
	
toad	
	

Spring	 2013	

© 2012-13 C Garrod, C Kästner, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:
Objects, Design and Concurrency

The Perils of Concurrency, Part 2
(Can't live with it, can't live without it.)

Christian Kästner Charlie Garrod

15-214

toad 2 15-‐214	 	 Garrod	

Administrivia

• Homework 5, The Framework Strikes Back
§ Must select partner(s) by tonight
§ 5a due in recitation next Wednesday (03 April)

toad 3 15-‐214	 	 Garrod	

Key topics from Tuesday

toad 4 15-‐214	 	 Garrod	

Last time: Concurrency, part 1

• The concurrency backstory
§ Motivation, goals, problems, …

toad 5 15-‐214	 	 Garrod	

Last time: Concurrency, part 1

• The concurrency backstory
§ Motivation, goals, problems, …

http://www.genome.gov/sequencingcosts/

toad 6 15-‐214	 	 Garrod	

Today: Concurrency, part 2

• Primitive concurrency in Java
§ Explicit synchronization with threads and shared memory
§ More concurrency problems

• Higher-level abstractions for concurrency (still
mostly not today)
§ Data structures
§ Higher-level languages and frameworks
§ Hybrid approaches

toad 7 15-‐214	 	 Garrod	

Basic concurrency in Java

• The java.lang.Runnable interface
void run();!

• The java.lang.Thread class
Thread(Runnable r);!
void start();!
static void sleep(long millis);!
void join();!
boolean isAlive();!
static Thread currentThread();

• See IncrementTest.java

toad 8 15-‐214	 	 Garrod	

Atomicity

• An action is atomic if it is indivisible
§ Effectively, it happens all at once

• No effects of the action are visible until it is complete
• No other actions have an effect during the action

• In Java, integer increment is not atomic

i++;!

1. Load data from variable i!

2. Increment data by 1!

3. Store data to variable i!

is actually

toad 9 15-‐214	 	 Garrod	

One concurrency problem: race conditions

• A race condition is when multiple threads access
shared data and unexpected results occur
depending on the order of their actions

• E.g., from IncrementTest.java:
§ Suppose classData starts with the value 41:

classData++;!
Thread A:

classData++;!
Thread B:

1A. Load data(41) from classData!

1B. Load data(41) from classData!

2A. Increment data(41) by 1 -> 42

2B. Increment data(41) by 1 -> 42!

3A. Store data(42) to classData!

3B. Store data(42) to classData!

One possible interleaving of actions:

toad 10 15-‐214	 	 Garrod	

Race conditions in real life

• E.g., check-then-act on the highway

R L C

toad 11 15-‐214	 	 Garrod	

Race conditions in real life

• E.g., check-then-act at the bank
§  The "debit-credit problem"

Alice, Bob, Bill, and the Bank

•  A. Alice to pay Bob $30
§  Bank actions

1.   Does Alice have $30 ?
2.   Give $30 to Bob
3.   Take $30 from Alice

•  B. Alice to pay Bill $30
§  Bank actions

1.   Does Alice have $30 ?
2.   Give $30 to Bill
3.   Take $30 from Alice

•  If Alice starts with $40, can
Bob and Bill both get $30?

toad 12 15-‐214	 	 Garrod	

Race conditions in real life

• E.g., check-then-act at the bank
§  The "debit-credit problem"

Alice, Bob, Bill, and the Bank

•  A. Alice to pay Bob $30
§  Bank actions

1.   Does Alice have $30 ?
2.   Give $30 to Bob
3.   Take $30 from Alice

•  B. Alice to pay Bill $30
§  Bank actions

1.   Does Alice have $30 ?
2.   Give $30 to Bill
3.   Take $30 from Alice

•  If Alice starts with $40, can
Bob and Bill both get $30?

A.1
A.2
B.1
B.2
A.3
B.3!

toad 13 15-‐214	 	 Garrod	

Race conditions in your life

• E.g., check-then-act in simple code

§ See StringConverter.java, Getter.java, Setter.java

public class StringConverter { !
 private Object o;!
 public void set(Object o) {!
 this.o = o;!
 }!
 public String get() {!
 if (o == null) return "null";!
 return o.toString();!
 }!
}!

toad 14 15-‐214	 	 Garrod	

Some actions are atomic

• What are the possible values for ans?

Thread A:
ans = i;!

Thread B:
int i = 7;!

Precondition:
i = 42;!

toad 15 15-‐214	 	 Garrod	

Some actions are atomic

• What are the possible values for ans?

Thread A:
ans = i;!

Thread B:

00000…00000111 i:!

00000…00101010 i:!

…

int i = 7;!
Precondition:

i = 42;!

toad 16 15-‐214	 	 Garrod	

Some actions are atomic

• What are the possible values for ans?

• In Java:
§ Reading an int variable is atomic
§ Writing an int variable is atomic

§  Thankfully, is not possible

00000…00000111 i:!

00000…00101010 i:!

…

00000…00101111 ans:!

Thread A:
ans = i;!

Thread B:
int i = 7;!

Precondition:
i = 42;!

toad 17 15-‐214	 	 Garrod	

Bad news: some simple actions are not atomic

• Consider a single 64-bit long value

§ Concurrently:
• Thread A writing high bits and low bits
• Thread B reading high bits and low bits

high bits low bits

Thread A:
ans = i;!

Thread B:
long i = 10000000000;!

Precondition:
i = 42;!

01001…00000000 ans:!

00000…00101010 ans:!

01001…00101010 ans:!

(10000000000)

(42)

(10000000042 or …)

toad 18 15-‐214	 	 Garrod	

Primitive concurrency control in Java

• Each Java object has an associated intrinsic lock
§ All locks are initially unowned
§ Each lock is exclusive: it can be owned by at most one
thread at a time

• The synchronized keyword forces the current
thread to obtain an object's intrinsic lock
§ E.g.,
 synchronized void foo() { … } // locks "this"!
!
 ! synchronized(fromAcct) {!
! ! if (fromAcct.getBalance() >= 30) {!
 toAcct.deposit(30);!
 fromAcct.withdrawal(30);!
 }!
 }

• See SynchronizedIncrementTest.java

toad 19 15-‐214	 	 Garrod	

Primitive concurrency control in Java

• java.lang.Object allows some coordination via
the intrinsic lock:
void wait();!
void wait(long timeout);!
void wait(long timeout, int nanos);!
void notify();!
void notifyAll();!

• See Blocker.java, Notifier.java, NotifyExample.java

toad 20 15-‐214	 	 Garrod	

Primitive concurrency control in Java

• Each lock can be owned by only one thread at a
time

• Locks are re-entrant: If a thread owns a lock, it
can lock the lock multiple times

• A thread can own multiple locks
synchronized(lock1) {!
 // do stuff that requires lock1!
!
 synchronized(lock2) {!
 // do stuff that requires both locks!
 }!
!
 // …!
}

toad 21 15-‐214	 	 Garrod	

Another concurrency problem: deadlock

• E.g., Alice and Bob, unaware of each other, both
need file A and network connection B
§ Alice gets lock for file A
§ Bob gets lock for network connection B
§ Alice tries to get lock for network connection B, and waits…
§ Bob tries to get lock for file A, and waits…

• See Counter.java and DeadlockExample.java

toad 22 15-‐214	 	 Garrod	

Dealing with deadlock (abstractly, not with Java)

• Detect deadlock
§ Statically?
§ Dynamically at run time?

• Avoid deadlock

• Alternative approaches
§ Automatic restarts
§ Optimistic concurrency control

toad 23 15-‐214	 	 Garrod	

Detecting deadlock with the waits-for graph

• The waits-for graph represents dependencies
between threads
§ Each node in the graph represents a thread
§ A directed edge T1->T2 represents that thread T1 is
waiting for a lock that T2 owns

• Deadlock has occurred iff the waits-for graph
contains a cycle

• Got a problem with this?

a
b

c

d

f

e

h

g

i

toad 24 15-‐214	 	 Garrod	

Deadlock avoidance algorithms

• Prevent deadlock instead of detecting it
§ E.g., impose total order on all locks, require locks
acquisition to satisfy that order
• Thread:
 acquire(lock1)

 acquire(lock2)
 acquire(lock9)
 acquire(lock42) // now can't acquire lock30, etc…

• Got a problem with this?

toad 25 15-‐214	 	 Garrod	

Avoiding deadlock with restarts

• One option: If thread needs a lock out of order,
restart the thread
§ Get the new lock in order this time

• Another option: Arbitrarily kill and restart long-
running threads

toad 26 15-‐214	 	 Garrod	

Avoiding deadlock with restarts

• One option: If thread needs a lock out of order,
restart the thread
§ Get the new lock in order this time

• Another option: Arbitrarily kill and restart long-
running threads

• Optimistic concurrency control
§  e.g., with a copy-on-write system
§ Don't lock, just detect conflicts later

• Restart a thread if a conflict occurs

toad 27 15-‐214	 	 Garrod	

Another concurrency problem: livelock

toad 28 15-‐214	 	 Garrod	

Another concurrency problem: livelock

• In systems involving restarts, livelock can occur
§  Lack of progress due to repeated restarts

• Starvation: when some task(s) is(are) repeatedly
restarted because of other tasks

toad 29 15-‐214	 	 Garrod	

Concurrency control in Java

• Using primitive synchronization, you are
responsible for correctness:
§ Avoiding race conditions
§  Progress (avoiding deadlock)

• Java provides tools to help:
§  volatile fields
§  java.util.concurrent.atomic!
§  java.util.concurrent!

toad 30 15-‐214	 	 Garrod	

The Java happens-before relation

• Java guarantees a transitive, consistent order for
some memory accesses
§ Within a thread, one action happens-before another
action based on the usual program execution order

§ Release of a lock happens-before acquisition of the same
lock

§  Object.notify happens-before Object.wait returns
§  Thread.start happens-before any action of the started
thread

§ Write to a volatile field happens-before any subsequent
read of the same field

§ …

• Assures ordering of reads and writes
§ A race condition can occur when reads and writes are not
ordered by the happens-before relation

toad 31 15-‐214	 	 Garrod	

The java.util.concurrent.atomic package

• Concrete classes supporting atomic operations
§  AtomicInteger!

!int get();!
!void set(int newValue);!
!int getAndSet(int newValue);!
!int getAndAdd(int delta);!
!…!

§  AtomicIntegerArray!
§  AtomicBoolean!
§  AtomicLong!
§  …!

toad 32 15-‐214	 	 Garrod	

The java.util.concurrent package

• Interfaces and concrete thread-safe data
structure implementations
§  ConcurrentHashMap!
§  BlockingQueue!

• ArrayBlockingQueue!
• SynchronousQueue!

§  CopyOnWriteArrayList!
§  …

• Other tools for high-performance multi-threading
§  ThreadPools and Executor services!
§  Locks and Latches

toad 33 15-‐214	 	 Garrod	

java.util.concurrent.ConcurrentHashMap!

• Implements java.util.Map<K,V>!
§ High concurrency lock striping

• Internally uses multiple locks, each dedicated to a
region of the hash table

• Locks just the part of the table you actually use
• You use the ConcurrentHashMap like any other map…

Locks

Hashtable

toad 34 15-‐214	 	 Garrod	

Next week:

• More concurrency

