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What makes GUIs different?

• How do they compare to command-line I/O?
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What makes GUIs different?

• How do they compare to command-line I/O?

Don’t call us, we’ll call you!

• GUI has to react to the user’s actions

– Not just a response to a prompt

– Could involve entirely different functionality

• Requires structuring the GUI around reacting to events
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(Blocking) Interactions with Users

Game PlayerDealer

newGame

addCards

addCards

getAction

action

[action==hit] addCard

blocking
execution



Interactions with Users through Events

• Do not wait for user response, react to event

• Here: Two interactions to separate events:

Game PlayerDealer

newGame

addCards

addCards

hit

addCard



Event-based programming

• A style of programming where the control-flow of the 

program is driven by (usually-) external events

public void 
performAction(ActionEvent e) 
{

printSlides()
}

public void 
performAction(ActionEvent e) 
{

editFigure()
}

public void 
performAction(ActionEvent e) 
{

…
}



Writing GUIs, Old-Style
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Operating System Application

createWindow(…)

windowHandle

getNextEvent()

event

element=findGuiElement(event)

a=findAction(event, element)

a.execute()
update(…)

loop

This complex 
code is the same 
for every 
application!



Writing GUIs with GUI Frameworks
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Operating System Framework

w = new Window(…)

windowHandle

getNextEvent()

event

element=findGuiElement(event)

a=findAction(event, element)

a.execute()

update(…)

Application

createWindow(…)

w.setVisible(true)

w.setAction(action)

update(…)

loop



Pseudocode for GUIs

Application code

• Creates and sets up a window

• Asks framework to show the window

• main() exits

• Takes action in response to event

• May contact GUI

– E.g. consider if event was a redraw

– Call GUI to paint lines, text

GUI framework code

• Starts the GUI thread

• This thread loops:

– Asks OS for event

– Finds application window that event relates to

– Asks application window to handle event

– Draws lines/text on behalf of application
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Example: RabbitWorld GUI

• …hw2.staff.WorldUI.main()

– Creates a top-level JFrame window

– Creates a WorldUI to go in it

– Sets some parameters

– Makes the window (and its contents) visible

• …hw2.staff.WorldPanel.paintComponent()

– Called when the OS needs to show the WorldPanel (part of WorldUI)

• Right after the window becomes visible

– super.paintComponent() draws a background

– ImageIcon.paintIcon(…) draws each item in the world

Let’s look at the code…
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GUI Frameworks in Java

• AWT

– Native widgets, only basic components, dated

• Swing

– Java rendering, rich components

• SWT + JFace

– Mixture of native widgets and Java rendering; created for Eclipse for 

faster performance

• Others

– Apache Pivot, SwingX, JavaFX, …



Swing

JButton

JPanel

JTextField

…

JFrame



To create a simple Swing application

• Make a Window (a JFrame)

• Make a container (a JPanel)

– Put it in the window

• Add components (Buttons, Boxes, etc.) to the container

– Use layouts to control positioning

– Set up observers (a.k.a. listeners) to respond to events

– Optionally, write custom widgets with application-specific display logic

• Set up the window to display the container

• Then wait for events to arrive…
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Components

• JLabel

• JButton

• JCheckBox

• JChoice

• JRadioButton

• JTextField

• JTextArea

• JList

• JScrollBar

• … and more
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Swing has lots of components:



JFrame & JPanel

• JFrame is the Swing Window

• JPanel (aka a pane) is the container to which you add your 

components (or other containers)
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Swing Layout Managers

see http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

The simplest, and default, layout.
Wraps around when out of space.

Like FlowLayout, but no wrapping

More sophisticated layout managers



Find the pattern…

• contentPane.setLayout(new BorderLayout(0,0));

• contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));



Behavioral: Strategy

• Applicability
– Many classes differ in only 

their behavior

– Client needs different variants 
of an algorithm

• Consequences
– Code is more extensible with 

new strategies
• Compare to conditionals

– Separates algorithm from 
context

• each can vary independently

– Adds objects and dynamism
• code harder to understand

– Common strategy interface
• may not be needed for all Strategy 

implementations – may be extra 
overhead



Example: RabbitWorld GUI

• …hw2.staff.WorldUI.WorldUI()

– Sets the layout to a BorderLayout

– Adds a WorldPanel in the CENTER of the UI

– Creates a JPanel for the buttons at the bottom

– Adds 2 buttons to the JPanel (WEST and CENTER)

– Puts the button JPanel at the SOUTH side of the WorldPanel

Let’s look at the code again…
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Question
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How do you make a button work?



Events in Swing

• An event is when something changes

– Button clicked,  scrolling, mouse movement

• Swing (actually AWT) generates an event

• To do something you need to implement a Listener Interface 

and register interest
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The Observer design pattern

• Applicability
– When an abstraction has two 

aspects, one dependent on 
the other, and you want to 
reuse each

– When change to one object 
requires changing others, and 
you don’t know how many 
objects need to be changed

– When an object should be 
able to notify others without 
knowing who they are

• Consequences
– Loose coupling between 

subject and observer, 
enhancing reuse

– Support for broadcast 
communication

– Notification can lead to 
further updates, causing a 
cascade effect

Also called Listener

ConcreteSubject

+ getState()
+ setState()

subjectState

<<interface>>
Observer

+ update()

ConcreteObserver

+ update()

+ observerState

for all o in observers
o.update();

Subject

+ attach(o : Observer)
+ detach(o : Observer)
# notify()

observers

0..*



Event Listeners

• ActionListener

• AdjustmentListener

• FocusListener

• ItemListener

• KeyListener

• MouseListener

• TreeExpansionListener

• TextListener

• WindowListener

• …and on and on…
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Swing has lots of event listener interfaces:



ActionListener

• Events for JButtons, JTextFields, etc

– The things we are using

• Implement ActionListener

– Provide actionPerformed method

• In actionPerformed method

– Use event.getSource() to determine which button was clicked, etc.
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Example: RabbitWorld GUI

• …hw2.staff.WorldUI.WorldUI()

– Sets ActionListeners for the run and step buttons

• Anonymous inner classes used

• A single method actionPerformed(…) is overridden

• step button: just calls step() on the WorldPanel

– Steps the world

– Requests that the window be refreshed (so the user can see the changes)

• run button

– Starts the world continuously stepping

– Disables the step button (no point!)

– Sets a toggle flag so that pressing the button again will stop the simulation
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Aside:  Anonymous inner classes in Java

• You can implement an interface without naming the 

implementing class

– E.g.,
public interface Runnable {

public void run();
}

public static void main(String[] args) {
Runnable greeter = new Runnable() {

public void run() {
System.out.println("Hi mom!");

}
};

greeter.run();
}



Scope within an anonymous inner class

• An anonymous inner class cannot access non-final variables in 

the scope where it is defined

public interface Runnable {
public void run();

}

public static void main(String[] args) {
String name = "Charlie";
Runnable greeter = new Runnable() {

public void run() {
System.out.println("Hi " + name);

}
};

greeter.run();
}

compile-time error



Scope within an anonymous inner class

• An anonymous inner class cannot access non-final variables in 

the scope where it is defined

public interface Runnable {
public void run();

}

public static void main(String[] args) {
final String name = "Charlie";
Runnable greeter = new Runnable() {

public void run() {
System.out.println("Hi " + name);

}
};

greeter.run();
}

OK
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Homework Hint!
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UI Class 
(imaginary) 
All user 
interaction 
goes here—
and nothing 
else!

Other Classes 
(real)
No user 
interaction here—
all game and 
player state here

Only make calls
this way!



GUIDemo Example

• Shows how to construct a basic UI

• Illustrates an interesting UI responsiveness issue
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The GUI Threading Architecture
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GUI Thread

main() thread
Create window

Set up callbacks

Show window

(thread ends)

Loop forever:

Get system event

Invoke callback

Callback code:

Compute fibonacci

(UI is unresponsive)

Show result



GUIDemo Example

• A fix: SwingWorker

33



The GUI Threading Architecture
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GUI thread

main() thread
Create window

Set up callbacks

Show window

(thread ends)

Loop forever:

Get system event

Invoke callback

Callback code:

create SwingWorker

start it executing

Worker thread

Worker thread execution:

invoke doInBackground()

compute fibonacci

store result in SwingWorker

signal to UI that we are done

SwingWorker

result : Long



The GUI Threading Architecture
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GUI thread

main() thread
Create window

Set up callbacks

Show window

(thread ends)

Loop forever:

Get system event

Invoke callback

Worker thread

Worker thread execution:

invoke doInBackground()

compute fibonacci

store result in SwingWorker

signal to UI that we are done

Invoke SwingWorker.done()

get() result from SwingWorker

show result in the UI

SwingWorker

result : Long



Organizational Tips

• Declare references to components you’ll be manipulating as 

instance variables

• Put the code that performs the actions in private “helper” 

methods.  (Keeps things neat)
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GUI design issues

• Interfaces vs. inheritance

– Inherit from JPanel with custom drawing functionality

– Implement the ActionListener interface, register with button

– Why this difference?

• Models and views
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GUI design issues

• Interfaces vs. inheritance

– Inherit from JPanel with custom drawing functionality

• Subclass “is a” special kind of Panel

• The subclass interacts closely with the JPanel – e.g. the subclass calls back 
with super()

• The way  you draw the subclass doesn’t change as the program executes

– Implement the ActionListener interface, register with button

• The action to perform isn’t really a special kind of button; it’s just a way of 
reacting to the button.  So it makes sense to be a separate object.

• The ActionListener is decoupled from the button.  Once the listener is 
invoked, it doesn’t call anything on the Button anymore.

• We may want to change the action performed on a button press—so once 
again it makes sense for it to be a separate object

• Models and views
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Model-View-Controller (MVC)

http://msdn.microsoft.com/en-us/library/ff649643.aspx

Manage inputs from user: mouse, 
keyboard, menu, etc.

Manage display of 
information on the screen

Manage data related to the 
application domain



Model-View-Controller (MVC)
Passive model

Active model

http://msdn.microsoft.com/en-us/library/ff649643.aspx



Example: RabbitWorld GUI

• …hw2.lib.ui.WorldImpl

– The Model class

– Model is passive: does not have a reference to the view

• …hw2.lib.ui.WorldUI

– The Controller class

– Listener callbacks in constructor react to events

• Delegating to the view (is this design ideal?)

• …hw2.lib.ui.WorldPanel

– The View class

– Gets data from Model to find out where to draw rabbits, foxes, etc.

– Implements stepping (in step())

• Invokes model to update world

• Invokes repaint() on self to update UI
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Find That Pattern!

• What pattern is BorderLayout a part of?

• What pattern is JPanel a part of?

• What pattern are the ActionListeners part of?

• There are classes representing the AI’s decision to Eat, Breed, 

or Move.  What pattern are these representing?

• Look at the documentation for JComponent.paint().  What 

pattern is used?
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For More Information

• Oracle’s Swing tutorials

– http://download.oracle.com/javase/tutorial/uiswing/

• Introduction to Programming Using Java, Ch. 6

– http://math.hws.edu/javanotes/c6/index.html
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