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Requirements and Design Overview

e Requirements Engineering

= Requirements Elicitation (see 15-313)

e Functional Requirements (often as Use Cases)

e Quality Attributes (often as Quality Attribute Scenarios)
= (Object-Oriented) Requirements Analysis

e Domain Modeling
= System Specification

e System Sequence Diagrams

e Behavioral Contracts

e (Object-Oriented) Software Design
= Architectural Design (mostly in 15-313)
= Responsibility Assignment
e Object sequence diagrams
e Object model (class diagrams)
e GRASP heuristics for assigning responsibilities

= Method specifications / code contracts
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Today’s Lecture: Learning Goals

e Review high-level design goals

e Understand design principles such as coupling, cohesion,
and correspondence, and how these support design goals

e Understand how to apply GRASP guidelines such as Creator,
Expert, and Controller to promote these design principles

e Introduce the idea of design patterns by examining the
Decorator pattern
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Software Design Goals

e For any program specification, multiple programs fulfill it
« What are the differences between the programs?
= Which program should we choose?

e Of course, we usually synthesize a program, not choose it
= How can we design a program with the right properties?

ste for
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Goals, Principles, Guidelines

. Goals
e Design Goals
= Desired quality attributes of software ¢
= Driven by cost/benefit economics Principles

« Examples: Evolvability, separate development,

reuse, performance, robustness, ... /\

e Design Principles D ..
= Guidelines for designing software Heuristics Patterns
= Support one or more design goals
« Examples: Low coupling, high cohesion, high correspondence, ...

e Design Heuristics
= Rules of thumb for low-level design decisions
= Promote design principles, and ultimately design goals
= Example: Creator, Expert, Controller

e Design Patterns
= General solutions to recurring design problems
= Promote design goals, but may add complexity or involve tradeoffs
« Examples: Composite, Decorator, Strategy

Goals, principles, heuristics, patterns may conflict
= Use high-level goals of project to resolve

= institute for
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Principles for Assigning Responsibilities: Coupling

e Design Principles: guidelines for software design
= Coupling (low)
= Cohesion (high)
= Correspondence (high)

e Design Heuristics: rules of thumb
= Controller
= Expert
= Creator

e Design Patterns: solutions to recurring problems
= Decorator
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Design Principle: Coupling

A module should depend on as few other modules as possible

e Enhances understandability - evolvability
= Little context necessary to make changes

e Reduces the cost of change - evolvability
= When a module interface changes, few modules are affected

e Enhances reuse
= Fewer dependencies, easier to adapt to a new context

= nstitute F»,f.r
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Coupling Example

e Create a Payment and associate it with the Sale.

15-214

Register

Sale

Payment
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Coupling Example

4>

makePayment()

. Register

1: create()—

2: addPayment(p) —>

p : Payment

15-214 toad
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Coupling Example

1. create()—>

2. addPayment(p) —

p : Payment

—

1: makePayment()

:Sale

— >
makePayment() : Register
— >
makePayment() . Register
15-214 toad

1.1. create()

:Sale

:Payment
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Coupling Example

— >

makePayment() . Register 1. create() > p : Payment

2: adc®
:Sale
. -
makePayment() . Register 1: makePayment() Sale
1.1. create()

Second solution has less coupling ‘Payment

Register does not know about Payment class _
15-214 toad 12 [ o



Common Forms of Coupling in OO Languages

e Type X has a field of type Y

e Method m in type X refers to type Y

= e.g. a method argument, return value, local variable, or static
method call

e Type X is a direct or indirect subclass of Type Y

e Type Y is an interface, and Type X implements that interface

= mnsttute Fi.ﬂ’
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Coupling: Discussion

e Subclass/superclass coupling is particularly strong
= protected fields and methods are visible

= subclass is fragile to many superclass changes
e e.g. change in method signatures, added abstract methods

= Guideline: prefer composition to inheritance, to reduce coupling

e Not all coupling is equal

= Are you coupled to a stable interface?
e A stable interface is unlikely to change, and likely well-understood
e Therefore this coupling carries little evolveability cost

e Coupling is one principle among many
= Consider cohesion, correspondence, and other principles
= Extreme low coupling - one class does everything - poor
cohesion (discussed later!)

= institute for
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Design Heuristics: Controller

e Design Principles: guidelines for software design
= Coupling (low)
= Cohesion (high)
= Correspondence (high)

e Design Heuristics: rules of thumb
= Controller
= Expert
= Creator

e Design Patterns: solutions to recurring problems
= Decorator
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Controller (GRASP heuristic 1)

e What first object receives and coordinates a system
operation (event)?
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Controller (GRASP heuristic 1)

e What first object receives and coordinates a system
operation (event)?
= a user clicking on a button
= @ network request arriving
= a database connection dropped

endSale(...) .

nextRound(...)>

™)
™)
™)
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Controller (GRASP heuristic 1)

e Problem: What object receives and coordinates a system
operation (event)?

e Solution: Assign the responsibility to an object representing
= the overall system, device, or subsystem (facade controller), or
= @ use case scenario within which the system event occurs (use
case controller)

e Controller is a GRASP heuristic

= General Responsibility Assignment Software Patterns
e “pattern” is a misnomer here — they are more heuristics than patterns

e Craig Larman, Applying UML and Patterns, Prentice Hall|  ,..vive our

2004 AND PATTERNS
= Chapter 16+17+22 introduce GRASP ‘

ste for
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Controller: Example

e By the Controller pattern, here are some choices:

e Register, POSSystem: represents the overall "system,"
device, or subsystem

e ProcessSaleSession, ProcessSaleHandler: represents a
receiver or handler of all system operations in a use case
scenario

= institute for
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Controller: Discussion

e A Controller is a coordinator
= does not do much work itself
= delegates to other objects

e Facade controllers suitable when not "too many" system
events
= -> one overall controller for the system

e Use case controller suitable when facade controller "bloated"
with excessive responsibilities (low cohesion, high coupling)
= -> several smaller controllers for specific tasks

e Closely related to Facade design pattern (future lecture)

= mnstitute {i.ﬂ'
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Controller: Discussion of Design Goals/Strategies

e Decrease coupling

= User interface and domain logic are decoupled from each other
e Understandability: can understand these in isolation, leading to:
e Evolvability: both the UI and domain logic are easier to change

« Both are coupled to the controller, which serves as a mediator
e This coupling is less harmful
e The controller is a smaller and more stable interface
e Changes to the domain logic affect the controller, not the UI
e The UI can be changed without knowing the domain logic design

e Support reuse
= Controller serves as an interface to the domain logic
=« Smaller, explicit interfaces support evolvability

e But, bloated controllers increase coupling and decrease
cohesion; split if applicable

= institute for
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Principles for Assigning Responsibilities: Cohesion

e Design Principles: guidelines for software design
= Coupling (low)
= Cohesion (high)
= Correspondence (high)

e Design Heuristics: rules of thumb
= Controller
= Expert
= Creator

e Design Patterns: solutions to recurring problems
= Decorator
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Design Principle: Cohesion

A module should have a small set of related responsibilities

e Enhances understandability - evolvability
= A small set of responsibilities is easier to understand

e Enhances reuse

= A cohesive set of responsibilities is more likely to recur in
another application

ste for
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Cohesion Example

4>

makePayment() 1. create()—>

. Register p : Payment

2: addPayment —>
y () :Sale

Register responsibilities
e Accept makePayment event from UI
 Coordinate payment among domain objects
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Cohesion Example

—

makePayment() 1: create()—>

. Register p : Payment

2: addPayment(p) —*

:Sale

Register responsibilities, generalized
e Accept all events from UI

) omainsbias

f
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Cohesion Example

—>
makePayment() . Register 1. create() > p : Payment
2: addPayment(p) —* Sale
. -
makePayment() . Register 1: makePayment() Sale

1.1. create()

Register responsibilities, generalized

e Accept all events from UI
‘Payment

f
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Cohesion in Graph Implementations

class Graph { Graph is tasked with
Node[] nodes; not just data, but also

boolean|[] isVisited; algorithmic responsibilities

b
class Algorithm {

int shortestPath(Graph g, Node n, Node m) {
for (inti; ...)
if ('g.isVisited[i]) {

a.isVisited[i] = true;
b
b

return v;
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Monopoly Example

class Player {
Board board; : )
/* in code somewhere... */ getSquare(n); LIRSS
Square getSquare(String name) {
for (Square s: board.getSquares())
if (s.getName().equals(name))
return s;

Which design has

return null;

I3

class Player {
Board board;
/* in code somewhere... */ board.getSquare(n);
b
class Board{
List<Square> squares;
Square getSquare(String name) {
for (Square s: squares)
if (s.getName().equals(name))
return s;
return null;

= nstitute F |
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Principles for Assigning Responsibilities: Correspondence

e Design Principles: guidelines for software design
= Coupling (low)
= Cohesion (high)
= Correspondence (high)

e Design Heuristics: rules of thumb
= Controller
= Expert
= Creator

e Design Patterns: solutions to recurring problems
= Decorator
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Design Principle: Correspondence

Correspondence: align object model with domain model
= Class names, attributes, associations
= Also called low representational gap

e Enhances evolvability

= Small changes in domain model yield small changes in code
e The best we could hope to do!

= Code is more understandable: knowledge of domain carries over

e Enhances separate development
= Experts in different domain concepts can work on different code

= institute for
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Correspondence/Low Representational Gap

A

A Payment in the Domain Model is a
concept, but a Payment in the
Object Model is a software class.
They are not the same thing, but the
former inspired the naming and
definition of the latter.

This reduces the representational
gap.

This is one of the big ideas in object
technology.

15-214

Domain Model
Noteworthy concepts in the domain.

Payment Sale
& Y 1 Pays-for 1
; date
amount .
time
inspires
« objects and -
names in
Sale
Payment
Pavsf date: Date
® amount: Money ays-tor startTime: Time
getBalance(): Money getTotal(): Money

Object Model
The object-oriented developer has taken inspiration from the real world domain in
creating software classes.

Therefore, the representational gap between how stakeholders conceive the domain,
and its representation in software, has been lowered.
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Design Heuristics: Expert

e Design Principles: guidelines for software design
= Coupling (low)
= Cohesion (high)
= Correspondence (high)

e Design Heuristics: rules of thumb
= Controller
= Expert
= Creator

e Design Patterns: solutions to recurring problems
= Decorator
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Information Expert (GRASP heuristic 2)

e Who should be responsible for knowing the grand total of a
sale?

getTotaI(...)>

= nstitute F b §
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Information Expert (GRASP heuristic 2)

e Who should be responsible for knowing the grand total of a

sale?

getTotaI(...)>

Register

Sale

Lineltem
Product Decr.

15-214 toad
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Information Expert (GRASP heuristic 2)

e Who should be responsible for knowing the grand total of a
sale?

15-214

Sale

(© TARGET

ETra/a2 10: 40 AR

Captyred-on

time

Register
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Information Expert

e Heuristic: Assign a responsibility to the class that has
the information necessary to fulfill the responsibility

e Start assigning responsibilities by clearly stating
responsibilities!

e Typically follows common intuition

e Software classes instead of Domain Model classes

= If software classes do not yet exist, look in Domain Model for
fitting abstractions (-> correspondence)

= mnsttute Fi_!!’
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Information Expert

e What information is needed to determine the grand total?
= Line items and the sum of their subtotals

e Sale is the information expert for this responsibility.

15-214

Product
Specification

Sale
date
time getTotal()
1
Contains
,.l £
Sales
Lineltem Described-by
guantity
toad

description
price
itemID
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Information Expert

e To fulfill the responsibility of knowing and answering the
sale's total, three responsibilities were assigned to three
design classes of objects

Design Class

Responsibility

Sale

knows sale total

SalesLineltem

knows line item subtotal

ProductSpecification

knows product price

15-214
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Information Expert

—

t = getTotal

15-214

: Sale

—

1 *: st = getSubtotal

lineltemsli]:

1.1: p := getPrice()

toad

SalesLineltem

:Product
Description
New method T ___________________________________ O
39

Sale

time

getTotal()

SalesLineltem

quantity

getSubtotal()

Product
Description

description
price
itemID

getPrice()
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Information Expert -> "Do It Myself Strategy"

e Expert usually leads to designs where a software object
does those operations that are normally done to the
inanimate real-world thing it represents

= a sale does not tell you its total; it is an inanimate thing

e In OO design, all software objects are "alive" or "animated,"
and they can take on responsibilities and do things.

e They do things related to the information they know.

= institute for
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Information Expert: Discussion of Design Goals/Strategies

e Cohesion = understandability - evolvability
= Code lives with the data it manipulates

e Low coupling - evolvability

= Client does not need to know about Lineltem and
ProductDescription - they can change independently

= Client does not know how total is computed - that can change

e Correspondence - evolvability
= Total is associated with a sale in the real world - coordinated
changes to the sale and total computation are easily managed

e May conflict with cohesion
« Example: Who is responsible for saving a sale in the database?

= Adding this responsibility to Sale would distribute database logic
over many classes = low cohesion

= institute for
15-214 toad 41 SorTuA



Design Heuristics: Creator

e Design Principles: guidelines for software design
= Coupling (low)
= Cohesion (high)
= Correspondence (high)

e Design Heuristics: rules of thumb
= Controller
= Expert
= Creator

e Design Patterns: solutions to recurring problems
= Decorator
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Creator (GRASP heuristic 3)

e Who is responsible for creating SalesLineltem objects?

15-214

Sale

Captured-on

time

Register

1

1..

Contains
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Paid by

Customer

name

Sales
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toad

description
price
itemID

nstitute { f

EOF TWARE
ESEARCH




Creator Pattern (GRASP heuristic 3)

e Problem: Assigning responsibilities for creating objects

= Who creates Nodes in a Graph?
= Who creates instances of Salesltem?
= Who creates Children in a simulation?

= Who creates Tiles in a Monopoly game?
e AI? Player? Main class? Board? Meeple (Dog)?
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Creator Pattern

e Problem: Who creates an A?

e Solution: Assign class responsibility of creating
instance of class A to B if
= B aggregates A objects
= B contains A objects
= B records instances of A objects
= B closely uses A objects
= B has the initializing data for creating A objects

e the more the better; where there is a choice, prefer
= B aggregates or contains A objects

e Key idea: Creator needs to keep reference anyway and will
frequently use the created object

ste for
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Creator : Example

e Who is responsible for creating SalesLineltem objects?
- Creator pattern suggests Sale

e Interaction diagram:

. Reqgister

I

|

|
-

makelLineltem(guantity)

15-214
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P

: SalesLineltem
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Creator: Discussion of Design Goals/Strategy

e Promotes low coupling, high cohesion
= class responsible for creating objects it needs to reference

= creating the objects themselves avoids depending on another
class to create the object

e Promotes evolvability
= Object creation is hidden, can be replaced locally

e Contra: sometimes objects must be created in special ways
= complex initialization
= instantiate different classes in different circumstances

= then cohesion suggests putting creation in a different object
e see design patterns such as builder, factory method

= institute for
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Design Heuristics: Creator

e Design Principles: guidelines for software design
= Coupling (low)
= Cohesion (high)
= Correspondence (high)

e Design Heuristics: rules of thumb
= Controller
= Expert
= Creator

e Design Patterns: solutions to recurring problems
= Decorator
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Problem: Scrollable Windows

e Imagine you are building a GUI application
= Various windows show different views
= Some views are too big to fit on the screen — we need scrolling

e Design considerations
= Cohesion: put scrolling functionality in its own class

= Coupling: don't treat scrolling windows specially
e Clients of Window generally shouldnt know which windows scroll

= Reuse: reuse scrolling across multiple windows

«interface»
Window
e Preliminary design: draW()%
How do we add scrolling? AppWindow1 AppWindow?2
e Similar: window chrome draw() draw()
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The ScrollableWindow Decorator

ScrollableWindow class

e A separate class
= Avoids making Window incohesive

e Implements Window
= Clients are not coupled to scrolling

e Wraps/decorates another window
= Any window can be (re)used

e Implements draw() to add a
scrollbar, then asks the wrapped
window to draw itself

15-214 toad

«interface»
Window 1
draw() scrolledWin
/\

AppWindow{1,2}

ScrollableWindow

draw()

draw()\

\

void draw() {

¥

draw scrollbar
move viewport
scrolledWin.draw();
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Decorator is a Design Pattern

e A general design problem
= Need to add new functionality
= Need to add it dynamically to different instances of an
abstraction
= Want to treat enhanced object just like the original object

e We can generalize the solution as well
= Create a new class that implements the abstraction’s interface
= Have the new class refer to a wrapped instance of the
abstraction
« Implement new behavior, requesting behavior from the wrapped
object where appropriate

= nstitute { )
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The Decorator Pattern

Component

+ operation()

VANEAN

component

1

Q

\

ConcreteComponent

Decorator

p p

component.operation()

4
7/

/

v

newBeforeBehavior()

+ operation()

+ operation()"

super.operation()
newAfterBehavior()

JAN

ConcreteDecoratorA

— addedState

+ operation()

15-214 toad
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ConcreteDecoratorB

# newAfterBehavior()
# newBeforeBehavior()
+ operation()
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Structural: Decorator

o Applicability

= To add responsibilities
to individual objects
dynamically and
transparently

= For responsibilities
that can be withdrawn

= When extension by
subclassin? IS
impractica

e Consequences
= More flexible than
static inheritance
= Avoids monolithic
classes
« Breaks object identity
« Lots of little objects

15-214 toad

«stereotypes
Component
{abstract }

+Operation[ ] {abstract }

=
component

RN

«stereotypes «stereotypes
ConcreteComponent Decorator
{abstract }
+Operation( ) +Operation( )
Operation() {

component.Operation();

«stereotype»

ConcreteDecorator
addedState: Operation(){
+Operation( ) T super.Operation();
-AddedBehaviour) } AddedBehaviour);
53




Toad’s Take-Home Messages

e Design is driven by quality attributes |
= Evolvability, separate development, reuse, performance, ...

e Design principles provide guidance on achieving qualities
= Low coupling, high cohesion, high correspondence, ...

e GRASP design heuristics promote these principles
= Creator, Expert, Controller, ...

e Applying principles to common problems yields design patterns
= Decorator, ...

= mnstitute {i.ﬂ'
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