
 
toad 

 
Spring 2013 

© 2012-13  C Garrod, J Aldrich, and W Scherlis    

School of  
Computer Science 

Principles of Software Construction: 

Objects, Design and Concurrency 

 

Just enough UML 

Christian Kästner      Charlie Garrod 

15-214 

With slides from Klaus Ostermann 



toad 2 15-214  Kaestner 

UML 

• Unified Modeling Language 

• Graphical Notation to describe classes, objects, 
behavior, and more 

 

• You will need: 
 Class Diagrams 
 Interaction Diagrams (Sequence and Collaboration 
Diagrams) 



toad 3 15-214  Kaestner 

Goal of Modeling 

• Modeling is primarily for communication 
 with yourself 
 with team members 
 with customers 

• Agree on common understanding 

• Forces to clarify understanding (relationships etc) 

• Visual representation scales better than code 
 abstraction 

 

• Mostly used for informal communication 



toad 4 15-214  Kaestner 

Class Diagrams 

• A class diagram describes the types of objects in 
a system and the various kinds of static 
relationships between them 
 Associations 
 Subtypes 

• Class diagrams also show the attributes, 
names/types of operations, and constraints that 
restrict how objects are connected 

 



toad 5 15-214  Kaestner 

Class Diagrams 

Example 

 



toad 6 15-214  Kaestner 

Three ways to use class diagrams 

• Conceptual: Draw a diagram that represents the 
concepts in the domain under study 
 Little or no regard for the software that might implement 
it 

• Specification: Describing the interfaces of the 
software, not the implementation 
 Often confused in OO since classes combine both 
interfaces and implementation 

• Implementation: Diagram describes actual 
implementation classes 

• Understanding the intended perspective is crucial 
to drawing and reading class diagrams, even 
though the lines between them are not sharp 



toad 7 15-214  Kaestner 

Associations 

• Associations represent relationships between 
instances of classes 

• Conceptual perspective: Associations represent 
conceptual relationships  

• Specification perspective: Associations represent 
responsibilities 

• Implementation perspective: Associations 
represent pointers/fields between related classes 



toad 8 15-214  Kaestner 

Associations 

• Each association has two ends 
 Each end can be named with a label called role name 
 An end also has a multiplicity: How many objects 
participate in the given relationship 
•General case: give upper and lower bound in 
lower..upper notation 

•Abbreviations: * = 0..infinity, 1 = 1..1 
•Most common multiplicities: 1, *, 0..1 

• In the specification perspective, one can infer 
existence and names (if naming conventions 
exist) of methods to navigate the associations, for 
example: 

 Class Order { 
  public Customer getCustomer(); 

  public Set<OrderLine> getOrderLines(); 

 … 

} 



toad 9 15-214  Kaestner 

Associations 

• In the implementation perspective we can 
conclude existence of pointers in both directions 
between related classes 

 

class Order { 

  private Customer _ customer; 

  private Set<OrderLine> _orderLines;  

  …  

} 

class Customer { 

  private Set<Order> orders; 

  … 

} 



toad 10 15-214  Kaestner 

Associations 

Unidirectional vs bidirectional 

• Arrows in association lines indicate navigability 
 Only one arrow: unidirectional association 
 No or two arrows: bidirectional association 

• Specification perspective: Indicates navigation 
operations in interfaces 

• Implementation perspective: Indicates which 
objects contain the pointers to the other objects 

• Arrows serve no useful purpose in conceptual 
perspective 

• For bidirectional associations, the two navigations 
must be inverses of each other 



toad 11 15-214  Kaestner 

Unidirectional 

Associations 

 



toad 12 15-214  Kaestner 

Class Diagrams: Attributes 

• Attributes are very similar to associations 
 Conceptual level: A customer’s name attribute indicates 
that customers have names 

 Specification level: Attribute indicates that a customer 
object can tell you its name 

 Implementation level: customer has a field (aka instance 
variable) for its name 

 UML syntax for attributes: 
visibility name : type = defaultValue 
•Details may be omitted 

 



toad 13 15-214  Kaestner 

Class Diagrams: Attributes vs Associations 

• Attributes describe non-object-oriented data 
 Integers, strings, booleans, … 

• From conceptual perspective this is the only 
difference 

• Specification and implementation perspective: 
 Attributes imply navigability from type to attribute only 
 Implied that type contains solely its own copy of the 
attribute objects 



toad 14 15-214  Kaestner 

Class Diagrams: Operations 

• Operations are the processes that a class knows 
to carry out 

• Most obviously correspond to methods on a class 

• Full syntax: 
visibility name(parameter-list) : return-type 
 visibility is + (public), # (protected), or - (private) 
 name is a string 
 parameter-list contains comma-separated parameters 
whose syntax is similar to that for attributes 
•Can also specificy direction: input (in), output(out), or 
both (inout) 

•Default: in 
 return-type is comma-separated list of return types 
(usually only one) 



toad 15 15-214  Kaestner 

Class Diagrams: Constraint Rules 

• Arbitrary constraints can be added by putting 
them inside braces({}) 

• Mostly formulated in informal natural language 

• UML also provides a formal Object Constraint 
Language (OCL) 

• Constraints should be implemented as assertions 
in your programming language 



toad 16 15-214  Kaestner 

 

Object Diagrams 

(Class diagram that  
belongs to the object 
diagram) 



toad 17 15-214  Kaestner 

Aggregation vs Composition 

 

 

 

 

 

 

 

• Aggregation expresses “part-of” relationships, but 
rather vague semantics 

• Composition is stronger: Part object live and die 
with the whole 



toad 18 15-214  Kaestner 

Abstract classes and methods 

 

 

 

 

 

 

 

 

 

 

• UML convention for abstract classes/methods: Italicize 
name of abstract item or use {abstract} constraint 



toad 19 15-214  Kaestner 

Interfaces and Lollipop notation 

 



toad 20 15-214  Kaestner 

Interaction Diagrams 

• Interaction diagrams describe how groups of 
objects collaborate in some behavior 

• Two kinds of interaction diagrams: sequence 
diagrams and collaboration diagrams 



toad 21 15-214  Kaestner 

Sequence Diagram Example 

 



toad 22 15-214  Kaestner 

Sequence Diagrams 

• Vertical line is called lifeline 

• Each message represented by an arrow between 
lifelines 
 Labeled at minimum with message name 
 Can also include arguments and control information 
 Can show self-call by sending the message arrow back to 
the same lifeline 

• Can add condition which indicates when message 
is sent, such as [needsReorder] 

• Can add iteration marker which shows that a 
message is sent many times to multiple receiver 
objects 



toad 23 15-214  Kaestner 

Collaboration Diagram Example 



toad 24 15-214  Kaestner 

Collaboration Diagram Example 

Decimal Numbering System 

 



toad 25 15-214  Kaestner 

Sequence vs Collaboration Diagrams 

• Sequence diagrams are better to visualize the 
order in which things occur 

• Collaboration diagrams also illustrate how objects 
are statically connected 

• You should generally use interaction diagrams 
when you want to look at the behavior of several 
objects within a single use case. 



toad 26 15-214  Kaestner 

The UML universe 

• There is a lot more to the UML than what we have 
shown here 
 More diagram types 

•State diagrams, activity diagrams, use cases, 
deployment diagrams, … 

 More notational features in all diagram types 
•Stereotypes, parameterized classes, … 

• We will touch some UML features not shown here 
during the course and will explain them as needed 



toad 27 15-214  Kaestner 

UML Misconceptions and Limitations 

• UML is not language-independent. It is a language, as 
the L in UML suggests. 

• This language is something like a high-level “best-of” 
of common OO programming language features 
 It contains notation for features that are only available in 
some (or even no) programming language (such as: dynamic 
classification) 

 Every OO language has features that have no corresponding 
notation in the UML (e.g. wildcards in Java) 

 The same UML notation may have a different meaning in 
different OO languages (e.g. visibility) 

• The UML has no clearly defined semantics. This is both 
a limitation and a feature 
 Good for informal diagrams, bad for formal specifications 

• No consensus in the community about the scenarios 
where UML is useful 



toad 28 15-214  Kaestner 

Literature 

• Shalloway and Trott. Design Patterns Explained. 
Addison-Wesley. 2005 

• Martin Fowler. UML Distilled. Addison-Wesley. 

• Beck, Cunningham: A Laboratory For Teaching  
Object-Oriented Thinking. OOPSLA’ 89 
available online at 
c2.com/doc/oopsla89/paper.html 

 


