
	
toad	
	

Fall	 2013	

© 2012-13 C Kästner, C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:
Objects, Design and Concurrency

Design: GRASP and Refinement

Jonathan Aldrich Charlie Garrod

15-214

With slides from Klaus Ostermann

toad 2 15-‐214	 	 Aldrich	

Object Design

• “After identifying your requirements and creating
a domain model, then add methods to the
software classes, and define the messaging
between the objects to fulfill the requirements.”

• But how?
§ What method belongs where?
§ How should the objects interact?
§  This is a critical, important, and non-trivial task

toad 3 15-‐214	 	 Aldrich	

GRASP Patterns / Principles

• The GRASP patterns are a learning aid to
§ help one understand essential object design
§  apply design reasoning in a methodical, rational,
explainable way.

• This approach to understanding and using design
principles is based on patterns of assigning
responsibilities

toad 4 15-‐214	 	 Aldrich	

GRASP - Responsibilities

• Responsibilities are related to the obligations of
an object in terms of its behavior.

• Two types of responsibilities:
§  knowing
§ doing

• Doing responsibilities of an object include:
§ doing something itself, such as creating an object or
doing a calculation

§  initiating action in other objects
§  controlling and coordinating activities in other objects

• Knowing responsibilities of an object include:
§  knowing about private encapsulated data
§  knowing about related objects
§  knowing about things it can derive or calculate

toad 5 15-‐214	 	 Aldrich	

GRASP

• Name chosen to suggest the importance of
grasping fundamental principles to successfully
design object-oriented software

• Acronym for General Responsibility
Assignment Software Patterns

• Describe fundamental principles of
object design and responsibility

• General principles, may be overruled by others

toad 6 15-‐214	 	 Aldrich	

Patterns/Principles aid Communication

Fred: "Where do you think we should place
the responsibility for creating a
SalesLineltem? I think a Factory."

Wilma: "By Creator, I think Sale will be
suitable."

Fred: "Oh, right - I agree."

toad 7 15-‐214	 	 Aldrich	

Nine GRASP Principles:

• Low Coupling

• High Cohesion

• Information Expert

• Creator

• Controller

• Polymorphism

• Indirection

• Pure Fabrication

• Protected Variations

toad 8 15-‐214	 	 Aldrich	

Low Coupling Principle

8

Problem:

 How to increase reuse and decrease the impact of
change.

Solution:

 Assign responsibilities to minimize coupling.

Use this principle when evaluating alternatives

toad 9 15-‐214	 	 Aldrich	

Example

• Create a Payment and associate it with the Sale.

Register Sale Payment

toad 10 15-‐214	 	 Aldrich	

Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

toad 11 15-‐214	 	 Aldrich	

Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

toad 12 15-‐214	 	 Aldrich	

Coupling

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

Second solution has less coupling
Register does not know about Payment class

toad 13 15-‐214	 	 Aldrich	

Why High Coupling is undesirable

• Coupling is a measure of how strongly one
element is connected to, has knowledge of, or
relies on other elements.

• An element with low (or weak) coupling is not
dependent on too many other elements (classes,
subsystems, …)
§  "too many" is context-dependent

• A class with high (or strong) coupling relies on
many other classes.
§ Changes in related classes force local changes.
§ Such classes are harder to understand in isolation.
§  They are harder to reuse because its use requires the
additional presence of the classes on which it is
dependent.

toad 14 15-‐214	 	 Aldrich	

Low Coupling

• Benefits of making classes independent of other
classes
§  changes are localised
§  easier to understand code
§  easier to reuse code

toad 15 15-‐214	 	 Aldrich	

Common Forms of Coupling in OO Languages

• TypeX has an attribute (data member or instance
variable) that refers to a TypeY instance, or TypeY
itself.

• TypeX has a method which references an instance
of TypeY, or TypeY itself, by any means.
§  Typically include a parameter or local variable of type
TypeY, or the object returned from a message being an
instance of TypeY.

• TypeX is a direct or indirect subclass of TypeY.

• TypeY is an interface, and TypeX implements that
interface.

toad 16 15-‐214	 	 Aldrich	

Low Coupling: Discussion

• Low Coupling is a principle to keep in mind during
all design decisions

• It is an underlying goal to continually consider.

• It is an evaluative principle that a designer
applies while evaluating all design decisions.

• Low Coupling supports the design of classes that
are more independent
§  reduces the impact of change.

• Can't be considered in isolation from other
patterns such as Expert and High Cohesion

• Needs to be included as one of several design
principles that influence a choice in assigning a
responsibility.

toad 17 15-‐214	 	 Aldrich	

Low Coupling: Discussion

• Subclassing produces a particularly problematic
form of high coupling
§ Dependence on implementation details of superclass
§  -> Prefer composition over inheritance

• Extremely low coupling may lead to a poor design
§  Few incohesive, bloated classes do all the work; all other
classes are just data containers

• Contraindications: High coupling to very stable
elements is usually not problematic

toad 18 15-‐214	 	 Aldrich	

High Cohesion Principle

Problem:

 How to keep complexity manageable.

Solution:

 Assign responsibilities so that cohesion remains
high.

Cohesion is a measure of how strongly related and
focused the responsibilities of an element are.

An element with highly related responsibilities, and
which does not do a tremendous amount of work,
has high cohesion

toad 19 15-‐214	 	 Aldrich	

High cohesion

• Classes are easier to maintain

• Easier to understand

• Often support low coupling

• Supports reuse because of fine grained
responsibility

toad 20 15-‐214	 	 Aldrich	

Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

(except for cohension), looks OK if makePayment
considered in isolation, but adding more system
operations, Register would take on more and more
responsibilities and become less cohesive.

toad 21 15-‐214	 	 Aldrich	

Example

: Register p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

: Register :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

toad 22 15-‐214	 	 Aldrich	

Extra: isVisited

class Graph {
 Node[] nodes;
 boolean[] isVisited;

}
class Algorithm {

 int shortestPath(Graph g, Node n, Node m) {
 for (int i; …)
 if (!g.isVisited[i]) {
 …
 g.isVisited[i] = true;
 }
 }
 return v;
 }

}

toad 23 15-‐214	 	 Aldrich	

High Cohesion: Discussion

• Scenarios:
§ Very Low Cohesion: A Class is solely responsible for many
things in very different functional areas

§  Low Cohesion: A class has sole responsibility for a
complex task in one functional area.

§ High Cohesion. A class has moderate responsibilities in
one functional area and collaborates with other classes to
fulfil tasks.

• Advantages:
§ Classes are easier to maintain
§ Easier to understand
§ Often support low coupling
§ Supports reuse because of fine grained responsibility

• Rule of thumb: a class with high cohesion has a
relatively small number of methods, with highly
related functionality, and does not do too much
work.

toad 24 15-‐214	 	 Aldrich	

Information Expert Principle

• Who should be responsible for knowing the
grand total of a sale?

Sale

time

Sales
LineItem

quantity

Product
Description

description
price
itemID

Described-‐by*

Contains

1..*

1

1

Register

id

Captured-‐on

Customer

name

Paid	 by

toad 25 15-‐214	 	 Aldrich	

Information Expert

• Problem: What is a general principle of assigning
responsibilities to objects?

• Solution: Assign a responsibility to the
information expert, the class that has the
information necessary to fulfill the
responsibility

• Start assigning responsibilities by clearly stating
responsibilities!

• Typically follows common intuition

• Design Classes (Software Classes) instead of
Conceptual Classes
§  If Design Classes do not yet exist, look in Domain Model
for fitting abstractions (-> low representational gap)

toad 26 15-‐214	 	 Aldrich	

Information Expert

• What information is needed to determine the
grand total?
§  Line items and the sum of their subtotals

• Sale is the information expert for this
responsibility.

getTotal()

toad 27 15-‐214	 	 Aldrich	

Information Expert

• To fulfill the responsibility of knowing and
answering the sale's total, three responsibilities
were assigned to three design classes of objects

toad 28 15-‐214	 	 Aldrich	

Information Expert

Sale

time
...

getTotal()

SalesLineItem

quantity

getSubtotal()

Product
Description

description
price
itemID

getPrice()New method

:Product
Description

1.1: p := getPrice()

1 *: st = getSubtotal: Salet = getTotal lineItems[i] :
SalesLineItem

toad 29 15-‐214	 	 Aldrich	

Information Expert -> "Do It Myself Strategy"

• Expert usually leads to designs where a software
object does those operations that are normally
done to the inanimate real-world thing it
represents
§  a sale does not tell you its total; it is an inanimate thing

• In OO design, all software objects are "alive" or
"animated," and they can take on responsibilities
and do things.

• They do things related to the information they
know.

toad 30 15-‐214	 	 Aldrich	

Information Expert: Discussion

• Contraindication: Conflict with separation of
concerns
§ Example: Who is responsible for saving a sale in the
database?

§ Adding this responsibility to Sale would distribute
database logic over many classes à low cohesion

• Contraindication: Conflict with late binding
§  Late binding is available only for the receiver object
§ But maybe the variability of late binding is needed in
some method argument instead
• So make the argument the receiver instead
• Example: use a strategy pattern to compute the total.
Different strategies may capture special discounts, for
example.

toad 31 15-‐214	 	 Aldrich	

Creator Principle: Problem

• Who creates Nodes in a Graph?

• Who creates instances of SalesLineItem?

• Who creates Rabbit-Actors in a Game?

• Who creates Tiles in a Monopoly game?
§ AI? Player? Main class? Board? Meeple (Dog)?

toad 32 15-‐214	 	 Aldrich	

Creator: Problem

• Who creates Tiles in a Monopoly game?
§  Typical Answer: The board
§ Container creates things contained

toad 33 15-‐214	 	 Aldrich	

Creator Principle

• Assign class B responsibility of creating instance
of class A if
§ B aggregates A objects
§ B contains A objects
§ B records instances of A objects
§ B closely uses A objects
§ B has the initializing data for creating A objects

• where there is a choice, prefer
§ B aggregates or contains A objects

• Key idea: Creator needs to keep reference
anyway and will frequently use the created object

toad 34 15-‐214	 	 Aldrich	

Creator : Example

• Who is responsible for creating SalesLineItem
objects?

Sale

time

Sales
LineItem

quantity

Product
Description

description
price
itemID

Described-‐by*

Contains

1..*

1

1

Register

id

Captured-‐on

Customer

name

Paid	 by

toad 35 15-‐214	 	 Aldrich	

Creator : Example

• Creator pattern suggests Sale.

• Sequence diagram is

toad 36 15-‐214	 	 Aldrich	

Creator: Discussion

• Promotes low coupling by making instances of a
class responsible for creating objects they need to
reference

• By creating the objects themselves, they avoid
being dependent on another class to create the
object for them

• Contraindications:
§  creation may require significant complexity, such as

• using recycled instances for performance reasons
• conditionally creating an instance from one of a family
of similar classes based upon some external property
value

• Sometimes desired to outsource object wiring
(“dependency injection”)

toad 37 15-‐214	 	 Aldrich	

Controller Principle

37

Problem:

 Who should be responsible for handling an input
system event?

Solution:

 Assign the responsibility for receiving or handling
a system event message to a class representing
the overall system, device, or subsystem (facade
controller) or a use case scenario within which the
system event occurs (use case controller)

toad 38 15-‐214	 	 Aldrich	

Controller: Example

toad 39 15-‐214	 	 Aldrich	

Controller: Example

• By the Controller pattern, here are some choices:

• Register, POSSystem: represents the overall
"system," device, or subsystem

• ProcessSaleSession, ProcessSaleHandler:
represents a receiver or handler of all system
events of a use case scenario

toad 40 15-‐214	 	 Aldrich	

Controller: Discussion

• Normally, a controller should delegate to other
objects the work that needs to be done; it
coordinates or controls the activity. It does not do
much work itself.

• Facade controllers are suitable when there are not
"too many" system events

• A use case controller is an alternative to consider
when placing the responsibilities in a facade
controller leads to designs with low cohesion or
high coupling
§  typically when the facade controller is becoming
"bloated" with excessive responsibilities.

toad 41 15-‐214	 	 Aldrich	

Controller: Discussion

• Benefits
§  Increased potential for reuse, and pluggable interfaces

• No application logic in the GUI
§ Dedicated place to place state that belongs to some use
case
• E.g. operations must be performed in a specific order

• Avoid bloated controllers!
§ E.g. single controller for the whole system, low cohesion,
lots of state in controller

§ Split into use case controllers, if applicable

• Interface layer does not handle system events

toad 42 15-‐214	 	 Aldrich	

Resulting Design Model (example, excerpt)

SalesLineItem

quantity : Integer

getSubtotal()

ProductCatalog

...

getProductDesc(...)

ProductDescription

description : Text
price : Money
itemID: ItemID

...

Store

address : Address
name : Text

addCompleteSale(...)

Payment

amount : Money

...

1..*

1..*

Register

...

endSale()
enterItem(...)
makeNewSale()
makePayment(...)

Sale

isComplete : Boolean
time : DateTime

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

1

1

1

1

1

1

*

catalog

catalog

register

currentSale

descriptions
{Map}

lineItems
{ordered}

payment

completedSales
{ordered}

description

toad 43 15-‐214	 	 Aldrich	

From Design to Implementation

• Use Design Model as roadmap for implementation

• Decision making and creativity still required
§ Models typically incomplete at first
§ Models foster better understanding and help making
better implementation decisions

• Start with class with least dependencies

 public	 class	 SalesLineItem	 {
	 	 private	 int	 quantity;
	 	 private	 ProductDescription	 description;
	 	 public	 SalesLineItem(ProductDescription	 desc,	 int	 qty)	 {	 ...	 }
	 	 public	 Money	 getSubtotal()	 {	 ...	 }
}

SalesLineItem

quantity	 :	 Integer

getSubtotal()	 :	 Money

ProductDescription	

description	 :	 Text
price	 :	 Money
itemID	 :	 ItemID

...

1

description

toad 44 15-‐214	 	 Aldrich	

Implementing Associations

X Y 1 1

class X {
 Y a;
}
class Y {
 X a;
}

a X Y 0..n 1

class X {
 List<Y> a;
}
class Y {
 X a;
}

a

X Y 1

class X {
 Y a;
}
class Y {}

a X Y 0..n 0..n

class X {
 List<Y> a;
}
class Y {
 List<X> a;
}

a

toad 45 15-‐214	 	 Aldrich	

A Design Technique: CRC Cards

• Class-Responsibility-Collaboration
§ Name of class
§ Responsibilities/functionality of the class
§ Other classes it invokes to achieve that functionality

• Responsibility guidelines
§ Spread out functionality

• No “god” classes – make maintenance difficult
§ State responsibilities generally

• More reusable, more abstract
§ Group behavior with related information

• Enhances cohesion, reduces coupling
• Promotes information hiding of data structures

§  Information about one thing goes in one place
• Spreading it out makes it hard to track

toad 46 15-‐214	 	 Aldrich	

CRC Validation

• Validation
§ Ensure all functionality in specification is covered by some
class

§ Reason through how functionality could be achieved
• Abstractly executing the program
• What other classes are needed?
• Are their responsibilities enough for this class to do
what it needs to do?

• Refine as needed

toad 47 15-‐214	 	 Aldrich	

Refining a Design

• Step through Use Cases
§ Verify completeness of diagram by asking:

• Which methods execute?
• What methods are called?
• What does each method or object have to know?

• Consider quality attributes
§ Make concrete with a test

• e.g. modification scenario, performance target
§ Generate multiple designs – not just one

• What design patterns achieve this attribute?
• May be helpful to have different people develop designs

independently
§ Evaluate designs

• How well does this design achieve the entire set of quality
attributes?

• May require prioritizing attributes

toad 48 15-‐214	 	 Aldrich	

Design Principles: Information Hiding

• (see other deck)

toad 49 15-‐214	 	 Aldrich	

Summary: Phases and Terminology

• Conceptual Modeling / Object-Oriented Analysis
§ Create Domain Model / Conceptual Model
§ Analyzing the Domain, Vocabulary for further Design
§ Visualization of the concepts or mental models of a real-
world domain

§ UML for sketching (conceptual perspective)

• Object-Oriented Design
§ Design Model / Object Model / Design Class Diagrams
§ Classes, Objects and their behavior and relationships
§ UML as a blueprint (specification perspective)

• Implementation
§ Mapping Designs to Code
§  Implementing classes and methods
§  (Code generation; UML as a programming language;
implementation perspective)

toad 50 15-‐214	 	 Aldrich	

Summary

• Design requires tradeoffs

• Conceptual modeling to understand domain
§ UML as visual language

• GRASP Principles for first design considerations
§  Information Expert
§ Creator
§  Low Coupling, High Cohesion
§ Controller

toad 51 15-‐214	 	 Aldrich	

Literature

• Craig Larman, Applying UML and Patterns,
Prentice Hall, 2004
§ Chapter 9 introduces conceptual modeling
§ Chapter 16+17+22 introduce GRASP

• Bertrand Meyer, Object-Oriented Software
Construction, Prentice Hall, 1997
§ Chapter 3 and 4 discuss Design Goals and Modularity

toad 52 15-‐214	 	 Aldrich	

toad 53 15-‐214	 	 Aldrich	

Goals for Object Design

toad 54 15-‐214	 	 Aldrich	

Five Criteria: Modular Decomposability

A software construction method
satisfies Modular Decomposability if
it helps in the task of decomposing a

software problem into a small number
of less complex subproblems, connected

by a simple structure, and
independent enough to allow further

work to proceed separately on each of
them.

toad 55 15-‐214	 	 Aldrich	

Five Criteria: Modular Decomposability

• POS Example:
§ Data Model
§ User Interface
§  Printing Receipts
§  Tax Accounting
§ Admin Interface
§ Connecting Scales…

• Modular Decomposability implies: Division of
Labor possible!

toad 56 15-‐214	 	 Aldrich	

Five Criteria: Modular Composability

A method satisfies Modular
Composability if it favors the products of

software elements which may then be
freely combined with each other to

produce new systems, possibly in an
environment quite different from the one

in which they were initially developed.

toad 57 15-‐214	 	 Aldrich	

Five Criteria: Modular Composability

• Is dual to modular decomposability

• Is directly connected with reusability

• Example 1: Libraries have been reused
successfully in countless domains

• Example 2: Unix Shell Commands

• POS: Examples:
§ Reuse existing Storage Management System
§ Connect to CRM System

• Counter-Example: Preprocessors

toad 58 15-‐214	 	 Aldrich	

Five Criteria: Modular Understandability

A method favors Modular Understandability
if it helps produce software in which a

human reader can understand each module
without having to know the others, or, at
worst, by having to examine only a few of

the others.

toad 59 15-‐214	 	 Aldrich	

Five Criteria: Modular Understandability

• Important for maintenance

• Applies to all software artifacts, not just code

• Counter-example: Sequential dependencies
between modules

toad 60 15-‐214	 	 Aldrich	

Five Criteria: Modular Continuity

A method satisfies Modular Continuity if, in
the software architectures that it yields, a
small change in the problem specification

will trigger a change of just one module, or
a small number of modules.

toad 61 15-‐214	 	 Aldrich	

Five Criteria: Modular Continuity

• POS: Examples
§ Change currency, taxes
§ Change used printer

• Example 1: Symbolic constants (as opposed to
magic numbers)

• Example 2: Hiding data representation behind an
interface

• Counter-Example: Program designs depending on
fragile details of hardware or compiler

toad 62 15-‐214	 	 Aldrich	

Five Criteria: Modular Protection

A method satisfied Modular Protection if
it yields architectures in which the effect

of an abnormal condition occurring at
run time in a module will remain

confined to that module, or at worst will
only propagate to a few neighboring

modules.

toad 63 15-‐214	 	 Aldrich	

Five Criteria: Modular Protection

• Motivation: Big software will always contain bugs
etc., failures unavoidable

• POS Example:
§  Printer crashes
§ Scanned item is unknown

• Example: Defensive Programming

• Counter-Example: An erroneous null pointer in
one module leads to an error in a different module

toad 64 15-‐214	 	 Aldrich	

Five Rules: Direct Mapping / Low Representational Gap

The modular structure devised in the
process of building a software system

should remain compatible with any
modular structure devised in the
process of modeling the problem

domain.

Follows from continuity and decomposability

toad 65 15-‐214	 	 Aldrich	

Low Representational Gap

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

toad 66 15-‐214	 	 Aldrich	

Five Rules: Few Interfaces

Every module should
communicate with as few others

as possible

toad 67 15-‐214	 	 Aldrich	

Five Rules: Few Interfaces

• Want topology with few connections

• Follows from continuity and protection; otherwise
changes/errors would propagate more

toad 68 15-‐214	 	 Aldrich	

Five Rules: Small Interfaces

If two modules communicate,
they should exchange as little

information as possible

toad 69 15-‐214	 	 Aldrich	

Five Rules: Small Interfaces

• Follows from continuity and protection, required
for composability

• Counter-Example: Big Interfaces J

toad 70 15-‐214	 	 Aldrich	

Five Rules: Explicit Interfaces

Whenever two modules A and B
communicate, this must be obvious from

the interface of A or B or both.

toad 71 15-‐214	 	 Aldrich	

Five Rules: Explicit Interfaces

• Counter-Example 1: Global Variables

• Counter-Example 2: Aliasing – mutation of shared
heap structures

toad 72 15-‐214	 	 Aldrich	

Intermezzo: Law of Demeter (LoD)

• LoD (or Principle of Least Knowledge): Each
module should have only limited knowledge about
other units: only units "closely" related to the
current unit

• In particular: Don’t talk to strangers!

• For instance, no a.getB().getC().foo()

• Motivated by low coupling

toad 73 15-‐214	 	 Aldrich	

Five Rules: Information Hiding

The designer of every module must
select a subset of the module’s

properties as the official information
about the module, to be made
available to authors of client

modules.

toad 74 15-‐214	 	 Aldrich	

Five Rules: Information Hiding

toad 75 15-‐214	 	 Aldrich	

Monopoly Example

class Player {
 Board board;
 Square getSquare(String name) {
 for (Square s: board.getSquares())
 if (s.getName().equals(name))
 return s;
 return null;

}}

class Player {
 Board board;
 Square getSquare(String n) { board.getSquare(n); }

}
class Board{

 List<Square> squares;
 Square getSquare(String name) {
 for (Square s: squares)
 if (s.getName().equals(name))
 return s;
 return null;

}}

toad 76 15-‐214	 	 Aldrich	

Summary Design Goals

• Modular Decomposability

• Modular Composability

• Modular Understandability

• Modular Continuity

• Modular Protection

• Direct Mapping / Low Representational Gap

• Few Interfaces

• Small Interfaces

• Explicit Interfaces

• Information Hiding

