 //@ invariant h==w;

 Square(int w) {

 super(w, w);

 }

}

Is Square a behavior subtype of Rectangle?

toad 23 15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {

 //@ invariant h>0 && w>0;

 int h, w;

 Rectangle(int h, int w) {

 this.h=h; this.w=w;

 }

 void scale(int factor) {

 w=w*factor;

 h=h*factor;

 }

 void setWidth(int neww) {

 w=neww;

 }

}

class Square extends Rectangle {

 //@ invariant h==w;

 Square(int w) {

 super(w, w);

 }

}

Is Square a behavior subtype of Rectangle?

toad 24 15-214

Behavioral Subtyping (Liskov Substitution Principle)

class Rectangle {

 //@ invariant h>0 && w>0;

 int h, w;

 Rectangle(int h, int w) {

 this.h=h; this.w=w;

 }

 void scale(int factor) {

 w=w*factor;

 h=h*factor;

 }

 void setWidth(int neww) {

 w=neww;

 }

}

class Square extends Rectangle {

 //@ invariant h==w;

 Square(int w) {

 super(w, w);

 }

}

With these methods, Square is not

a behavior subtype of Rectangle

← Invalidates stronger

 invariant (w==h) in subclass

class GraphicProgram {
 void scaleW(Rectangle r, int factor) {
 r.setWidth(r.getWidth() * factor);
 }
}

toad 25 15-214

Formal Verification of Object-Oriented Programs

• Analogue to verification of imperative programs

• Class invariants simplify specifications

• Behavioral subtyping ensures substitutability

• Proof of correctness
 All possible executions will fulfill the formal specifications
 Pen and paper proof
 Support for partially automated proofs available
(full automation not possible)

toad 26 15-214

Static Analysis

toad 27 15-214

Stupid Bugs

public class CartesianPoint {
 private int x, y;
 int getX() { return this.x; }
 int getY() { return this.y; }
 boolean equals(CartesianPoint that) {
 return (this.getX()==that.getX()) &&
 (this.getY() == that.getY());
 }
}

toad 28 15-214

F
in

d
B

u
g

s

toad 29 15-214

C
h

e
c
k
S

ty
le

toad 30 15-214

Static Analysis

• Analyzing code without executing it (automated
inspection)

• Looks for bug patterns

• Attempts to formally verify specific aspects

• Point out typical bugs or style violations
 NullPointerExceptions
 Incorrect API use
 Forgetting to close a file/connection
 Concurrency issues
 And many, many more (over 250 in FindBugs)

• Integrated into IDE or build process

• FindBugs and CheckStyle open source, many
commercial products exist

toad 31 15-214

Example FindBugs Bug Patterns

•Correct equals()

•Use of ==

•Closing streams

• Illegal casts

•Null pointer dereference

• Infinite loops

•Encapsulation problems

• Inconsistent synchronization

• Inefficient String use

•Dead store to variable

toad 32 15-214

Bug finding

toad 33 15-214

Abstract Interpretation

• Static program analysis is the systematic
examination of an abstraction of a program’s
state space

• Abstraction
 Don’t track everything! (That’s normal interpretation)
 Track an important abstraction

• Systematic
 Ensure everything is checked in the same way

Details on how this works in 15-313

toad 34 15-214

Comparing
Quality Assurance Strategies

toad 35 15-214

Error exists No error exists

Error Reported True positive
(correct analysis
result)

False positive
(annoying noise)

No Error Reported False negative
(false confidence)

True negative
(correct analysis
result)

How does testing relate? And formal verification?

Sound Analysis:
 reports all defects
 -> no false negatives
 typically overapproximated

Complete Analysis:
 every reported defect is an actual defect
 -> no false positives
 typically underapproximated

toad 36 15-214

Defects reported by
Sound Analysis

All Defects

Defects
reported by
Complete
Analysis

Unsound
and
Incomplete
Analysis

toad 37 15-214

The Bad News: Rice's Theorem

• Every static analysis is necessarily incomplete or
unsound or undecidable (or multiple of these)

• Each approach has different tradeoffs

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.“

Henry Gordon Rice, 1953

toad 38 15-214

Soundness / Completeness / Performance Tradeoffs

• Type checking does catch a specific class of
problems (sound), but does not find all problems

• Compiler optimizations must err on the safe side
(only perform optimizations when sure it's
correct; -> complete)

• Many practical bug-finding tools analyses are
unsound and incomplete
 Catch typical problems
 May report warnings even for correct code
 May not detect all problems

• Overwhelming amounts of false negatives make
analysis useless

• Not all "bugs" need to be fixed

toad 39 15-214

Testing and Proofs

• Testing
 Observable properties
 Verify program for one

execution
 Manual development with

automated regression
 Most practical approach now
 Does not find all problems

(unsound)

• Proofs (Formal Verification)
 Any program property
 Verify program for all

executions
 Manual development with

automated proof checkers
 Practical for small programs,

may scale up in the future
 Sound and complete, but

not automatically decidable

 So why study proofs if they aren’t (yet) practical?
 Proofs tell us how to think about program correctness
 Important for development, inspection, dynamic assertions
 Foundation for static analysis tools
 These are just simple, automated theorem provers
 Many are practical today!

toad 40 15-214

Testing, Static Analysis, and Proofs

• Testing
 Observable properties
 Verify program for one

execution
 Manual development with

automated regression
 Most practical approach now
 Does not find all problems

(unsound)

• Static Analysis
 Analysis of all possible

executions
 Specific issues only with

conservative approx. and
bug patterns

 Tools available, useful for
bug finding

 Automated, but unsound
and/or incomplete

• Proofs (Formal Verification)
 Any program property
 Verify program for all

executions
 Manual development with

automated proof checkers
 Practical for small programs,

may scale up in the future
 Sound and complete, but

not automatically decidable

What strategy to
use in your project?

toad 41 15-214

Quality Assurance Summary

• Reporting and tracking bugs/issues

• Select a quality assurance strategy for functional
correctness

• Testing can find faults in specific executions

• Formal verification (Hoare-style pre/post-
conditions) can ensure correctness of all
executions
 Class Invariants and Behavioral Subtyping

• Static analysis can find issues for classes of
problems

• Soundness vs. Completeness vs. Automation

