

toad

Spring 2014

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Course Introduction

Christian Kästner Charlie Garrod

toad 2 15-214

Construction of

Software Systems

at Scale

toad 3 15-214

Libraries
Reuse
Design

I/O, GUI
Analysis

Concurrency

toad 4 15-214

binary tree

graph search

sorting

BDDs

primes

GCD

toad 5 15-214

Software and automobiles

automotive-eetimes.com aa1car.com

toad 6 15-214

How much software?

(informal reports)

toad 7 15-214

Moore’s Law: transistors per chip

Similar curve for memory,
slightly steeper

toad 8 15-214

The limits of exponentials

time

c
a
p

a
b

il
it

y

Computing capability

Human capacity

toad 9 15-214

Scaling Up: From Programs to Systems

• You’ve written small- to medium-size programs in 15-122

• This course is about managing software complexity
 Scale of code: KLOC -> MLOC
 Worldly environment: external I/O, network, asynchrony
 Software infrastructure: libraries, frameworks, components
 Software evolution: change over time, design for change
 Understanding: writing maintainable code
 Correctness: testing, static analysis

 In contrast: algorithmic complexity not an emphasis in this

course

toad 10 15-214

Our goal: understanding both the building blocks and also the principles for
construction of software systems at scale

From Programs to Systems

Writing algorithms, data
structures from scratch

Functions with inputs

and outputs

Sequential and local

computation

Full functional
specifications

Reuse of libraries,
frameworks

Asynchronous and
reactive designs

Parallel and distributed

computation

Partial, composable,

targeted models

toad 11 15-214

A framework for mobile app software (iOS)

toad 12 15-214

The four course themes

• Threads and Concurrency
 Concurrency is a crucial system abstraction

• E.g., background computing while responding to users

 Concurrency is necessary for performance
• Multicore processors and distributed computing

 Our focus: application-level concurrency
• Cf. functional parallelism (150, 210) and systems concurrency (213)

• Object-oriented programming
 For flexible designs and reusable code
 A primary paradigm in industry – basis for modern frameworks
 Focus on Java – used in industry, some upper-division courses

• Analysis and Modeling
 Practical specification techniques and verification tools
 Address challenges of threading, correct library usage, etc.

• Design
 Proposing and evaluating alternatives
 Modularity, information hiding, and planning for change
 Patterns: well-known solutions to design problems

toad 13 15-214

Motivating example: Virtual Worlds

toad 14 15-214

Discussion: Virtual Worlds

• How can the virtual world to scale to thousands of users?

• How can we organize the system to easily add new things?

• How can we support different kinds of things, while taking
advantage of their similarities? (can you think of an
example?)

toad 17 15-214

Considering the examples

• Threads and Concurrency
 In the GUI-based app
 On game clients
 On the game servers

• Object-oriented programming
 Organizing by object types, then actions

• Analysis and Modeling
 How to gain confidence regarding all possible executions

• Design
 How to organize systems that grow and evolve
 How to define the interfaces between infrastructure and our

code

toad 18 15-214

After 214?

• 214 consists primarily of code-level software engineering,
including the design of systems and applications
 TOAD

• 313: Foundations of software engineering
 Human and business aspects
 Plan the process for and manage a software project, manage

risk, coordinate teams
 Elicit, describe, and evaluate a system's requirements
 Design a software system and evaluate a design with regard to

various quality attributes (software architecture)
 Develop and justify a quality-assurance strategy for a software

project (static analysis, inspection, …)
 Business models and open source

• 413: Software Engineering Practicum (a project course)

• Software Engineering Minor

toad 19 15-214

Toad’s Take-Home Messages

• 214: managing complexity, from programs to systems
 Threads and concurrency
 Object-oriented programming
 Analysis and modeling
 Design

• Virtual worlds illustrate some challenges

• Object-oriented programming organizes code around
concepts
 Methods capture behavior, fields capture state
 As we will see, this organization allows

• Greater reuse of concepts
• Better support for change when concepts vary

