Objects Analysis

P 3

Threa_ds

Principles of Software Construction:
Objects, Design, and Concurrency

Testing

toad
Spring 2014
Christian Kastner Charlie Garrod
School of

Computer Science

L J
institute for

I S SOFTWARE
RESEARCH

© 2012-14 C Kaestner, C Garrod, J Aldrich, and W Scherlis

Learning Goals

e Understand the nature of testing

e Select test cases

e Write practical unit tests with JUnit
e Automate test execution

o Write tests with stubs

e Decide when to stop testing, interpret coverage
criteria

' P institute tor
15-214 toad I | S [Eyas

Formal Verification

e Proving the correctness of an implementation with
respect to a formal specification, using formal
methods of mathematics.

e Formally prove that all possible executions of an
implementation fulfill the specification

e Manual effort; partial automation; not
automatically decidable

= institute for
15-214 toad O | S [Eoapass

Testing

e Executing the program with selected inputs in a
controlled environment

e Goals:
= Reveal bugs (main goal)
= Assess quality (hard to quantify)
= Clarify the specification, documentation
« Verify contracts

"Testing shows the presence,
not the absence of bugs
Edsger W. Dijkstra 1969

> |

= institute for
15-214 toad 4 soruase

What to test?

e Functional correctness of a method (e.q.,
computations, contracts)

e Functional correctness of a class (e.g., class
invariants)

e Behavior of a class in a subsystem/multiple
subsystems/the entire system

e Behavior when interacting with the world
« Interacting with files, networks, sensors, ...
= Erroneous states
 Nondeterminism, Parallelism
» Interaction with users

- institute for
15-214 toad 5 i

Testing Decisions

Who tests?

e Developers

e Other Developers

e Separate Quality Assurance Team

e Customers

When to test?

e Before development

e During development

e After milestones

e Before shipping (More in 15-313)

institute for
15-214 toad 6 [IN]f o

From problem to idea to correct program

e "While the first binary search was published
in 1946, the first published binary search
without bugs did not appear until 1962.”

— Donald E. Knuth, Stanford

e "Given ample time, only about 10% of
professional programmers were able to
get this small program right”
— Jon Bentley, AT&T Bell Labs

15-214 toad 2 [s

RRRRRRRR

Manual Testing?

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient 1s added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
7 Select “Send Message” Message 1s correctly sent

e Live System?

e Extra Testing System?

e Check output / assertations?
e Effort, Costs?

e Reproducable?

15-214 toad s [i

RESEARCH

Automate Testing

e Execute a program with specific inputs,
check output for expected values

e Easier to test small pieces than testing user
Interactions

e Set up testing infrastructure

e Execute tests regularly

' . institute for
15-214 toad 90 |NYN sorvnre

Example
/**

* computes the sum of the first len values of the array
*
* @param array array of integers of at least Length Len
* @param Len number of elements to sum up
* @return sum of the array values
*/

int total(int array[], int len);

15-214 toad 10 [HH e

RESEARCH

Example
/**

* computes the sum of the first len values of the array
*

* @param array array of integers of at least Length Len
* @param Len number of elements to sum up
* @return sum of the array values

*/
int total(int array[], int len);

e Test empty array
e Test array of length 1 and 2

e Test negative numbers

e Test invalid length (negative or longer than array.length)
e Test null as array

e Test with a very long array

15-214 toad 11 [H o

RESEARCH

Selecting Test Cases: Common Strategies

e Read specification

e Write tests for representative case
= Small instances are usually sufficient

e Write tests for invalid cases
e Write tests to check boundary conditions

e Are there difficult cases? (error guessing)
= Stress tests? Complex algorithms?

e Think like a user, not like a programmer
= The tester’s goal is to find bugs!

e Specification covered?

e Feel confident? Time/money left?

- institute for
15-214 toad 12 o

Junit

e Popular unit-testing framework for Java

e Easy to use

e Tool support available

e Can be used as design mechanism

Ju JUnit 2

oblems @ Javadoc Declaration
Finished after 0.012 seconds

Runs: 4/4 B Errors: 0 B Failures: 1

» i edu.cmu.cs.cs214.hwi.tests.AlgorithmTest [Runner: JUnit 4] (0.000 s)

¥ @ edu.cmu.cs.cs214.hwi.tests. AdjacencyMatrixTest [Runner: JUnit 4] (0.000s)
gl
gel basicNullTest2 (0.000 s)

» Hiedu.cmu.cs.cs214.hwi.tests.AdjacencyListTest [Runner: JUnit 4] (0.000s)

15-214 toad

= Failure Trace =

30 java.lang.AssertionError: Expected exception: java.lang.NullPointerException

-
ey stitute for
= SOFTWARE
13 b H RESEARCH

Junit

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {

@Test

public void testSanityTest () {
Graph gl = new AdjacencylListGraph(10)
Vertex sl = new Vertex ("A");
Vertex s2 = new Vertex ("B");
assertEquals (true, gl.addVertex(sl)):;
assertEquals (true, gl.addVertex(s2)):;
assertEquals(true, gl.addEdge (sl, s2));
assertEquals(s2, gl.getNeighbors (sl)

@Test
public void test...

private int helperMethod..

institute For
15-214 toad 14 [H1 s

Unit Tests

e Unit tests for small units: functions, classes,

subsystems
« Smallest testable part of a system
= Test parts before assembling them
= Intended to catch local bugs

e Typically written by developers
e Many small, fast-running, independent tests

o Little dependencies on other system parts or
environment

e [nsufficient but a good starting point,

extra benefits:
« Documentation (executable specification)
» Design mechanism (design for testability)

- institute for
15-214 toad 15 sorTi:

assert, Assert

e assert is a native Java statement throwing an AssertionError
exception when failing
= assert expression: "Error Message";

e org.junit.Assert is a library that provides many more specific
methods

« static void assertTrue(java.lang.String message,
boolean condition)
// Asserts that a condition is true.

= static void assertEquals(java.lang.String message,
long expected, long actual);
// Asserts that two longs are equal.

« static void assertEquals(double expected, double actual,
double delta);
// Asserts that two doubles are equal to within a positive delta

« static void assertNotNull(java.lang.Object object)
// Asserts that an object isn't null.

« static void fail(java.lang.String message)
//Fails a test with the given message.

= institute for
15-214 toad 16 o

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

JUnit Conventions

e TestCase collects multiple tests (in one class)
e TestSuite collects test cases (typically package)
e Tests should run fast

e Tests should be independent

e Tests are methods without parameter and return
value

e AssertError signals failed test (unchecked exception)

e Test Runner knows how to run JUnit tests
= (uses reflection to find all methods with @Test annotat.)

institute FOI
15-214 toad 17 [N o

Common Setup

import org.junit.*;
import org.junit.Before;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
Graph g;

@Before
public voild setUp() throws Exception {
graph = createTestGraph() ;

@Test

public voild testSanityTest () {
Vertex sl = new Vertex ("A");
Vertex sZ2 = new Vertex ("B");

assertEquals (3, g.getDistance(sl, s2));

= .
institute for

15-214 toad 18 [BIN sormse

Checking for presence of an exception

import org.junit.*;
import static org.junit.Assert.fail;

public class Tests {

@Test
public voild testSanityTest () {
try {
openNonexistingFile();
fail ("Expected exception") ;
} catch (IOException e) { }

@Test (expected = IOException.class)
public void testSanityTestAlternative() {
openNonexistingFile () ;

- institute for
15-214 toad 19 i

Test organization

: v = hwi
e Conventions b
(nOt req u | rementS) ¥ f#f edu.cmu.cs.cs214.hwi.graph

» [J] AdjacencyListGraph.java
» [J] AdjacencyMatrixGraph.java

e Have a test class ATest for + B Algorithm java
eaCh CIaSS A 2 edu.cmu.cs.cs214.hw1.sols

P 1 edu.cmu.cs.cs214.hwl.staff
P B edu.cmu.cs.cs214.hwi.staff.tests

e Have a source directory and a vstess

: ¥ B edu.cmu.cs.cs214.hwi.graph
teSt d | reCtO ry » 1] AdjacencyListTest.java

« Store ATest and A in the same > [1) AdjacencyMatrixTest java

package »)] AlgorithmTest.java

. » [J] GraphBuilder.java

- TeStS Can acCCess members Wlth * & edu.cmu.cs.cs214.hwi.staff.tests

default (package) visibility > B\ JRE System Library [jdk1.7.0]

B =4 JUnit 4

e Alternatively store exceptions [=i
in the source directory but in a
separate package

= institute for
15-214 toad 20 sormunse

Exercise (on paper!)

e Test a priority queue for Strings
public interface Queue {

void add(String s);
String getFirstAlphabetically();

e Write various kinds of test cases

15-214 toad 21 i S f isnét;%&ﬂ

RRRRRRRR

Testable Code

e Think about testing when writing code
e Unit testing encourages to write testable code

e Separate parts of the code to make them
independently testable

e Abstract functionality behind interface, make it
replaceable

e Test-Driven Development

= A design and development method in which you write
tests before you write the code!

' . institute for
15-214 toad 23 SOt

Run tests frequently

e You should only commit code that is passing all
tests

e Run tests before every commit

e Run tests before trying to understand other
developers' code

o If entire test suite becomes too large and slow for
rapid feedback, run local tests ("smoke tests",
e.g. all tests in package) frequently, run all tests
nightly
= Medium sized projects easily have 1000s of test cases and

run for minutes

e Continuous integration servers help to scale
testing

- institute for
15-214 toad PR | S [FE9vt;

Continuous Integration

&, search

(7) admin | log out

Jenkins

T’:f MNew Job

H People

= Build History

O_* Project Relationship

&~ | Check File Fingerprint

" Manage Jenkins
q My Views

A Disk usage
u #_

Build Queue
No builds in the queue.

Build Executor Status

Status
1| Idle

Help us localize this

15-214

Q
Q
Y
Q
@
Q &
9

=

IVMBranch

IVMBranchEval

IVMBranchTest

IVMTest

TvpeChef

variational

toad

Last Success

1 hr 40 min (£186)

2 days 19 hr (£288)

3 mo 19 days (#139)

3 mo 24 days (£70)

3 mo 24 days (#110)

2 days 19 hr (£160)

21 days (#£354)

1yr2mo (£11)

Last Failure

6 days 8 hr (£164)

12 days (£279)

3 mo 25 days (£125)

3 mo 28 days (#57)

3 mo 19 days (£118)

10 days (#£155)

7 hr 54 min (£357)

1yr2mo (£3)

ENAELE AUTO REFRESH

@add description

Last Duration

47 sec

4 min 35 sec

4 min 27 sec

12 min

11 min

12 min

16 min

3 min 43 sec

BB ® 1B

Legend [RSS for all [£) RSS for failures [£] RSS for just Iatest builds

Page generated: Jan 29, 2013 10:41:11 PM

REST API

m

25 >

l!

Jenkins wer. 1.500

See also travis-ci.org

P institute for
SOFTWARE
RESEARCH

Travis CI

Firefox ™ =] E3

[E Math {Java Platform SE 7) X I Travis CI - Free Hosted Continuous Integ... | + =
| (- = l kravis-ci,org | hkkps:) ferawis-ciorg) i uis builds ir - C"] ["-"l T travis)3] A n'
N A— —

—

Search all repositories yu i/yu i3 O £~

Alibrary for building richly interactive web applications.

Recent
indigophpiqueus 1 Current Build History Pull Requests Branch Summary
O e
Build Messape Commit Duration Finished
yuifyuis 3565 © 3084 Merge branch 'dev-raster’ into BEOOEAD [dev-Fac) 10min28sec aboutan hour ago
@ 24 zec dev-3x
= - © 3683 Add missing link, BoO7elE [dev-rnaster] 10min36sec aboutan hour ago
. O 3o Merge branch 'dev-rnaster’ into SeBb75d [dewv-3ue 13rnin 0sec about an hour ago
Hill30/HGScroller B0
dew-3.2
©alse
o © 3081 Update yui history, bcB23la [dev-master! 13min18sec aboutan hour ago
© 3857 Build YUl Core Ha2426 [dev-Ix) dmin20se: & dayago
221 © 3566 Merge branch 'esB-import’ inta 3a1fE21 [dew-3x 12rnin 33sec & day ago
dew-3.2

= © 3065 Merge branch 'dev-master' into be3428a [dev-3u) limin43sec aday ago

Automating Test Execution

ckaestne@kastner-desktop:~/work/TypeChef/TypeChef$ sbt "project FeatureExprLib" test

Detected sbt version 8.12.2

[info] Loading global plugins from fusr@/home/ckaestne/.sbt/plugins

[info] Loading project definition from Jfusr@/home/ckaestne/work/TypeChef/TypeChef/project/project

[info] Loading project definition from /fusr@/home/ckaestne/work/TypeChef/TypeChef/project

[info] Set current project to TypeChef (in build file:/usr@/home/ckaestne/work/TypeChef/TypeChef/)

[info] Set current project to FeaturekExprLib (in build file: /usr@/home/ckaestne/work/TypeChef/TypeChef/)

[info] Compiling 10 Scala sources to fusr@/home/ckaestne/work/TypeChef/TypeChef/FeatureExprLib/target/scala-2.10/test

-classes.

[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
[info]
tests.

+
+
+
+
-
+
+
+
+
-
+
+
+
+
-
+

-

FeatureExpr.parse(print(x))==x: 0K, passed 100 tests.

FeatureExpr.andil: OK, passed 100 tests.

FeatureExpr.and®: OK, passed 100 tests.

FeatureExpr.andSelf: OK, passed 100 tests.

FeatureExpr.orl: OK, passed 100 tests.

FeatureExpr.or@: OK, passed 100 tests.

FeatureExpr.orSelf: OK, passed 100 tests.

FeatureExpr.a eq a: 0K, passed 100 tests.

FeatureExpr.a equals a: OK, passed 100 tests.

FeatureExpr.a equivalent a: OK, passed 100 tests.

FeatureExpr.a implies a: 0K, passed 100 tests.

FeatureExpr.creating (a and b) twice creates equal object: OK, passed 100 tests.
FeatureExpr.creating (a or b) twice creates equal object: OK, passed 100 tests.
FeatureExpr.creating (not a) twice creates equal object: 0K, passed 100 tests.
FeatureExpr.applying not twice yields an equivalent formula: OK, passed 100 tests.
FeatureExpr.Commutativity wrt. equivalence: (a and b) produces the same object as (b and a): OK, passed 100

FeatureExpr.Commutativity wrt. equivalence: (a or b) produces the same object as (b or a): OK, passed 100 te

FeatureExpr.taut(a==b) == contr(a and !b): OK, passed 100 tests.
FeatureExpr.featuremodel.tautology: OK, passed 100 tests.

institute for
I s SOFTWARE
RESEARCH

Nightly Builds and Smoke Tests

e Build a release of a large project every night
= Catches integration problems where a change “breaks the

build”
= Breaking the build is a BIG deal—may result in midnight
calls to the responsible engineer

e Run simplified “smoke test”

on build
= Tests basic functionality and
stability
« Often: run by programmers
before check-in
= Provides rough guidance prior
to full integration testing

The trss is OPEN

BECE
H

=
=
=
=

o
1=
=

=)
=
=]
=
i
EESSEEEE 55
Gl oo e Elnlnlel s
SR ®I2|I2z|2 2|22
a2 alg aelglalgla s
22 88ElElBlE|&8I8

=
s &S
A=t

[[TTTe

& -

=

=]

=

=
G nBeE R EE R
Y eal = frod frod ol lrog el
00| 0| | fuad | S| B x| | 00 B
IR IR
g 2lElelgRBE=2

SOFTWARE

0 . institute for
e 28
: RESEARCH

15-214 toad 28

Build and Test Automation

e Compile and execute from the command line

e Dependencies to all required libraries included (or
downloaded on demand)

e Build tools
repositories {

) 21na‘1cke mavenCentral()
= gradle ’
= maven apply plugin: 'java'
= Sbt
. dependencies {
testCompile 'junit:junit:4.10'
b
sourceSets {
main {

java { srcDir 'src' }
resources { srcDir 'misc/res' }
15-214 toad) 20 [

Project conventions

e Defaults used by several build tools to find source

and test files

e lib/

e src/
= main/
e java/
e ... java code ...
e resources/
e ... Images ...
= test/
e java/
o ... test code ...

e build.gradle

15-214 toad

30

institute for
SOFTWARE
RESEARCH

Test Coverage

= institute for
15-214 toad TR | S [Eats

How much testing?

e Cannot test all inputs
= too many, usually infinite

e What makes a good test suite?
e When to stop testing?

e How much to invest in testing?

- institute for
15-214 toad 32 sorTi:

Blackbox: Random Testing / Fuzz Testing

e Try random inputs, many of them

e Observe whether system crashes (exceptions,
assertions)

e Try more random inputs, many more

e Successful in certain domains (parsers, network
issues, ...)

e Many tests execute similar paths
e Often finds only superficial errors

e Can be improved by guiding random selection with
additional information (domain knowledge or
extracted from source)

15-214 toad 33 [o

Blackbox: Covering Specifications

e Looking at specifications, not code:

e Test representative case
e Test boundary condition
e Test exception conditions

e (Test invalid case)

= institute for
15-214 toad 34 sormunse

Structural Analysis for Test Coverage

= Organized according to program decision structure
= Touching: statement, branch

public static int binsrch (int[] a, int key) {

int low = 0;
int high = a.length - 1;

e Will this statement get executed in a test?
e Does it return the correct result?

while (true) {

if (low > high) return -(low+1);

int mid = (low+high) / 2;

if (| a[mid] |« key) low = mid + 1;
else if (Ca[mid] >
else |return mid;

}

} eCould this array index be out of bounds?]

[e Does this return statement ever get reached?

15-214 toad 35 Jd o 35

RESEARCH

Method Coverage

e Trying to execute each method as part of at
least one test

T
public bhoolean equals(Obhject anChject) | _J
if (i=Zeraoi])
if (anfbject instanceof IMoney)
return [[(IMoney)anChject) .iszZeroc(]:
if (anChject instanceof Monevy) |
Money alMoney= (Monev)anChject:
return alloney.currency() .equals(currency ()|
&& atoount () == aMoney.amounti)
i
return false;

2 - = 8 a 1=

e Does this guarantee correctness?

institute for
15-214 toad 36 et

Statement Coverage

e Trying to test all parts of the implementation

e Execute every statement in at least one test

T
public bhoolean equals(Obhject anChject) | _J
if (i=Zeraoi])
if (anfbject instanceof IMoney)
return [[(IMoney)anChject) .iszZeroc(]:
if (anChject instanceof Monevy) |
Money alMoney= (Monev)anChject:
return alloney.currency() .equals(currency ()|
&& atoount () == aMoney.amounti)
i
return false;

1=

e Does this guarantee correctness?

- institute for
15-214 toad 37 e

Structure of Code Fragment to Test

7
public boolean ecuals(Chiject anChiject) { _J
if (isZerol))
if (anCbhject instanceof IMoney)
return [[(IMoney)anOhject).isZeroi):
if [(anChject instanceof Monewy) |
Money aMoney= (Monevy)antbject:
return aMoney.currency() .equalsicurrency()
&£& awount (] == aMonevy.amwounti):;
)

return false;

) 4

Flow chart diagram for
junit.samples.money.Money.equals

= institute for
15-214 toad 3 [Hlems 38

Statement Coverage

e Statement coverage

= What portion of program statements
(nodes) are touched by test cases

e Advantages
= Test suite size linear in size of code
= Coverage easily assessed

e [ssues

= Dead code is not reached

= May require some sophistication to
select input sets

= Fault-tolerant error-handling code
may be difficult to “touch”

= Metric: Could create incentive to
remove error handlers!

T
public boolean equals (Chject anChiject) |
40 if (isZero())
41 if (anfbject instanceof IMoney)
return | (IMoney)anChiect).isZerol();

if (anCbject instanceof Money) |

Money aMoney= [(Money)anChject:

return aMoney.currency() .equals(currency()]

i
return false:;

'

£& amount [) == aMoney.amount () ;

15-214 toad

39

) 4

institute for
SOFTWARE
RESEARCH

39

Branch Coverage

e Branch coverage

= What portion of condition branches are
covered by test cases?
= Or: What portion of relational expressions
and values are covered by test cases?
e Condition testing (Tai)
= Multicondition coverage - all boolean
combinations of tests are covered

e Advantages

= Test suite size and content derived
from structure of boolean expressions

= Coverage easily assessed
e Issues
= Dead code is not reached
= Fault-tolerant error-handling code

may be difficult to “touch”

T
public boolean equals (Chject anChiject) | J
if (isZeroi])
if (anfhject instanceof IMonevy)
return | (IMoney)anChiect).isZerol();
if (anCbject instanceof Money) |
Money aMoney= (Money)anChject:
return alMoney.currency() .equals(currency ()]
&£& amount [) == aMoney.amount () ;
i

return false:

15-214

40

) 4

institute for
SOFTWARE
RESEARCH

40

Path Coverage

e Path coverage
= What portion of all possible paths through
the program are covered by tests?

= Loop testing: Consider representative and
edge cases:
e Zero, one, two iterations
e If there is a bound n: n-1, n, n+1 iterations
e Nested loops/conditionals from inside out

e Advantages
= Better coverage of logical flows

e Disadvantages
= Infinite number of paths
= Not all paths are possible, or necessary
e What are the significant paths?
= Combinatorial explosion in cases unless
careful choices are made

e E.g., sequence of n if tests can yield
up to 2n possible paths

= Assumption that
program structure
is basically sound

T
public boolean equals (Chject anChiject) | J
if (isZeroi])
if (anfhject instanceof IMonevy)
return | (IMoney)anChiect).isZerol();
if (anCbject instanceof Money) |
Money aMoney= (Money)anChject:
return alMoney.currency() .equals(currency ()]
&£& amount [) == aMoney.amount () ;

15-214

¥

return false;

41

institute for
SOFTWARE
RESEARCH

41

Write testable code

//700LOC
public boolean foo() {
try {
synchronized () {
R Unit testing
for () { -
oL as design
I .
¢ mechanism
if () {
for () {
>
b
b
} else {
if () {
for () {
if () {
} else {
b
if () {
} else {
if () {
b
ks
if () {
if () {
if () {
for () {
b
¥ Source:
by http://thedailywtf.com/Articles/Coding-Like-the-Tour-de-France.aspx
} else {

institute for
15-214 7 toad a2 sormse

int binarySearch(int[] a, int key) {
int imin = 0;
int imax = a.length-1;
while (imax >= imin) {
int imid = midpoint(imin, imax);
if (a[imid] < key)
imin = imid + 1;
else if (a[imid] > key)
imax = imid - 1;
else
return imid;

»

return -1;

Find test cases to maximize line, branch,
and path coverage.

=z institut
15-214 toad a3 |NYJ o

Test Coverage Tooling

e Coverage assessment tools
= Track execution of code by test cases

e Count visits to statements
= Develop reports with respect to specific coverage criteria
= Instruction coverage, line coverage, branch coverage

e Example: EclEmma tool for JUnit tests

Il a0l

Pia Ecd “cusca Aelachar Plsmals Zawch Pramct Aun Wirdoss Halp
il fr |G- d DG | E | o | A B[R 4
o T o = T —
Firishad after 34,533 ssconck public Besleam m3dill |imt ircdaw, Collsstion =] O :'_
Fages 1300 DErs 0 O Fsesn 0 AL |=. 1SRy || L

L3 i : =
_ | alan 48] aiee == dndex || aiee == 0

rebwrm w3AR11 =] §
[T
mmm =l Lixtsbls succ = getlistsblsit |indss|;
Listalble pred = (sl == suss| F sall @ suss.poev|| e
ItaTator it = c.iterwtor||;

WiLe |t pasteat ||| |

{1 Teatiag b
1] o spacha sorarons colsdions. TeghThos

510 o spachs corwnons colsctiont. TesCol

- Teatuffar ik

5B Teatrersar stion b

pred = inmsttlistsbls |[pred, sucs, it.Text ||| §

- B o spachs coarwnons colsctiont. Teeacl
- Test itk
+ .l_. Testiapl b
- B o spachs coarwnons colsctiont. TestPras:

A Testhati ki e
5 0] oo pscha crrwons colections. TestTry | || Probleis | Sevades | Ceelarstion u‘_m|_-cnnq- BN a

B TesthrmsStad: Tl ackages (1110 2008 15:(4:14) LA E TR Iul_" oY

-0 Testhawian
6) nig spschs s srdedions. Testfing.| || et | coverege | covmedines | Tetsliies =
4, TedTundsdrhoiTe 1 1 s < prwrean- palletlnne C R 18T 1578
Testimrsisdrobite? B o apahe conrnons collediam: - ML % T E1ER
B i) TestTursorshisl indsd it | |A] Aava St e - A% = T
H-B) TestDoubleCrderedbing H|J] Bagk e - 7% 13 18 =i
BB o spsche coranong colsdion, TesE s 4 |1] BamPap jes - A% 188 Tl
BB TestFashterard st H || BrargHeap. jrea - LB L Fa 145
BB TestFashterard kst 1] dawa - TI% =3 2]
B TestFaitarhiten 4 |1 BufferresflaEocaption jra m =A% = L]
B B TesFasitashineg 4 || Buffer e flont raption s - maI% B]
B TestFat Treatian 4 |1 Bufferitis s ‘- nA% 4 13
BB TesFat Treebiapd _,;l] Clesrdltinjas - A% =]
i | ¥ 4 || Colactord b favs - A% i) =y
J| Comparsivib. jrs - as% 3 =
= Fodure Trace [f awn - oA T |

| | | e Srertheet | 149128

15-214 toad aa [Hi i a4

RESEARCH

“Coverage” is useful but also dangerous

e Examples of what coverage analysis could miss

= Unusual paths

= Missing code

= Incorrect boundary values

« Timing problems

= Configuration issues

= Data/memory corruption bugs
= Usability problems

= Customer requirements issues

e Coverage is not a good adequacy criterion
= Instead, use to find places where testing is inadequate

= institute for
15-214 toad as [Hlemes 5

Test coverage — Ideal and Real

e An Ideal Test Suite

= Uncovers all errors in code
= Uncovers all errors that requirements capture
e All scenarios covered
e Non-functional attributes: performance, code safety,
security, etc.
= Minimum size and complexity
= Uncovers errors early in the process

e A Real Test Suite

= Uncovers some portion of errors in code

= Has errors of its own

= Assists in exploratory testing for validation

= Does not help very much with respect to non-functional
attributes

» Includes many tests inserted after errors are repaired to
ensure they won’ t reappear

ite for

= institute fc
15-214 toad a6 iy 46

Testing against
the environment
(stubs)

= institute for
15-214 toad SV | S [et

Problems in automating testing

e User interfaces and user interactions
= Users click buttons, interpret output
« Waiting/timing issues

e Test data vs. real data

e Testing against big infrastructure (databases, web
services, ...)

e Testing with side effects (e.g., printing and
mailing documents)

e Nondeterministic behavior

e Concurrency (more later and in 15-313)

-> the test environment

- institute for
15-214 toad a8 sorTi:

Example

@ 19:07

e 3rd party Facebook apps for bekF_&"Mp
Android

e User interface for Android

e Internal computations
ala HW1

e Backend with A
Facebook data @

= institute for
15-214 49 e

Testing in real environments

Facebook Code Android
client

void buttonClicked() {
render(getFriends());
)

Pair[] getFriends() {
Connection ¢ = http.getConnection();
FacebookAPI api = new FacebookAPI(c);
try {
List<Node> persons = api.getFriends("john");
for (Node personA: persons) {
for (Node personB: persons) {

s
ycatch (...) { ... }

return result;

ite for

= institL C
15-214 toad 50

Test drivers

Test driver
(JUnit)

Facebook Code Android
client

@Test void testGetFriends() {
assert getFriends() ==
b

Pair[] getFriends() {

Connection ¢ = http.getConnection();
FacebookAPI api = new FacebookAPI(c);
try {

LILLY 4

List<Node> persons = api.getFriends("john");
for (Node personA: persons) {

for (Node personB: persons) {

s
ycatch (...) { ... }

return result;

ite

15-214 toad 51 SOFTWARE

RESEARCH

Stubs
Stub

Test driver

(JUnit)
Facebook Facebook Code Android

Interface client

FacebooklInterface fb;
@Before void init() {fb = new FacebookStub(); }

Pair[] getFriends() {

class FacebookStub implements FacebookInterface {
void connect() {}
List<Node> getPersons(String name) {
if ("john".equals(n)) {
List<Node> result=new List();
result.add(...);
return result;

try {
} catch
return n
)
15-214

foad 52 Sk

Robustness test

Stub Test driver
(JUnit)
Facebook Facebook Code Android
Interface client
Connecti
onError

class ConnectionError implements FacebookInterface {
List<Node> getPersons(String name) {
throw new HttpConnectionException();

b
b
@Test void testConnectionError() {

assert getFriends(new ConnectionError) == null;
b

Test for expected error conditions by
introducing artificial errors through stubs

instit ol
15-214 toad 53 soruase

Testing in real environments

Server Backend
(tbd.)

Code

Android
client

e Separating code (with stubs) allows to test

against functionality
= provided by other teams

= specified, but not yet implemented

15-214

toad

54

institute for
SOFTWARE
RESEARCH

Testing Strategies in Environments

e Separate business logic and data representation
from GUI for testing (more later)

e Test algorithms locally without large environment
using stubs

e Advantages of stubs
= Create deterministic response
= Can reliably simulate spurious states (e.g. network error)
= Can speed up test execution (e.g. avoid slow database)
= Can simulate functionality not yet implemented

e Automate, automate, automate

= institute for
15-214 toad 55 et

Design Implications

e \Write testable code!

e When planning to test with a stub design for it!
Abstract the actual subsystem behind and
interface.

int getFreeTime() {
DB2Database db = new DB2Database("calendar.db");
return db.execute("select ..");

int getFreeTime() {
IDatabase db =
databaseFactory.createDb("calendar.db");
return db.execute("select ..");

int getFreeTime(IDatabase db) {
return db.execute("select ..");

}
15-214 toad | S (e

Scaffolding

e Catch bugs early: Before client
code or services are available

Stub | Unit Driver

e Limit the scope of debugging:

Localize errors

e Improve coverage
« System-level tests may only cover 70% of code [Massol]
« Simulate unusual error conditions - test internal robustness

e Validate internal interface/API designs
« Simulate clients in advance of their development
= Simulate services in advance of their development

o Capture developer intent (in the absence of specification
documentation)
= A test suite formally captures elements of design intent
« Developer documentation

e Improve low-level design
= Early attention to ability to test — “testability”

- institute for
15-214 toad 57 ShbE 57

RESEARCH

Automating GUI/Web Testing

e Capture and Replay Strategy
= Capture mouse actions
= Capture system events

e Test Scripts

= (click on button labeled

"Start" expect value X in
field Y)

Verify that expected
State reached

e Lots of tools and frameworks
= e.g. JUnit + Jemmy for Java/Swing

e (Avoid load on GUI testing by separating model
from GUI)

= institute for
15-214 toad 58 sormunse

Test-driven development

= institute for
15-214 toad so [IN s

Test Driven Development

———————————————————— —Repeat- — —

e Tests first!

Test
succeeds

e Popular
agile technique

e \Write tests as
specifications before code

Test
fails

e Never write code without

|
|
|
|
|
|
|
|
|
|
|
l
|
a failing test i

e Claims:

CC BY-SA 3.0)

- Design approach toward testable design Excica

- Think about interfaces first

- Avoid writing unneeded code

- Higher product quality (e.g. better code, less defects)
- Higher test suite quality

- Higher overall productivity

' . institute for
15-214 toad 60 sormse

http://en.wikipedia.org/wiki/User:Excirial

Summary

e Unit testing is one of many testing approaches

e Unit testing to
= discover bugs (not prove correctness)
« document code
= design testable code

e JUnit details (@Test, ...)
e Test coverage: The good, the bad, and the ugly

e Testing against environments - Stubs

e YOou should be able to write and automate unit
tests for all your code now

= institute for
15-214 toad 61 |[Yf sorrvex

