
© 2012-2013 W Scherlis, J Aldrich, C Garrod, and C Kästner

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Specifications

Christian Kästner Charlie Garrod

2
15-214

Learning Goals

Understand the different forms of specifications

Select a suitable formality for a specification

Write specifications for functions and classes

3 15-214

The four course themes

 Threads and Concurrency
 Concurrency is a crucial system abstraction

 E.g., background computing while responding to users

 Concurrency is necessary for performance

 Multicore processors and distributed computing

 Our focus: application-level concurrency

 Cf. functional parallelism (150, 210) and systems concurrency (213)

 Object-oriented programming
 For flexible designs and reusable code

 A primary paradigm in industry – basis for modern frameworks

 Focus on Java – used in industry, some upper-division courses

 Analysis and Modeling
 Practical specification techniques and verification tools

 Address challenges of threading, correct library usage, etc.

 Design
 Proposing and evaluating alternatives

 Modularity, information hiding, and planning for change

 Patterns: well-known solutions to design problems

4
15-214

Correctness?

5
15-214

Software Errors

• Functional errors

• Performance errors

• Deadlock

• Race conditions

• Boundary errors

• Buffer overflow

• Integration errors

• Usability errors

• Robustness errors

• Load errors

• Design defects

• Versioning and configuration
errors

• Hardware errors

• State management errors

• Metadata errors

• Error-handling errors

• User interface errors

• API usage errors

• …

6 15-214

Software Quality

 Sufficiency / Functional Correctness
 Fails to implement the specifications … Satisfies all of the specifications

 Robustness
 Will crash on any anomalous even … Recovers from all anomalous events

 Flexibility
 Will have to be replaced entirely if specification changes … Easily adaptable to

reasonable changes

 Reusability
 Cannot be used in another application … Usable in all reasonably related

applications without modification

 Efficiency
 Fails to satisfy speed or data storage requirement … satisfies speed or data storage

requirement with reasonable margin

 Scalability
 Cannot be used as the basis of a larger version … is an outstanding basis…

 Security
 Security not accounted for at all … No manner of breaching security is known

 …

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

7 15-214

Software Quality

 Sufficiency / Functional Correctness
 Fails to implement the specifications … Satisfies all of the specifications

 Robustness
 Will crash on any anomalous even … Recovers from all anomalous events

 Flexibility
 Will have to be replaced entirely if specification changes … Easily adaptable to

reasonable changes

 Reusability
 Cannot be used in another application … Usable in all reasonably related

applications without modification

 Efficiency
 Fails to satisfy speed or data storage requirement … satisfies speed or data storage

requirement with reasonable margin

 Scalability
 Cannot be used as the basis of a larger version … is an outstanding basis…

 Security
 Security not accounted for at all … No manner of breaching security is known

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

Our focus this and
next week:
Functional Correctness

Object-Design
Challenges

(later in this course,
and in 15-313)

Architectural Design
Challenges

Additional Analyses
(manual and
automated)
=> 15-313 topics

8 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> ArrayOutOfBoundsException

9 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> -1

10 15-214

Who’s to blame?

Algorithms.shortestDistance(g,

 “Tom”, “Anne”);

> 0

11 15-214

Who’s to blame?

class Algorithms {

 /**

 * This method finds the

 * shortest distance between to

 * verticies. It returns -1 if

 * the two nodes are not

 * connected. */

 int shortestDistance(…) {…}

}

12 15-214

Who’s to blame?

Math.sqrt(-5);

> 0

13 15-214

Who’s to blame?

/**
 * Returns the correctly rounded positive square root of a
 * {@code double} value.
 * Special cases:
 * If the argument is NaN or less than zero, then the
 * result is NaN.
 * If the argument is positive infinity, then the result
 * is positive infinity.
 * If the argument is positive zero or negative zero, then
 * the result is the same as the argument.
 * Otherwise, the result is the {@code double} value closest to
 * the true mathematical square root of the argument value.
 *
 * @param a a value.
 * @return the positive square root of {@code a}.
 * If the argument is NaN or less than zero, the result is NaN.
 */

public static double sqrt(double a) { …}

14 15-214

Textual Specification

public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

15 15-214

Specifications

 Contains
 Functional behavior

 Erroneous behavior

 Quality attributes

 Desirable attributes
 Complete

• Does not leave out any desired behavior

 Minimal
• Does not require anything that the user does not care about

 Unambiguous
• Fully specifies what the system should do in every case the user cares

about

 Consistent
• Does not have internal contradictions

 Testable
• Feasible to objectively evaluate

 Correct
• Represents what the end-user(s) need

16 15-214

Function Specifications

 A function’s contract is a statement of the responsibilities of
that function, and the responsibilities of the code that calls
it.
 Analogy: legal contracts

• If you pay me $30,000

• I will build a new room on your house

 Helps to pinpoint responsibility

 Contract structure
 Precondition: the condition the function relies on for correct

operation

 Postcondition: the condition the function establishes after
correctly running

 (Functional) correctness with respect to the specification
 If the client of a function fulfills the function’s precondition, the

function will execute to completion and when it terminates, the
postcondition will be fulfilled

 What does the implementation have to fulfill if the client
violates the precondition?

16

17 15-214

Formal Specifications

/*@ requires len >= 0 && array != null && array.length == len;
 @
 @ ensures \result ==
 @ (\sum int j; 0 <= j && j < len; array[j]);
 @*/
int total(int array[], int len);

18 15-214

/*@ requires len >= 0 && array.length == len

 @ ensures \result ==

 @ (\sum int j; 0 <= j && j < len; array[j])

 @*/

float sum(int array[], int len) {

 assert len >= 0;

 assert array.length == len;

 float sum = 0.0;

 int i = 0;

 while (i < len) {

 sum = sum + array[i]; i = i + 1;

 }

 return sum;

 assert …;

}

Runtime Checking of Specifications with Assertions

java -ea Main

19 15-214

/*@ requires len >= 0 && array.length == len

 @ ensures \result ==

 @ (\sum int j; 0 <= j && j < len; array[j])

 @*/

float sum(int array[], int len) {

 if (len < 0 || array.length != len)

 throw IllegalArgumentException(…);

 float sum = 0.0;

 int i = 0;

 while (i < len) {

 sum = sum + array[i]; i = i + 1;

 }

 return sum;

 assert …;

}

Runtime Checking with Exceptions

Check arguments
even when assertions
are disabled.
Good for robust
libraries!

20 15-214

Example Java I/O Library Specification (abridged)

public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/lang/NullPointerException.html
http://java.sun.com/javase/6/docs/api/java/lang/IndexOutOfBoundsException.html

21 15-214

Example Java I/O Library Specification (abridged)

public int read(byte[] b, int off, int len) throws IOException

 Reads up to len bytes of data from the input stream into an array of bytes. An
attempt is made to read as many as len bytes, but a smaller number may be read.
The number of bytes actually read is returned as an integer. This method blocks
until input data is available, end of file is detected, or an exception is thrown.

 If len is zero, then no bytes are read and 0 is returned; otherwise, there is an
attempt to read at least one byte. If no byte is available because the stream is at
end of file, the value -1 is returned; otherwise, at least one byte is read and stored
into b.

 The first byte read is stored into element b[off], the next one into b[off+1], and so
on. The number of bytes read is, at most, equal to len. Let k be the number of
bytes actually read; these bytes will be stored in elements b[off] throughb[off+k-
1], leaving elements b[off+k] through b[off+len-1] unaffected.

 In every case, elements b[0] through b[off] and
elements b[off+len] through b[b.length-1] are unaffected.

 Throws:

 IOException - If the first byte cannot be read for any reason other than end of file,
or if the input stream has been closed, or if some other I/O error occurs.

 NullPointerException - If b is null.

 IndexOutOfBoundsException - If off is negative, len is negative, or len is greater
than b.length - off

 Multiple error cases, each with a
precondition

 Includes “runtime exceptions”
not in throws clause

 Specification of return
 Timing behavior (blocks)
 Case-by-case spec

 len=0  return 0
 len>0 && eof  return -1
 len>0 && !eof return >0

 Exactly where the data is stored
 What parts of the array are not

affected

http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/io/IOException.html
http://java.sun.com/javase/6/docs/api/java/lang/NullPointerException.html
http://java.sun.com/javase/6/docs/api/java/lang/IndexOutOfBoundsException.html

23 15-214

Data Structure Invariants (cf. 122)

struct list {
 elem data;
 struct list* next;
};
struct queue {
 list front;
 list back;
};

24 15-214

Data Structure Invariants (cf. 122)

struct list {
 elem data;
 struct list* next;
};
struct queue {
 list front;
 list back;
};

bool is_queue(queue Q) {
 if (Q == NULL) return false;
 if (Q->front == NULL || Q->back == NULL) return false;
 return is_segment(Q->front, Q->back);
}

25 15-214

Data Structure Invariants (cf. 122)

struct list {
 elem data;
 struct list* next;
};
struct queue {
 list front;
 list back;
};

bool is_queue(queue Q) {
 if (Q == NULL) return false;
 if (Q->front == NULL || Q->back == NULL) return false;
 return is_segment(Q->front, Q->back);
}

void enq(queue Q, elem s)
//@requires is_queue(Q);
//@ensures is_queue(Q);
{
 list l = alloc(struct list);
 Q->back->data = s;
 Q->back->next = l;
 Q->back = l; }

26 15-214

Data Structure Invariants (cf. 122)

 Properties of the Data Structure

 Should always hold before and after method execution

 May be invalidated temporarily during method execution

void enq(queue Q, elem s)
//@requires is_queue(Q);
//@ensures is_queue(Q);
{ … }

27 15-214

Class Invariants

 Properties about the fields of an object

 Established by the constructor

 Should always hold before and after execution of public
methods

 May be invalidated temporarily during method execution

28 15-214

Class Invariants

 Properties about the fields of an object

 Established by the constructor

 Should always hold before and after execution of public
methods

 May be invalidated temporarily during method execution

public class SimpleSet {

 int contents[];
 int size;

 //@ ensures sorted(contents);
 SimpleSet(int capacity) { … }

 //@ requires sorted(contents);
 //@ ensures sorted(contents);
 boolean add(int i) { … }

 //@ requires sorted(contents);
 //@ ensures sorted(contents);
 boolean contains(int i) { … }
}

public class SimpleSet {

 int contents[];
 int size;

 //@invariant sorted(contents);

 SimpleSet(int capacity) { … }

 boolean add(int i) { … }

 boolean contains(int i) { … }
}

29 15-214

Quality Attribute Specifications: Discussion

 How would you specify…
 Availability?

 Modifiability?

 Performance?

 Security?

 Usability?

Much more on
this in 15-313

30 15-214

Specifications in Practice

 Ideally formal pre- and post-conditions

 Textual specifications in practice

Best effort approach

 If any specification at all

 Specification especially necessary when reusing
code and integrating code

 Writing specifications is good practice

 Writing fully formal specifications is often
unrealistic

