

toad

Spring 2013

© 2012-13 C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:

Objects, Design and Concurrency

Testing

Christian Kaestner Charlie Garrod

15-214

toad 2 15-214 Kaestner

Learning Goals

• General considerations of testing

• Understand the possibilities and limitations of unit
testing

• Ability to use JUnit to write unit tests
 Reasonably sized unit tests
 Whole suite

• Test suites as a design tool for testable code

• Understand test coverage goals: The good, the
bad, and the ugly
 Ability to use EclEmma for line coverage

toad 4 15-214 Kaestner

Functional Correctness

 Specification

 Formal Verification

 Unit Testing

 Type Checking

 Statistic Analysis

 Requirements definition

 Inspections, Reviews

 Integration/System/Acceptance/Regression/GUI/Bl
ackbox/ Model-Based/Random Testing

 Change/Release Management

1
5

-2
1

4

1
5

-3
1

3

toad 5 15-214 Kaestner

Testing

• Executing the program with selected inputs in a
controlled environment

• Goals:
 Reveal bugs (main goal)
 Asses quality (hard to quantify)
 Clarify the specification, documentation
 Verify contracts

"Testing shows the presence,
 not the absence of bugs

 Edsger W. Dijkstra 1969

toad 6 15-214 Kaestner

What to test?

• Functional correctness of a method (e.g.,
computations, contracts)

• Functional correctness of a class (e.g., class
invariants)

• Behavior of a class in a subsystem/multiple
subsystems/the entire system

• Behavior when interacting with the world
 Interacting with files, networks, sensors, …
 Erroneous states
 Nondeterminism, Parallelism
 Interaction with users

• …

toad 7 15-214 Kaestner

Testing Decisions

Who tests?

• Developers

• Other Developers

• Separate Quality Assurance Team

• Customers

When to test?

• Before development

• During development

• After milestones

• Before shipping

Discuss tradeoffs

toad 8 15-214 Kaestner

Unit Tests

• Testing units of source code
 Smallest testable part of a system
 Test parts before assembling them
 Typically small units (methods, interfaces), but later units
are possible (packages, subsystems)

 Supposed to catch local bugs

• Typically written by developers

• Many small, fast-running, independent tests

• Little dependencies on other system parts or
environment

• Insufficient but good starting point,
extra benefits:
 Documentation (executable specification)
 Design mechanism (design for testability)

toad 9 15-214 Kaestner

JUnit

• Popular unit-testing framework for Java

• Easy to use

• Tool support available

• Can be used as design mechanism

toad 10 15-214 Kaestner

JUnit

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {

 @Test

 public void testSanityTest(){

 Graph g1 = new AdjacencyListGraph(10);

 Vertex s1 = new Vertex("A");

 Vertex s2 = new Vertex("B");

 assertEquals(true, g1.addVertex(s1));

 assertEquals(true, g1.addVertex(s2));

 assertEquals(true, g1.addEdge(s1, s2));

 assertEquals(s2, g1.getNeighbors(s1)[0]);

 }

 @Test

 public void test….

 private int helperMethod…

}

Small
setup

Check
expected
results

toad 11 15-214 Kaestner

assert, Assert

• assert is a native Java statement throwing an
AssertionError exception when failing
 assert expression: "Error Message";

• org.junit.Assert is a library that provides many
more specific methods
 static void assertTrue(java.lang.String message,
boolean condition) // Asserts that a condition is true.

 static void assertEquals(java.lang.String message,
long expected, long actual); // Asserts that two longs are
equal.

 static void assertEquals(double expected, double actual,
double delta); // Asserts that two doubles or floats are
equal to within a positive delta.

 static void assertNotNull(java.lang.Object object)
// Asserts that an object isn't null.

 static void fail(java.lang.String message) //Fails a test
with the given message.

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://junit.sourceforge.net/javadoc/org/junit/Assert.html

toad 12 15-214 Kaestner

JUnit Conventions

• TestCase collects multiple tests (one class)

• TestSuite collects test cases (typically package)

• Tests should run fast

• Test should be independent

• Tests are methods without parameter and return
value

• AssertError signals failed test (unchecked exception)

• Test Runner knows how to run JUnit tests
 (uses reflection to find all methods with @Test annotat.)

toad 13 15-214 Kaestner

Common Setup

import org.junit.*;

import org.junit.Before;

import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {

 Graph g;

 @Before

 public void setUp() throws Exception {

 graph = createTestGraph();

 @Test

 public void testSanityTest(){

 Vertex s1 = new Vertex("A");

 Vertex s2 = new Vertex("B");

 assertEquals(true, g.addVertex(s1));

 }

 @BeforeClass … //avoid that

toad 14 15-214 Kaestner

Checking for presence of an exception

import org.junit.*;

import static org.junit.Assert.fail;

public class Tests {

 @Test

 public void testSanityTest(){

 try {

 openNonexistingFile();

 fail("Expected exception");

 } catch(IOException e) { }

 }

 @Test(expected = IOException.class)

 public void testSanityTestAlternative() {

 openNonexistingFile();

 }

}

toad 15 15-214 Kaestner

Test organization

• Conventions (not
requirements)

• Have a test class ATest for
each class A

• Have a source directory and a
test directory
 Store ATest and A in the same
package

 Tests can access members with
default (package) visibility

• Alternatively store exceptions
in the source directory but in a
separate package

toad 16 15-214 Kaestner

Run tests frequently

• You should only commit code that is passing all
tests

• Run tests before every commit

• Run tests before trying to understand other
developers' code

• If entire test suite becomes too large and slow for
rapid feedback, run tests in package frequently,
run all tests nightly
 Medium sized projects easily have 1000s of test cases and
run for minutes

• Continuous integration servers help to scale
testing

toad 17 15-214 Kaestner

Continuous Integration

See also travis-ci.org

toad 18 15-214 Kaestner

What to test? How much to test?

toad 19 15-214 Kaestner

Writing Test Cases: Common Strategies

• Read specification

• Write test case(s) for representative case
 Small instances are usually sufficient

• Write test case for invalid case

• Write test case to check boundaries

• Are there difficult cases? (error guessing)

• Think like a user, not like a programmer

• Specification covered?

• Feel confident? Time/money left?

toad 20 15-214 Kaestner

Example

• Test empty array

• Test array of length 1 and 2

• Test negative numbers

• Test invalid length (negative or longer than
array.length)

• Test null as array

• Others?

/**
 * computes the sum of the first len values of the array
 *
 * @param array array of integers of at least length len
 * @param len number of elements to sum up
 * @return sum of the array values
 */
int total(int array[], int len);

toad 21 15-214 Kaestner

Testable Code

• Think about testing when writing code

• Unit testing encourages to write testable code

• Separate parts of the code to make them
independently testable

• Abstract functionality behind interface, make it
replaceable

• Recommended as design method Test-Driven
Development by some

toad 22 15-214 Kaestner

Structural Analysis for Test Coverage

 Organized according to program decision structure
 Touching: statement, branch

22

public static int binsrch (int[] a, int key) {

 int low = 0;
 int high = a.length - 1;

 while (true) {

 if (low > high) return -(low+1);

 int mid = (low+high) / 2;

 if (a[mid] < key) low = mid + 1;
 else if (a[mid] > key) high = mid - 1;
 else return mid;
 }
}

• Will this statement get executed in a test?

• Does it return the correct result?

•Could this array index be out of bounds?

• Does this return statement ever get reached?

toad 23 15-214 Kaestner

Method Coverage

• Trying to execute each method as part of at least
one test

• Does this guarantee correctness?

toad 24 15-214 Kaestner

Statement Coverage

• Trying to test all parts of the implementation

• Execute every statement in at least one test

• Does this guarantee correctness?

toad 25 15-214 Kaestner 25

Structure of Code Fragment to Test

Flow chart diagram for
 junit.samples.money.Money.equals

toad 26 15-214 Kaestner 26

Statement Coverage

• Statement coverage
 What portion of program statements

(nodes) are touched by test cases

• Advantages
 Test suite size linear in size of code

 Coverage easily assessed

• Issues
 Dead code is not reached

 May require some sophistication to
select input sets

 Fault-tolerant error-handling code
may be difficult to “touch”

 Metric: Could create incentive to
remove error handlers!

toad 27 15-214 Kaestner 27

Branch Coverage

• Branch coverage
 What portion of condition branches are

covered by test cases?

 Or: What portion of relational expressions
and values are covered by test cases?

• Condition testing (Tai)

 Multicondition coverage – all boolean
combinations of tests are covered

• Advantages
 Test suite size and content derived

from structure of boolean expressions

 Coverage easily assessed

• Issues
 Dead code is not reached

 Fault-tolerant error-handling code
may be difficult to “touch”

toad 28 15-214 Kaestner 28

Path Coverage

• Path coverage
 What portion of all possible paths through

the program are covered by tests?
 Loop testing: Consider representative and

edge cases:
• Zero, one, two iterations
• If there is a bound n: n-1, n, n+1 iterations
• Nested loops/conditionals from inside out

• Advantages
 Better coverage of logical flows

• Disadvantages
 Not all paths are possible, or necessary

• What are the significant paths?

 Combinatorial explosion in cases unless
careful choices are made

• E.g., sequence of n if tests can yield
up to 2^n possible paths

 Assumption that
program structure
is basically sound

toad 29 15-214 Kaestner

int binarySearch(int[] a, int key) {
 int imin = 0;
 int imax = a.length-1;
 while (imax >= imin) {
 int imid = midpoint(imin, imax);
 if (a[imid] < key)
 imin = imid + 1;
 else if (a[imid] > key)
 imax = imid - 1;
 else
 return imid;
 }
 return -1;
}

Find test cases to maximize line, branch,
and path coverage.

toad 30 15-214 Kaestner 30

Test Coverage Tooling

• Coverage assessment tools
 Track execution of code by test cases

• Count visits to statements
 Develop reports with respect to specific coverage criteria
 Instruction coverage, line coverage, branch coverage

• Example: EclEmma tool for JUnit tests

toad 31 15-214 Kaestner 31

“Coverage” is useful but also dangerous

• Examples of what coverage analysis could miss
 Missing code

 Incorrect boundary values

 Timing problems

 Configuration issues

 Data/memory corruption bugs

 Usability problems

 Customer requirements issues

• Coverage is not a good adequacy criterion
 Instead, use to find places where testing is inadequate

Aldrich

toad 32 15-214 Kaestner

Test coverage – Ideal and Real

• An Ideal Test Suite
 Uncovers all errors in code
 Uncovers all errors that requirements capture

•All scenarios covered
•Non-functional attributes: performance, code safety,
security, etc.

 Minimum size and complexity
 Uncovers errors early in the process

• A Real Test Suite
 Uncovers some portion of errors in code
 Has errors of its own
 Assists in exploratory testing for validation
 Does not help very much with respect to non-functional
attributes

 Includes many tests inserted after errors are repaired to
ensure they won’t reappear

32

toad 33 15-214 Kaestner

Summary

• Unit testing is one of many testing approaches

• Unit testing to
 discover bugs (not prove correctness)
 document code
 design testable code

• JUnit details (@Test, …)

• Test coverage: The good, the bad, and the ugly

• You should be able to write unit tests for all your
code now

