

toad

Spring 2014

© 2012-14 C Kaestner, C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Testing

Christian Kästner Charlie Garrod

toad 2 15-214

Learning Goals

• Understand the nature of testing

• Select test cases

• Write practical unit tests with JUnit

• Automate test execution

• Write tests with stubs

• Decide when to stop testing, interpret coverage
criteria

toad 3 15-214

Formal Verification

• Proving the correctness of an implementation with
respect to a formal specification, using formal
methods of mathematics.

• Formally prove that all possible executions of an
implementation fulfill the specification

• Manual effort; partial automation; not
automatically decidable

toad 4 15-214

Testing

• Executing the program with selected inputs in a
controlled environment

• Goals:
 Reveal bugs (main goal)
 Assess quality (hard to quantify)
 Clarify the specification, documentation
 Verify contracts

"Testing shows the presence,
 not the absence of bugs

 Edsger W. Dijkstra 1969

toad 5 15-214

What to test?

• Functional correctness of a method (e.g.,
computations, contracts)

• Functional correctness of a class (e.g., class
invariants)

• Behavior of a class in a subsystem/multiple
subsystems/the entire system

• Behavior when interacting with the world
 Interacting with files, networks, sensors, …
 Erroneous states
 Nondeterminism, Parallelism
 Interaction with users

toad 6 15-214

Testing Decisions

Who tests?

• Developers

• Other Developers

• Separate Quality Assurance Team

• Customers

When to test?

• Before development

• During development

• After milestones

• Before shipping

(More in 15-313)

toad 7 15-214

From problem to idea to correct program

• ―While the first binary search was published
in 1946, the first published binary search
without bugs did not appear until 1962.‖
 — Donald E. Knuth, Stanford

• ―Given ample time, only about 10% of
professional programmers were able to
get this small program right‖
 — Jon Bentley, AT&T Bell Labs

toad 8 15-214

Manual Testing?

• Live System?

• Extra Testing System?

• Check output / assertations?

• Effort, Costs?

• Reproducable?

toad 9 15-214

Automate Testing

• Execute a program with specific inputs,
check output for expected values

• Easier to test small pieces than testing user
interactions

• Set up testing infrastructure

• Execute tests regularly

toad 10 15-214

Example

/**
 * computes the sum of the first len values of the array
 *
 * @param array array of integers of at least length len
 * @param len number of elements to sum up
 * @return sum of the array values
 */
int total(int array[], int len);

toad 11 15-214

Example

• Test empty array

• Test array of length 1 and 2

• Test negative numbers

• Test invalid length (negative or longer than array.length)

• Test null as array

• Test with a very long array

/**
 * computes the sum of the first len values of the array
 *
 * @param array array of integers of at least length len
 * @param len number of elements to sum up
 * @return sum of the array values
 */
int total(int array[], int len);

toad 12 15-214

Selecting Test Cases: Common Strategies

• Read specification

• Write tests for representative case
 Small instances are usually sufficient

• Write tests for invalid cases

• Write tests to check boundary conditions

• Are there difficult cases? (error guessing)
 Stress tests? Complex algorithms?

• Think like a user, not like a programmer
 The tester’s goal is to find bugs!

• Specification covered?

• Feel confident? Time/money left?

toad 13 15-214

JUnit

• Popular unit-testing framework for Java

• Easy to use

• Tool support available

• Can be used as design mechanism

toad 14 15-214

JUnit

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {

 @Test

 public void testSanityTest(){

 Graph g1 = new AdjacencyListGraph(10);

 Vertex s1 = new Vertex("A");

 Vertex s2 = new Vertex("B");

 assertEquals(true, g1.addVertex(s1));

 assertEquals(true, g1.addVertex(s2));

 assertEquals(true, g1.addEdge(s1, s2));

 assertEquals(s2, g1.getNeighbors(s1)[0]);

 }

 @Test

 public void test….

 private int helperMethod…

}

Set up
tests

Check
expected
results

toad 15 15-214

Unit Tests

• Unit tests for small units: functions, classes,
subsystems
 Smallest testable part of a system
 Test parts before assembling them
 Intended to catch local bugs

• Typically written by developers

• Many small, fast-running, independent tests

• Little dependencies on other system parts or
environment

• Insufficient but a good starting point,
extra benefits:
 Documentation (executable specification)
 Design mechanism (design for testability)

toad 16 15-214

assert, Assert

• assert is a native Java statement throwing an AssertionError
exception when failing
 assert expression: "Error Message";

• org.junit.Assert is a library that provides many more specific
methods
 static void assertTrue(java.lang.String message,

boolean condition)
// Asserts that a condition is true.

 static void assertEquals(java.lang.String message,
long expected, long actual);
// Asserts that two longs are equal.

 static void assertEquals(double expected, double actual,
double delta);
// Asserts that two doubles are equal to within a positive delta

 static void assertNotNull(java.lang.Object object)
// Asserts that an object isn't null.

 static void fail(java.lang.String message)
//Fails a test with the given message.

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

toad 17 15-214

JUnit Conventions

• TestCase collects multiple tests (in one class)

• TestSuite collects test cases (typically package)

• Tests should run fast

• Tests should be independent

• Tests are methods without parameter and return
value

• AssertError signals failed test (unchecked exception)

• Test Runner knows how to run JUnit tests
 (uses reflection to find all methods with @Test annotat.)

toad 18 15-214

Common Setup

import org.junit.*;

import org.junit.Before;

import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {

 Graph g;

 @Before

 public void setUp() throws Exception {

 graph = createTestGraph();

 @Test

 public void testSanityTest(){

 Vertex s1 = new Vertex("A");

 Vertex s2 = new Vertex("B");

 assertEquals(3, g.getDistance(s1, s2));

 }

toad 19 15-214

Checking for presence of an exception

import org.junit.*;

import static org.junit.Assert.fail;

public class Tests {

 @Test

 public void testSanityTest(){

 try {

 openNonexistingFile();

 fail("Expected exception");

 } catch(IOException e) { }

 }

 @Test(expected = IOException.class)

 public void testSanityTestAlternative() {

 openNonexistingFile();

 }

}

toad 20 15-214

Test organization

• Conventions
(not requirements)

• Have a test class ATest for
each class A

• Have a source directory and a
test directory
 Store ATest and A in the same
package

 Tests can access members with
default (package) visibility

• Alternatively store exceptions
in the source directory but in a
separate package

toad 21 15-214

Exercise (on paper!)

• Test a priority queue for Strings

public interface Queue {

 void add(String s);

 String getFirstAlphabetically();

}

• Write various kinds of test cases

toad 23 15-214

Testable Code

• Think about testing when writing code

• Unit testing encourages to write testable code

• Separate parts of the code to make them
independently testable

• Abstract functionality behind interface, make it
replaceable

• Test-Driven Development
 A design and development method in which you write
tests before you write the code!

toad 24 15-214

Run tests frequently

• You should only commit code that is passing all
tests

• Run tests before every commit

• Run tests before trying to understand other
developers' code

• If entire test suite becomes too large and slow for
rapid feedback, run local tests ("smoke tests",
e.g. all tests in package) frequently, run all tests
nightly
 Medium sized projects easily have 1000s of test cases and
run for minutes

• Continuous integration servers help to scale
testing

toad 25 15-214

Continuous Integration

See also travis-ci.org

toad 26 15-214

Travis CI

toad 27 15-214

Automating Test Execution

toad 28 15-214 28

Practices – Frequent (Nightly) Builds Nightly Builds and Smoke Tests

• Build a release of a large project every night
 Catches integration problems where a change ―breaks the
build‖

 Breaking the build is a BIG deal—may result in midnight
calls to the responsible engineer

• Run simplified ―smoke test‖
on build
 Tests basic functionality and
stability

 Often: run by programmers
before check-in

 Provides rough guidance prior
to full integration testing

toad 29 15-214

Build and Test Automation

• Compile and execute from the command line

• Dependencies to all required libraries included (or
downloaded on demand)

• Build tools
 make
 ant
 gradle
 maven
 sbt
 …

repositories {
 mavenCentral()
}

apply plugin: 'java'

dependencies {
 testCompile 'junit:junit:4.10'
}

sourceSets {
 main {
 java { srcDir 'src' }
 resources { srcDir 'misc/res' }
 }
}

toad 30 15-214

Project conventions

• Defaults used by several build tools to find source
and test files

• lib/

• src/
 main/

• java/
•… java code …

• resources/
•… images …

 test/
• java/

•… test code …

• build.gradle

toad 31 15-214

Test Coverage

toad 32 15-214

How much testing?

• Cannot test all inputs
 too many, usually infinite

• What makes a good test suite?

• When to stop testing?

• How much to invest in testing?

toad 33 15-214

Blackbox: Random Testing / Fuzz Testing

• Try random inputs, many of them

• Observe whether system crashes (exceptions,
assertions)

• Try more random inputs, many more

• Successful in certain domains (parsers, network
issues, …)

• Many tests execute similar paths

• Often finds only superficial errors

• Can be improved by guiding random selection with
additional information (domain knowledge or
extracted from source)

toad 34 15-214

Blackbox: Covering Specifications

• Looking at specifications, not code:

• Test representative case

• Test boundary condition

• Test exception conditions

• (Test invalid case)

toad 35 15-214

Structural Analysis for Test Coverage

 Organized according to program decision structure
 Touching: statement, branch

35

public static int binsrch (int[] a, int key) {

 int low = 0;
 int high = a.length - 1;

 while (true) {

 if (low > high) return -(low+1);

 int mid = (low+high) / 2;

 if (a[mid] < key) low = mid + 1;
 else if (a[mid] > key) high = mid - 1;
 else return mid;
 }
}

• Will this statement get executed in a test?

• Does it return the correct result?

•Could this array index be out of bounds?

• Does this return statement ever get reached?

toad 36 15-214

Method Coverage

• Trying to execute each method as part of at
least one test

• Does this guarantee correctness?

toad 37 15-214

Statement Coverage

• Trying to test all parts of the implementation

• Execute every statement in at least one test

• Does this guarantee correctness?

toad 38 15-214 38

Structure of Code Fragment to Test

Flow chart diagram for
 junit.samples.money.Money.equals

toad 39 15-214 39

Statement Coverage

• Statement coverage
 What portion of program statements

(nodes) are touched by test cases

• Advantages
 Test suite size linear in size of code

 Coverage easily assessed

• Issues
 Dead code is not reached

 May require some sophistication to
select input sets

 Fault-tolerant error-handling code
may be difficult to “touch”

 Metric: Could create incentive to
remove error handlers!

toad 40 15-214 40

Branch Coverage

• Branch coverage
 What portion of condition branches are

covered by test cases?

 Or: What portion of relational expressions
and values are covered by test cases?

• Condition testing (Tai)

 Multicondition coverage – all boolean
combinations of tests are covered

• Advantages
 Test suite size and content derived

from structure of boolean expressions

 Coverage easily assessed

• Issues
 Dead code is not reached

 Fault-tolerant error-handling code
may be difficult to “touch”

toad 41 15-214 41

Path Coverage

• Path coverage
 What portion of all possible paths through

the program are covered by tests?
 Loop testing: Consider representative and

edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
 Better coverage of logical flows

• Disadvantages
 Infinite number of paths
 Not all paths are possible, or necessary

• What are the significant paths?

 Combinatorial explosion in cases unless
careful choices are made

• E.g., sequence of n if tests can yield
up to 2^n possible paths

 Assumption that
program structure
is basically sound

toad 42 15-214

Write testable code
//700LOC
public boolean foo() {
 try {
 synchronized () {
 if () {
 } else {
 }
 for () {
 if () {
 if () {
 if () {
 if ()?
 {
 if () {
 for () {
 }
 }
 }
 } else {
 if () {
 for () {
 if () {
 } else {
 }
 if () {
 } else {
 if () {
 }
 }
 if () {
 if () {
 if () {
 for () {
 }
 }
 }
 } else {
 }
 }
 } else {

Source:
http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx

Unit testing
as design
mechanism

toad 43 15-214

int binarySearch(int[] a, int key) {
 int imin = 0;
 int imax = a.length-1;
 while (imax >= imin) {
 int imid = midpoint(imin, imax);
 if (a[imid] < key)
 imin = imid + 1;
 else if (a[imid] > key)
 imax = imid - 1;
 else
 return imid;
 }
 return -1;
}

Find test cases to maximize line, branch,
and path coverage.

toad 44 15-214 44

Test Coverage Tooling

• Coverage assessment tools
 Track execution of code by test cases

• Count visits to statements
 Develop reports with respect to specific coverage criteria
 Instruction coverage, line coverage, branch coverage

• Example: EclEmma tool for JUnit tests

toad 45 15-214 45

“Coverage” is useful but also dangerous

• Examples of what coverage analysis could miss
 Unusual paths

 Missing code

 Incorrect boundary values

 Timing problems

 Configuration issues

 Data/memory corruption bugs

 Usability problems

 Customer requirements issues

• Coverage is not a good adequacy criterion
 Instead, use to find places where testing is inadequate

toad 46 15-214

Test coverage – Ideal and Real

• An Ideal Test Suite
 Uncovers all errors in code
 Uncovers all errors that requirements capture

•All scenarios covered
•Non-functional attributes: performance, code safety,
security, etc.

 Minimum size and complexity
 Uncovers errors early in the process

• A Real Test Suite
 Uncovers some portion of errors in code
 Has errors of its own
 Assists in exploratory testing for validation
 Does not help very much with respect to non-functional
attributes

 Includes many tests inserted after errors are repaired to
ensure they won’t reappear

46

toad 47 15-214

Testing against
the environment

(stubs)

toad 48 15-214

Problems in automating testing

• User interfaces and user interactions
 Users click buttons, interpret output
 Waiting/timing issues

• Test data vs. real data

• Testing against big infrastructure (databases, web
services, …)

• Testing with side effects (e.g., printing and
mailing documents)

• Nondeterministic behavior

• Concurrency (more later and in 15-313)

-> the test environment

toad 49 15-214

Example

• 3rd party Facebook apps for
Android

• User interface for Android

• Internal computations
ala HW1

• Backend with
Facebook data

toad 50 15-214

Testing in real environments

Code Facebook Android
client

void buttonClicked() {
 render(getFriends());
}
Pair[] getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 try {
 List<Node> persons = api.getFriends("john");
 for (Node personA: persons) {
 for (Node personB: persons) {
 …
 }}
 } catch (…) { … }
 return result;
}

toad 51 15-214

Test drivers

Code Facebook Android
client

@Test void testGetFriends() {
 assert getFriends() == …;
}
Pair[] getFriends() {
 Connection c = http.getConnection();
 FacebookAPI api = new FacebookAPI(c);
 try {
 List<Node> persons = api.getFriends("john");
 for (Node personA: persons) {
 for (Node personB: persons) {
 …
 }}
 } catch (…) { … }
 return result;
}

Test driver
(JUnit)

toad 52 15-214

Stubs

Code Facebook
Interface

Android
client

FacebookInterface fb;
@Before void init() {fb = new FacebookStub(); }

Pair[] getFriends() {
 try {
 List<Node> persons = api.getFriends("john");
 for (Node personA: persons) {
 for (Node personB: persons) {
 …
 }}
 } catch (…) { … }
 return result;
}

Test driver
(JUnit)

Facebook

Stub

class FacebookStub implements FacebookInterface {
 void connect() {}
 List<Node> getPersons(String name) {
 if ("john".equals(n)) {
 List<Node> result=new List();
 result.add(…);
 return result;
 }
 }
}

toad 53 15-214

Robustness test

Code Facebook
Interface

Android
client

class ConnectionError implements FacebookInterface {
 List<Node> getPersons(String name) {
 throw new HttpConnectionException();
 }
}

@Test void testConnectionError() {
 assert getFriends(new ConnectionError) == null;
}

Test driver
(JUnit)

Facebook

Stub

Test for expected error conditions by
introducing artificial errors through stubs

Connecti
onError

toad 54 15-214

Testing in real environments

• Separating code (with stubs) allows to test
against functionality
 provided by other teams
 specified, but not yet implemented

Code Server Backend
(tbd.)

Android
client

toad 55 15-214

Testing Strategies in Environments

• Separate business logic and data representation
from GUI for testing (more later)

• Test algorithms locally without large environment
using stubs

• Advantages of stubs
 Create deterministic response
 Can reliably simulate spurious states (e.g. network error)
 Can speed up test execution (e.g. avoid slow database)
 Can simulate functionality not yet implemented

• Automate, automate, automate

toad 56 15-214

Design Implications

• Write testable code!

• When planning to test with a stub design for it!
Abstract the actual subsystem behind and
interface.

int getFreeTime() {
 DB2Database db = new DB2Database("calendar.db");
 return db.execute("select …");
}

int getFreeTime() {
 IDatabase db =
 databaseFactory.createDb("calendar.db");
 return db.execute("select …");
}

int getFreeTime(IDatabase db) {
 return db.execute("select …");
}

toad 57 15-214 57

Scaffolding

Stub Unit
Driver

Scaffolding

• Catch bugs early: Before client
code or services are available

• Limit the scope of debugging:
Localize errors

• Improve coverage
 System-level tests may only cover 70% of code [Massol]
 Simulate unusual error conditions – test internal robustness

• Validate internal interface/API designs
 Simulate clients in advance of their development
 Simulate services in advance of their development

• Capture developer intent (in the absence of specification
documentation)
 A test suite formally captures elements of design intent
 Developer documentation

• Improve low-level design
 Early attention to ability to test – ―testability‖

toad 58 15-214

Automating GUI/Web Testing

• Capture and Replay Strategy
 Capture mouse actions
 Capture system events

• Test Scripts
 (click on button labeled
"Start" expect value X in
field Y)

• Lots of tools and frameworks
 e.g. JUnit + Jemmy for Java/Swing

• (Avoid load on GUI testing by separating model
from GUI)

toad 59 15-214

Test-driven development

toad 60 15-214

Test Driven Development

• Tests first!

• Popular
agile technique

• Write tests as
specifications before code

• Never write code without
a failing test

• Claims:
• Design approach toward testable design
• Think about interfaces first
• Avoid writing unneeded code
• Higher product quality (e.g. better code, less defects)
• Higher test suite quality
• Higher overall productivity

(CC BY-SA 3.0)
Excirial

http://en.wikipedia.org/wiki/User:Excirial

toad 61 15-214

Summary

• Unit testing is one of many testing approaches

• Unit testing to
 discover bugs (not prove correctness)
 document code
 design testable code

• JUnit details (@Test, …)

• Test coverage: The good, the bad, and the ugly

• Testing against environments - Stubs

• You should be able to write and automate unit
tests for all your code now

