
Design Analysis:
Design Structure Matrices

K.J. Sullivan, W.G. Griswold, Y. Cai, and B. Hallen. The
Structure and Value of Modularity in Software Design.
Foundations of Software Engineering, 2001.

Carliss Baldwin and Kim Clark. Design Rules: The Power of
Modularity. MIT Press.

15-214: Principles of Software Construction

Jonathan Aldrich

Module Dependencies

• Ideal: changes restricted to within a module
• Goal of information hiding
• Need to know which decisions may change

• Reality: some changes are surprises
• These may affect module interfaces
• Changes propagate to dependent modules

• How bad is this propagation?
• It depends on coupling

3 October 2013

Design Dependencies in Hadoop

Credit: Rick Kazman

The Design Structure Matrix (DSM)

• A DSM is an alternative to a directed graph

• An N by N matrix
• Each row is a module in the system
• Columns also labeled with modules, in same order

• Dependencies are marked with X’s
• Marking row A, column B means A depends on B
• The diagonal is ignored (self-dependence)

• Makes it easy to see common patterns
Credit: Rick Kazman

Design Structure Matrix (DSM) Example

Model GUI

Model 0

GUI X 0

Credit: Rick Kazman

Varying Degrees of Complexity:
Fully Connected DSM

A B C D E

A O X X X X

B X O X X X

C X X O X X

D X X X O X

E X X X X O

Credit: Rick Kazman

Varying Degrees of Complexity:
Fully Disconnected DSM

A B C D E

A O

B O

C O

D O

E O

Credit: Rick Kazman

Varying Degrees of Complexity:
A Layered Architecture

Kernel Ring 1 Ring 2 Ring 3 Ring 4

Kernel O

Ring 1 X O

Ring 2 X X O

Ring 3 X X X O

Ring 4 X X X X O

Credit: Rick Kazman

Varying Degrees of Complexity:
A Strictly Layered Architecture

OS VM I/O lib Middle
ware

App

OS O

VM X O

I/O lib X O

Middle
ware

X O

App X O
Credit: Rick Kazman

3 October 2013

Design Structure Matrices

More terminology
• B is hierarchically dependent on A

• If you change A, you might have to change B as well
• Suggests you should implement A first

• B and C are interdependent
• C and A are independent

3 October 2013

Design Structure Matrices

• Lines show clustering into proto-modules
• Indicates several design decisions will be

managed together

• True modules should be independent
• i.e., no marks outside of its cluster
• Not true here because B (in the B-C cluster)

depends on A

Varying Degrees of Complexity:
Layered Modules

A B C D E

A O

B O X

C X X O

D X O

E X X X O

Credit: Rick Kazman

3 October 2013

Design Structure Matrices

• Interface reifies the dependence as a
separate entity
• Instead of B depending on A, now A and B

both depend on I
• Serves to decouple A and B
• Think of I as the interface of A

3 October 2013

Value of Modularity

• Information Hiding
• If you can anticipate which design decisions are

likely to change and hide them in a module, then
evolving the system when these changes occur will
cost less

• Reduces maintenance cost and time to market
• Frees resources to invest in quality, features

3 October 2013

KWIC Design #1

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data .
E - Circ Data .
H - Alph Data .
K - Out Data .
C - Input Alg .
F - Circ Alg .
I - Alph Alg .
L - Out Alg .
M - Master .

3 October 2013

KWIC Design #1

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

Interdependence
of data formats

True modules

Many
dependences

on data format;
problematic

because
data formats
are unstable

Interface
dependences

follow calls

3 October 2013

KWIC Design #2
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data .
P - Line Alg .
B - In Data .
C - Input Alg .
E - Circ Data .
F - Circ Alg .
H - Alph Data .
I - Alph Alg .
K - Out Data .
L - Out Alg .
M - Master .

3 October 2013

KWIC Design #2
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

True modules
Dependence
on interfaces

3 October 2013

Which Design is Better?
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

3 October 2013

Comparing the Designs

• Both designs allow changes within modules
• However, in the first design the modules do not hide much

• Many dependencies (2-4 per module) on data structures
• Data structure dependencies are strong: they restrict algorithms used
• Furthermore, data structures are likely to change

• The second design is much less constrained
• Fewer dependencies (1-2 per module)
• Interfaces are more abstract, do not restrict code as much
• Interfaces are more stable in the face of likely changes

• Result: design 2 minimizes re-engineering in response to change

N A D G J O P B C E F H I K L M
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

3 October 2013

EDSMs: Considering Possible Changes

• Environment and Design Structure Matrices
• Sullivan et al., ESEC/FSE 2001

• Add changes as environmental parameters
• Note: slightly more concrete than what Sullivan et al. propose
• Only partially controlled by designer
• May affect each other
• May affect design decisions in code

• What interfaces are affected?
• Information hiding: interfaces should be stable

• What implementations are affected?
• Information hiding hypothesis: should be local to a

module

3 October 2013

Effect of Change – Design #1
V W X Y Z A D G J B E H K C F I L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

3 October 2013

Effect of Change – Design #1
V W X Y Z A D G J B E H K C F I L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data X X . X X
E - Circ Data X X . X
H - Alph Data X X X X .
K - Out Data .
C - Input Alg X X X X X .
F - Circ Alg X X X X X X .
I - Alph Alg X X X X X X X X .
L - Out Alg X X X X X X X X .
M - Master X X X X X .

Unstable
data interfaces

depend on changes

Algorithms
depend on

data

3 October 2013

Effect of Change – Design #2
V W X Y Z N A D G J O P B C E F H I K L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

3 October 2013

Effect of Change – Design #2
V W X Y Z N A D G J O P B C E F H I K L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X X X . X
P - Line Alg X X X X .
B - In Data X X . X
C - Input Alg X X X X .
E - Circ Data X X X . X
F - Circ Alg X X X X .
H - Alph Data X X . X
I - Alph Alg X X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

Interfaces
are stable

Effect of
change is
localized

3 October 2013

Comparison

• Design 1 hides information better
• Interfaces are unaffected by likely change

scenarios
• Changes required to implement likely

change scenarios are local

3 October 2013

Summary

• DSMs are a structured way of thinking about the value
of design
• Are design decisions isolated to a module, or do they affect

several modules?
• How do modules depend on interfaces?
• On which parts of the system can I experiment

independently?
• How much value is there in the experiments?

• Technical potential of the module

• EDSMs incorporate change scenarios
• How are interfaces and code affected by change?

• More to explore
• Baldwin and Clark – discuss value of modularity
• Sullivan and Griswold – apply B&C to S/W, introduce EDSMs
• Lattix LDM tool – derives DSMs from code

