
toad

Fall 2014

School of
Computer Science

School of
Computer Science

Principles of Software Construction:

Objects, Design, and Concurrency

Assigning Responsibilities

to Objects

Jonathan Aldrich Charlie Garrod

toad 215-214

Key concepts from Thursday

toad 315-214

Requirements and Design Overview

• Requirements Engineering
� Requirements Elicitation (see 15-313)

• Functional Requirements (often as Use Cases)
• Quality Attributes (often as Quality Attribute Scenarios)

� (Object-Oriented) Requirements Analysis
• Domain Modeling

� System Specification
• System Sequence Diagrams
• Behavioral Contracts

• (Object-Oriented) Software Design
� Architectural Design (mostly in 15-313)
� Responsibility Assignment

• Object sequence diagrams
• Object model (class diagrams)
• GRASP heuristics for assigning responsibilities

� Method specifications / code contracts

toad 415-214

Today’s Lecture: Learning Goals

• Review high-level design goals

• Understand design principles such as coupling, cohesion,
and correspondence, and how these support design goals

• Understand how to apply GRASP guidelines such as Creator,
Expert, and Controller to promote these design principles

• Introduce the idea of design patterns by examining the
Decorator pattern

toad 515-214

Software Design Goals

• For any program specification, multiple programs fulfill it
� What are the differences between the programs?
� Which program should we choose?

• Of course, we usually synthesize a program, not choose it
� How can we design a program with the right properties?

toad 615-214

Goals, Principles, Guidelines

• Design Goals
� Desired quality attributes of software
� Driven by cost/benefit economics
� Examples: Evolvability, separate development,

reuse, performance, robustness, …

• Design Principles
� Guidelines for designing software
� Support one or more design goals
� Examples: Low coupling, high cohesion, high correspondence, …

• Design Heuristics
� Rules of thumb for low-level design decisions
� Promote design principles, and ultimately design goals
� Example: Creator, Expert, Controller

• Design Patterns
� General solutions to recurring design problems
� Promote design goals, but may add complexity or involve tradeoffs
� Examples: Composite, Decorator, Strategy

• Goals, principles, heuristics, patterns may conflict
� Use high-level goals of project to resolve

Goals

Heuristics Patterns

Principles

X

toad 715-214

Principles for Assigning Responsibilities: Coupling

• Design Principles: guidelines for software design
� Coupling (low)
� Cohesion (high)
� Correspondence (high)

• Design Heuristics: rules of thumb
� Controller
� Expert
� Creator

• Design Patterns: solutions to recurring problems
� Decorator

toad 815-214

Design Principle: Coupling

A module should depend on as few other modules as possible

• Enhances understandability � evolvability
� Little context necessary to make changes

• Reduces the cost of change � evolvability
� When a module interface changes, few modules are affected

• Enhances reuse
� Fewer dependencies, easier to adapt to a new context

toad 915-214

Coupling Example

• Create a Payment and associate it with the Sale.

Register Sale Payment

toad 1015-214

Coupling Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

toad 1115-214

Coupling Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

toad 1215-214

Coupling Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

Second solution has less coupling
Register does not know about Payment class

toad 1315-214

Common Forms of Coupling in OO Languages

• Type X has a field of type Y

• Method m in type X refers to type Y
� e.g. a method argument, return value, local variable, or static

method call

• Type X is a direct or indirect subclass of Type Y

• Type Y is an interface, and Type X implements that interface

toad 1415-214

Coupling: Discussion

• Subclass/superclass coupling is particularly strong
� protected fields and methods are visible
� subclass is fragile to many superclass changes

• e.g. change in method signatures, added abstract methods

� Guideline: prefer composition to inheritance, to reduce coupling

• Not all coupling is equal
� Are you coupled to a stable interface?

• A stable interface is unlikely to change, and likely well-understood
• Therefore this coupling carries little evolveability cost

• Coupling is one principle among many
� Consider cohesion, correspondence, and other principles
� Extreme low coupling � one class does everything � poor

cohesion (discussed later!)

toad 1515-214

Design Heuristics: Controller

• Design Principles: guidelines for software design
� Coupling (low)
� Cohesion (high)
� Correspondence (high)

• Design Heuristics: rules of thumb
� Controller
� Expert
� Creator

• Design Patterns: solutions to recurring problems
� Decorator

toad 1615-214

Controller (GRASP heuristic 1)

16

• What first object receives and coordinates a system
operation (event)?

???
endSale(…)

???
enterItem(…)

toad 1715-214

Controller (GRASP heuristic 1)

• What first object receives and coordinates a system
operation (event)?
� a user clicking on a button
� a network request arriving
� a database connection dropped

???
endSale(…)

???
nextRound(…)

toad 1815-214

Controller (GRASP heuristic 1)

• Problem: What object receives and coordinates a system
operation (event)?

• Solution: Assign the responsibility to an object representing
� the overall system, device, or subsystem (façade controller), or
� a use case scenario within which the system event occurs (use

case controller)

• Controller is a GRASP heuristic
� General Responsibility Assignment Software Patterns

• “pattern” is a misnomer here – they are more heuristics than patterns

• Craig Larman, Applying UML and Patterns, Prentice Hall,
2004
� Chapter 16+17+22 introduce GRASP

toad 1915-214

Controller: Example

• By the Controller pattern, here are some choices:

• Register, POSSystem: represents the overall "system,"
device, or subsystem

• ProcessSaleSession, ProcessSaleHandler: represents a
receiver or handler of all system operations in a use case
scenario

toad 2015-214

Controller: Discussion

• A Controller is a coordinator
� does not do much work itself
� delegates to other objects

• Façade controllers suitable when not "too many" system
events
� -> one overall controller for the system

• Use case controller suitable when façade controller "bloated"
with excessive responsibilities (low cohesion, high coupling)
� -> several smaller controllers for specific tasks

• Closely related to Façade design pattern (future lecture)

toad 2115-214

Controller: Discussion of Design Goals/Strategies

• Decrease coupling
� User interface and domain logic are decoupled from each other

• Understandability: can understand these in isolation, leading to:
• Evolvability: both the UI and domain logic are easier to change

� Both are coupled to the controller, which serves as a mediator
• This coupling is less harmful

• The controller is a smaller and more stable interface
• Changes to the domain logic affect the controller, not the UI
• The UI can be changed without knowing the domain logic design

• Support reuse
� Controller serves as an interface to the domain logic
� Smaller, explicit interfaces support evolvability

• But, bloated controllers increase coupling and decrease
cohesion; split if applicable

toad 2215-214

Principles for Assigning Responsibilities: Cohesion

• Design Principles: guidelines for software design
� Coupling (low)
� Cohesion (high)
� Correspondence (high)

• Design Heuristics: rules of thumb
� Controller
� Expert
� Creator

• Design Patterns: solutions to recurring problems
� Decorator

toad 2315-214

Design Principle: Cohesion

A module should have a small set of related responsibilities

• Enhances understandability � evolvability
� A small set of responsibilities is easier to understand

• Enhances reuse
� A cohesive set of responsibilities is more likely to recur in

another application

toad 2415-214

Cohesion Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

Register responsibilities
• Accept makePayment event from UI
• Coordinate payment among domain objects

toad 2515-214

Cohesion Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

Register responsibilities, generalized
• Accept all events from UI
• Coordinate all interactions among domain objects

toad 2615-214

Cohesion Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

Register responsibilities, generalized
• Accept all events from UI

toad 2715-214

Cohesion in Graph Implementations

class Graph {
Node[] nodes;
boolean[] isVisited;

}
class Algorithm {

int shortestPath(Graph g, Node n, Node m) {
for (int i; …)

if (!g.isVisited[i]) {
…
g.isVisited[i] = true;

}
}
return v;

}
}

Graph is tasked with
not just data, but also
algorithmic responsibilities

toad 2815-214

Monopoly Example

class Player {
Board board;
/* in code somewhere… */ getSquare(n);
Square getSquare(String name) {

for (Square s: board.getSquares())
if (s.getName().equals(name))

return s;
return null;

}}

class Player {
Board board;
/* in code somewhere… */ board.getSquare(n);

}
class Board{

List<Square> squares;
Square getSquare(String name) {

for (Square s: squares)
if (s.getName().equals(name))

return s;
return null;

}}

Which design has
higher cohesion?

toad 2915-214

Principles for Assigning Responsibilities: Correspondence

• Design Principles: guidelines for software design
� Coupling (low)
� Cohesion (high)
� Correspondence (high)

• Design Heuristics: rules of thumb
� Controller
� Expert
� Creator

• Design Patterns: solutions to recurring problems
� Decorator

toad 3015-214

Design Principle: Correspondence

Correspondence: align object model with domain model
� Class names, attributes, associations
� Also called low representational gap

• Enhances evolvability
� Small changes in domain model yield small changes in code

• The best we could hope to do!

� Code is more understandable: knowledge of domain carries over

• Enhances separate development
� Experts in different domain concepts can work on different code

toad 3115-214

Correspondence/Low Representational Gap

toad 3215-214

Design Heuristics: Expert

• Design Principles: guidelines for software design
� Coupling (low)
� Cohesion (high)
� Correspondence (high)

• Design Heuristics: rules of thumb
� Controller
� Expert
� Creator

• Design Patterns: solutions to recurring problems
� Decorator

toad 3315-214

Information Expert (GRASP heuristic 2)

• Who should be responsible for knowing the grand total of a
sale?

???
getTotal(…)

toad 3415-214

Information Expert (GRASP heuristic 2)

• Who should be responsible for knowing the grand total of a
sale?

???
getTotal(…)

Register
Sale
LineItem
Product Decr.

toad 3515-214

Information Expert (GRASP heuristic 2)

• Who should be responsible for knowing the grand total of a
sale?

Sale

time

Sales

LineItem

quantity

Product

Description

description

price

itemID

Described-by*

Contains

1..*

1

1

Register

id

Captured-on

Customer

name

Paid by

toad 3615-214

Information Expert

• Heuristic: Assign a responsibility to the class that has
the information necessary to fulfill the responsibility

• Start assigning responsibilities by clearly stating
responsibilities!

• Typically follows common intuition

• Software classes instead of Domain Model classes
� If software classes do not yet exist, look in Domain Model for

fitting abstractions (-> correspondence)

toad 3715-214

Information Expert

• What information is needed to determine the grand total?
� Line items and the sum of their subtotals

• Sale is the information expert for this responsibility.

getTotal()

toad 3815-214

Information Expert

• To fulfill the responsibility of knowing and answering the
sale's total, three responsibilities were assigned to three
design classes of objects

toad 3915-214

Information Expert

Sale

time
...

getTotal()

SalesLineItem

quantity

getSubtotal()

Product
Description

description
price
itemID

getPrice()New method

:Product
Description

1.1: p := getPrice()

1 *: st = getSubtotal: Salet = getTotal lineItems[i] :
SalesLineItem

toad 4015-214

Information Expert -> "Do It Myself Strategy"

• Expert usually leads to designs where a software object
does those operations that are normally done to the
inanimate real-world thing it represents
� a sale does not tell you its total; it is an inanimate thing

• In OO design, all software objects are "alive" or "animated,"
and they can take on responsibilities and do things.

• They do things related to the information they know.

toad 4115-214

Information Expert: Discussion of Design Goals/Strategies

• Cohesion � understandability � evolvability
� Code lives with the data it manipulates

• Low coupling � evolvability
� Client does not need to know about LineItem and

ProductDescription � they can change independently
� Client does not know how total is computed � that can change

• Correspondence � evolvability
� Total is associated with a sale in the real world � coordinated

changes to the sale and total computation are easily managed

• May conflict with cohesion
� Example: Who is responsible for saving a sale in the database?
� Adding this responsibility to Sale would distribute database logic

over many classes � low cohesion

toad 4215-214

Design Heuristics: Creator

• Design Principles: guidelines for software design
� Coupling (low)
� Cohesion (high)
� Correspondence (high)

• Design Heuristics: rules of thumb
� Controller
� Expert
� Creator

• Design Patterns: solutions to recurring problems
� Decorator

toad 4315-214

Creator (GRASP heuristic 3)

• Who is responsible for creating SalesLineItem objects?

Sale

time

Sales

LineItem

quantity

Product

Description

description

price

itemID

Described-by*

Contains

1..*

1

1

Register

id

Captured-on

Customer

name

Paid by

toad 4415-214

Creator Pattern (GRASP heuristic 3)

• Problem: Assigning responsibilities for creating objects
� Who creates Nodes in a Graph?
� Who creates instances of SalesItem?
� Who creates Children in a simulation?
� Who creates Tiles in a Monopoly game?

• AI? Player? Main class? Board? Meeple (Dog)?

toad 4515-214

Creator Pattern

• Problem: Who creates an A?

• Solution: Assign class responsibility of creating
instance of class A to B if
� B aggregates A objects
� B contains A objects
� B records instances of A objects
� B closely uses A objects
� B has the initializing data for creating A objects

• the more the better; where there is a choice, prefer
� B aggregates or contains A objects

• Key idea: Creator needs to keep reference anyway and will
frequently use the created object

toad 4615-214

Creator : Example

• Who is responsible for creating SalesLineItem objects?
� Creator pattern suggests Sale

• Interaction diagram:

toad 4715-214

Creator: Discussion of Design Goals/Strategy

• Promotes low coupling, high cohesion
� class responsible for creating objects it needs to reference
� creating the objects themselves avoids depending on another

class to create the object

• Promotes evolvability
� Object creation is hidden, can be replaced locally

• Contra: sometimes objects must be created in special ways
� complex initialization
� instantiate different classes in different circumstances
� then cohesion suggests putting creation in a different object

• see design patterns such as builder, factory method

toad 4815-214

Design Heuristics: Creator

• Design Principles: guidelines for software design
� Coupling (low)
� Cohesion (high)
� Correspondence (high)

• Design Heuristics: rules of thumb
� Controller
� Expert
� Creator

• Design Patterns: solutions to recurring problems
� Decorator

toad 4915-214

Problem: Scrollable Windows

• Imagine you are building a GUI application
� Various windows show different views
� Some views are too big to fit on the screen – we need scrolling

• Design considerations
� Cohesion: put scrolling functionality in its own class
� Coupling: don’t treat scrolling windows specially

• Clients of Window generally shouldn’t know which windows scroll

� Reuse: reuse scrolling across multiple windows

• Preliminary design:

«interface»
Window

draw()

AppWindow1

draw()

AppWindow2

draw()

How do we add scrolling?
• Similar: window chrome

toad 5015-214

The ScrollableWindow Decorator

ScrollableWindow class

• A separate class
� Avoids making Window incohesive

• Implements Window
� Clients are not coupled to scrolling

• Wraps/decorates another window
� Any window can be (re)used

• Implements draw() to add a
scrollbar, then asks the wrapped
window to draw itself

«interface»
Window

draw()

AppWindow{1,2}

draw()

ScrollableWindow

draw()

1

1

scrolledWin

void draw() {
draw scrollbar
move viewport
scrolledWin.draw();

}

toad 5115-214

Decorator is a Design Pattern

• A general design problem
� Need to add new functionality
� Need to add it dynamically to different instances of an

abstraction
� Want to treat enhanced object just like the original object

• We can generalize the solution as well
� Create a new class that implements the abstraction’s interface
� Have the new class refer to a wrapped instance of the

abstraction
� Implement new behavior, requesting behavior from the wrapped

object where appropriate

toad 5215-214

The Decorator Pattern

newBeforeBehavior()
super.operation()
newAfterBehavior()

component.operation()

Component

+ operation()

1

ConcreteDecoratorB

newAfterBehavior()
newBeforeBehavior()
+ operation()

ConcreteDecoratorA

+ operation()

– addedState

Decorator

+ operation()

ConcreteComponent

+ operation()

component

toad 5315-214

Structural: Decorator

• Applicability
� To add responsibilities

to individual objects
dynamically and
transparently

� For responsibilities
that can be withdrawn

� When extension by
subclassing is
impractical

• Consequences
� More flexible than

static inheritance
� Avoids monolithic

classes
� Breaks object identity
� Lots of little objects

toad 5415-214

Toad’s Take-Home Messages

• Design is driven by quality attributes
� Evolvability, separate development, reuse, performance, …

• Design principles provide guidance on achieving qualities
� Low coupling, high cohesion, high correspondence, …

• GRASP design heuristics promote these principles
� Creator, Expert, Controller, …

• Applying principles to common problems yields design patterns
� Decorator, …

