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Module Dependencies

• Ideal: changes restricted to within a module
• Goal of information hiding
• Need to know which decisions may change

• Reality: some changes are surprises
• These may affect module interfaces
• Changes propagate to dependent modules

• How bad is this propagation?
• It depends on coupling
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Design Dependencies in Hadoop

Credit: Rick Kazman



The Design Structure Matrix (DSM)

• A DSM is an alternative to a directed graph

• An N by N matrix
• Each row is a module in the system
• Columns also labeled with modules, in same order

• Dependencies are marked with X’s
• Marking row A, column B means A depends on B
• The diagonal is ignored (self-dependence)

• Makes it easy to see common patterns
Credit: Rick Kazman



Design Structure Matrix (DSM) Example

Model GUI

Model 0

GUI X 0

Credit: Rick Kazman



Varying Degrees of Complexity:
Fully Connected DSM

A B C D E

A O X X X X

B X O X X X

C X X O X X

D X X X O X

E X X X X O

Credit: Rick Kazman



Varying Degrees of Complexity:
Fully Disconnected DSM

A B C D E

A O

B O

C O

D O

E O

Credit: Rick Kazman



Varying Degrees of Complexity:
A Layered Architecture

Kernel Ring 1 Ring 2 Ring 3 Ring 4

Kernel O

Ring 1 X O

Ring 2 X X O

Ring 3 X X X O

Ring 4 X X X X O

Credit: Rick Kazman



Varying Degrees of Complexity:
A Strictly Layered Architecture

OS VM I/O lib Middle
ware

App

OS O

VM X O

I/O lib X O

Middle
ware

X O

App X O
Credit: Rick Kazman
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Design Structure Matrices

More terminology
• B is hierarchically dependent on A

• If you change A, you might have to change B as well
• Suggests you should implement A first

• B and C are interdependent
• C and A are independent
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Design Structure Matrices

• Lines show clustering into proto-modules
• Indicates several design decisions will be 

managed together

• True modules should be independent
• i.e., no marks outside of its cluster
• Not true here because B (in the B-C cluster) 

depends on A



Varying Degrees of Complexity:
Layered Modules

A B C D E

A O

B O X

C X X O

D X O

E X X X O

Credit: Rick Kazman
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Design Structure Matrices

• Interface reifies the dependence as a 
separate entity
• Instead of B depending on A, now A and B 

both depend on I
• Serves to decouple A and B
• Think of I as the interface of A
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Value of Modularity

• Information Hiding
• If you can anticipate which design decisions are 

likely to change and hide them in a module, then 
evolving the system when these changes occur will 
cost less

• Reduces maintenance cost and time to market
• Frees resources to invest in quality, features
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KWIC Design #1

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data .
E - Circ Data .
H - Alph Data .
K - Out Data .
C - Input Alg .
F - Circ Alg .
I - Alph Alg .
L - Out Alg .
M - Master .
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KWIC Design #1

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .

Interdependence
of data formats

True modules

Many
dependences

on data format;
problematic

because
data formats
are unstable

Interface
dependences

follow calls
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KWIC Design #2
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data .
P - Line Alg .
B - In Data .
C - Input Alg .
E - Circ Data .
F - Circ Alg .
H - Alph Data .
I - Alph Alg .
K - Out Data .
L - Out Alg .
M - Master .
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KWIC Design #2
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

True modules
Dependence
on interfaces
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Which Design is Better?
N A D G J O P B C E F H I K L M

N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .
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Comparing the Designs

• Both designs allow changes within modules
• However, in the first design the modules do not hide much

• Many dependencies (2-4 per module) on data structures
• Data structure dependencies are strong: they restrict algorithms used
• Furthermore, data structures are likely to change

• The second design is much less constrained
• Fewer dependencies (1-2 per module)
• Interfaces are more abstract, do not restrict code as much
• Interfaces are more stable in the face of likely changes

• Result: design 2 minimizes re-engineering in response to change

N A D G J O P B C E F H I K L M
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

A D G J B E H K C F I L M
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .
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EDSMs: Considering Possible Changes

• Environment and Design Structure Matrices
• Sullivan et al., ESEC/FSE 2001

• Add changes as environmental parameters
• Note: slightly more concrete than what Sullivan et al. propose
• Only partially controlled by designer
• May affect each other
• May affect design decisions in code

• What interfaces are affected?
• Information hiding: interfaces should be stable

• What implementations are affected?
• Information hiding hypothesis: should be local to a 

module
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Effect of Change – Design #1
V W X Y Z A D G J B E H K C F I L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data . X X
E - Circ Data X . X
H - Alph Data X X .
K - Out Data .
C - Input Alg X X .
F - Circ Alg X X X .
I - Alph Alg X X X X .
L - Out Alg X X X X .
M - Master X X X X .
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Effect of Change – Design #1
V W X Y Z A D G J B E H K C F I L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
B - In Data X X . X X
E - Circ Data X X . X
H - Alph Data X X X X .
K - Out Data .
C - Input Alg X X X X X .
F - Circ Alg X X X X X X .
I - Alph Alg X X X X X X X X .
L - Out Alg X X X X X X X X .
M - Master X X X X X .

Unstable
data interfaces

depend on changes

Algorithms
depend on

data
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Effect of Change – Design #2
V W X Y Z N A D G J O P B C E F H I K L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X . X
P - Line Alg X X .
B - In Data X . X
C - Input Alg X X X .
E - Circ Data X X . X
F - Circ Alg X X X .
H - Alph Data X . X
I - Alph Alg X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .
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Effect of Change – Design #2
V W X Y Z N A D G J O P B C E F H I K L M

V - Input Fmt .
W - Store Mem .
X - Compress .
Y - Shift Store .
Z - Amortize .
N - Line Type .
A - Input Type .
D - Circ Type .
G - Alph Type .
J - Out Type .
O - Line Data X X X . X
P - Line Alg X X X X .
B - In Data X X . X
C - Input Alg X X X X .
E - Circ Data X X X . X
F - Circ Alg X X X X .
H - Alph Data X X . X
I - Alph Alg X X X X .
K - Out Data X . X
L - Out Alg X X X X .
M - Master X X X X X .

Interfaces
are stable

Effect of
change is
localized
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Comparison

• Design 1 hides information better
• Interfaces are unaffected by likely change 

scenarios
• Changes required to implement likely 

change scenarios are local
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Summary

• DSMs are a structured way of thinking about the value 
of design
• Are design decisions isolated to a module, or do they affect 

several modules?
• How do modules depend on interfaces?
• On which parts of the system can I experiment 

independently?
• How much value is there in the experiments?

• Technical potential of the module

• EDSMs incorporate change scenarios
• How are interfaces and code affected by change?

• More to explore
• Baldwin and Clark – discuss value of modularity
• Sullivan and Griswold – apply B&C to S/W, introduce EDSMs
• Lattix LDM tool – derives DSMs from code


