
Introduction to GUIs

Principles of Software Construction:

Objects, Design, and Concurrency

Jonathan Aldrich and Charlie Garrod

Fall 2014

Slides copyright 2014 by Jonathan Aldrich, Charlie Garrod,

Christian Kaestner, Jeffrey Eppinger, and William Scherlis.

Used and adapted by permission

What makes GUIs different?

• How do they compare to command-line I/O?

2

What makes GUIs different?

• How do they compare to command-line I/O?

Don’t call us, we’ll call you!

• GUI has to react to the user’s actions

– Not just a response to a prompt

– Could involve entirely different functionality

• Requires structuring the GUI around reacting to events
3

(Blocking) Interactions with Users

Game PlayerDealer

newGame

addCards

addCards

getAction

action

[action==hit] addCard

blocking
execution

Interactions with Users through Events

• Do not wait for user response, react to event

• Here: Two interactions to separate events:

Game PlayerDealer

newGame

addCards

addCards

hit

addCard

Event-based programming

• A style of programming where the control-flow of the

program is driven by (usually-) external events

public void
performAction(ActionEvent e)
{

printSlides()
}

public void
performAction(ActionEvent e)
{

editFigure()
}

public void
performAction(ActionEvent e)
{

…
}

Writing GUIs, Old-Style

7

Operating System Application

createWindow(…)

windowHandle

getNextEvent()

event

element=findGuiElement(event)

a=findAction(event, element)

a.execute()
update(…)

loop

This complex
code is the same
for every
application!

Writing GUIs with GUI Frameworks

8

Operating System Framework

w = new Window(…)

windowHandle

getNextEvent()

event

element=findGuiElement(event)

a=findAction(event, element)

a.execute()

update(…)

Application

createWindow(…)

w.setVisible(true)

w.setAction(action)

update(…)

loop

Pseudocode for GUIs

Application code

• Creates and sets up a window

• Asks framework to show the window

• main() exits

• Takes action in response to event

• May contact GUI

– E.g. consider if event was a redraw

– Call GUI to paint lines, text

GUI framework code

• Starts the GUI thread

• This thread loops:

– Asks OS for event

– Finds application window that event relates to

– Asks application window to handle event

– Draws lines/text on behalf of application

9

Example: RabbitWorld GUI

• …hw2.staff.WorldUI.main()

– Creates a top-level JFrame window

– Creates a WorldUI to go in it

– Sets some parameters

– Makes the window (and its contents) visible

• …hw2.staff.WorldPanel.paintComponent()

– Called when the OS needs to show the WorldPanel (part of WorldUI)

• Right after the window becomes visible

– super.paintComponent() draws a background

– ImageIcon.paintIcon(…) draws each item in the world

Let’s look at the code…

10

GUI Frameworks in Java

• AWT

– Native widgets, only basic components, dated

• Swing

– Java rendering, rich components

• SWT + JFace

– Mixture of native widgets and Java rendering; created for Eclipse for

faster performance

• Others

– Apache Pivot, SwingX, JavaFX, …

Swing

JButton

JPanel

JTextField

…

JFrame

To create a simple Swing application

• Make a Window (a JFrame)

• Make a container (a JPanel)

– Put it in the window

• Add components (Buttons, Boxes, etc.) to the container

– Use layouts to control positioning

– Set up observers (a.k.a. listeners) to respond to events

– Optionally, write custom widgets with application-specific display logic

• Set up the window to display the container

• Then wait for events to arrive…

13

Components

• JLabel

• JButton

• JCheckBox

• JChoice

• JRadioButton

• JTextField

• JTextArea

• JList

• JScrollBar

• … and more

14

Swing has lots of components:

JFrame & JPanel

• JFrame is the Swing Window

• JPanel (aka a pane) is the container to which you add your

components (or other containers)

15

Swing Layout Managers

see http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

The simplest, and default, layout.
Wraps around when out of space.

Like FlowLayout, but no wrapping

More sophisticated layout managers

Find the pattern…

• contentPane.setLayout(new BorderLayout(0,0));

• contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));

Behavioral: Strategy

• Applicability
– Many classes differ in only

their behavior

– Client needs different variants
of an algorithm

• Consequences
– Code is more extensible with

new strategies
• Compare to conditionals

– Separates algorithm from
context

• each can vary independently

– Adds objects and dynamism
• code harder to understand

– Common strategy interface
• may not be needed for all Strategy

implementations – may be extra
overhead

Example: RabbitWorld GUI

• …hw2.staff.WorldUI.WorldUI()

– Sets the layout to a BorderLayout

– Adds a WorldPanel in the CENTER of the UI

– Creates a JPanel for the buttons at the bottom

– Adds 2 buttons to the JPanel (WEST and CENTER)

– Puts the button JPanel at the SOUTH side of the WorldPanel

Let’s look at the code again…

19

Question

20

How do you make a button work?

Events in Swing

• An event is when something changes

– Button clicked, scrolling, mouse movement

• Swing (actually AWT) generates an event

• To do something you need to implement a Listener Interface

and register interest

21

The Observer design pattern

• Applicability
– When an abstraction has two

aspects, one dependent on
the other, and you want to
reuse each

– When change to one object
requires changing others, and
you don’t know how many
objects need to be changed

– When an object should be
able to notify others without
knowing who they are

• Consequences
– Loose coupling between

subject and observer,
enhancing reuse

– Support for broadcast
communication

– Notification can lead to
further updates, causing a
cascade effect

Also called Listener

ConcreteSubject

+ getState()
+ setState()

subjectState

<<interface>>
Observer

+ update()

ConcreteObserver

+ update()

+ observerState

for all o in observers
o.update();

Subject

+ attach(o : Observer)
+ detach(o : Observer)
notify()

observers

0..*

Event Listeners

• ActionListener

• AdjustmentListener

• FocusListener

• ItemListener

• KeyListener

• MouseListener

• TreeExpansionListener

• TextListener

• WindowListener

• …and on and on…

23

Swing has lots of event listener interfaces:

ActionListener

• Events for JButtons, JTextFields, etc

– The things we are using

• Implement ActionListener

– Provide actionPerformed method

• In actionPerformed method

– Use event.getSource() to determine which button was clicked, etc.

24

Example: RabbitWorld GUI

• …hw2.staff.WorldUI.WorldUI()

– Sets ActionListeners for the run and step buttons

• Anonymous inner classes used

• A single method actionPerformed(…) is overridden

• step button: just calls step() on the WorldPanel

– Steps the world

– Requests that the window be refreshed (so the user can see the changes)

• run button

– Starts the world continuously stepping

– Disables the step button (no point!)

– Sets a toggle flag so that pressing the button again will stop the simulation

25

Aside: Anonymous inner classes in Java

• You can implement an interface without naming the

implementing class

– E.g.,
public interface Runnable {

public void run();
}

public static void main(String[] args) {
Runnable greeter = new Runnable() {

public void run() {
System.out.println("Hi mom!");

}
};

greeter.run();
}

Scope within an anonymous inner class

• An anonymous inner class cannot access non-final variables in

the scope where it is defined

public interface Runnable {
public void run();

}

public static void main(String[] args) {
String name = "Charlie";
Runnable greeter = new Runnable() {

public void run() {
System.out.println("Hi " + name);

}
};

greeter.run();
}

compile-time error

Scope within an anonymous inner class

• An anonymous inner class cannot access non-final variables in

the scope where it is defined

public interface Runnable {
public void run();

}

public static void main(String[] args) {
final String name = "Charlie";
Runnable greeter = new Runnable() {

public void run() {
System.out.println("Hi " + name);

}
};

greeter.run();
}

OK

Introduction to GUIs

Principles of Software Construction:

Objects, Design, and Concurrency

Jonathan Aldrich and Charlie Garrod

Fall 2014

Slides copyright 2014 by Jonathan Aldrich, Charlie Garrod,

Christian Kaestner, Jeffrey Eppinger, and William Scherlis.

Used and adapted by permission

Homework Hint!

30

UI Class
(imaginary)
All user
interaction
goes here—
and nothing
else!

Other Classes
(real)
No user
interaction here—
all game and
player state here

Only make calls
this way!

GUIDemo Example

• Shows how to construct a basic UI

• Illustrates an interesting UI responsiveness issue

31

The GUI Threading Architecture

32

GUI Thread

main() thread
Create window

Set up callbacks

Show window

(thread ends)

Loop forever:

Get system event

Invoke callback

Callback code:

Compute fibonacci

(UI is unresponsive)

Show result

GUIDemo Example

• A fix: SwingWorker

33

The GUI Threading Architecture

34

GUI thread

main() thread
Create window

Set up callbacks

Show window

(thread ends)

Loop forever:

Get system event

Invoke callback

Callback code:

create SwingWorker

start it executing

Worker thread

Worker thread execution:

invoke doInBackground()

compute fibonacci

store result in SwingWorker

signal to UI that we are done

SwingWorker

result : Long

The GUI Threading Architecture

35

GUI thread

main() thread
Create window

Set up callbacks

Show window

(thread ends)

Loop forever:

Get system event

Invoke callback

Worker thread

Worker thread execution:

invoke doInBackground()

compute fibonacci

store result in SwingWorker

signal to UI that we are done

Invoke SwingWorker.done()

get() result from SwingWorker

show result in the UI

SwingWorker

result : Long

Organizational Tips

• Declare references to components you’ll be manipulating as

instance variables

• Put the code that performs the actions in private “helper”

methods. (Keeps things neat)

36

GUI design issues

• Interfaces vs. inheritance

– Inherit from JPanel with custom drawing functionality

– Implement the ActionListener interface, register with button

– Why this difference?

• Models and views

37

GUI design issues

• Interfaces vs. inheritance

– Inherit from JPanel with custom drawing functionality

• Subclass “is a” special kind of Panel

• The subclass interacts closely with the JPanel – e.g. the subclass calls back
with super()

• The way you draw the subclass doesn’t change as the program executes

– Implement the ActionListener interface, register with button

• The action to perform isn’t really a special kind of button; it’s just a way of
reacting to the button. So it makes sense to be a separate object.

• The ActionListener is decoupled from the button. Once the listener is
invoked, it doesn’t call anything on the Button anymore.

• We may want to change the action performed on a button press—so once
again it makes sense for it to be a separate object

• Models and views

38

Model-View-Controller (MVC)

http://msdn.microsoft.com/en-us/library/ff649643.aspx

Manage inputs from user: mouse,
keyboard, menu, etc.

Manage display of
information on the screen

Manage data related to the
application domain

Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx

Example: RabbitWorld GUI

• …hw2.lib.ui.WorldImpl

– The Model class

– Model is passive: does not have a reference to the view

• …hw2.lib.ui.WorldUI

– The Controller class

– Listener callbacks in constructor react to events

• Delegating to the view (is this design ideal?)

• …hw2.lib.ui.WorldPanel

– The View class

– Gets data from Model to find out where to draw rabbits, foxes, etc.

– Implements stepping (in step())

• Invokes model to update world

• Invokes repaint() on self to update UI

41

Find That Pattern!

• What pattern is BorderLayout a part of?

• What pattern is JPanel a part of?

• What pattern are the ActionListeners part of?

• There are classes representing the AI’s decision to Eat, Breed,

or Move. What pattern are these representing?

• Look at the documentation for JComponent.paint(). What

pattern is used?

42

For More Information

• Oracle’s Swing tutorials

– http://download.oracle.com/javase/tutorial/uiswing/

• Introduction to Programming Using Java, Ch. 6

– http://math.hws.edu/javanotes/c6/index.html

43

