
Analysis for Safe Concurrency

Optional supplementary reading: Assuring and
Evolving Concurrent Programs: Annotations
and Policy

15-214: Principles of Software System
Construction

Jonathan Aldrich Charlie Garrod

1

Example: java.util.logging.Logger

public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter ;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& !filter.isLoggable(record)) return;

} ...
} ...

}

21 November 2013
Analysis of Software Artifacts:

Concurrency
2

Consider setFilter() in isolation

[Source: Aaron
Greenhouse]

Example: java.util.logging.Logger

public class Logger { ...
private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& ! filter.isLoggable(record)) return;

} ...
} ...

}

21 November 2013
Analysis of Software Artifacts:

Concurrency
3

Consider log() in isolation

[Source: Aaron
Greenhouse]

Example: java.util.logging.Logger

/** ... All methods on Logger are multi-thread safe . */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter) ... {
if (!anonymous) manager.checkAccess();
filter = newFilter ;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& ! filter.isLoggable(record)) return;

} ...
} ...

}

21 November 2013
Analysis of Software Artifacts:

Concurrency
4

Consider class Logger in it’s entirety!

[Source: Aaron
Greenhouse]

Example: java.util.logging.Logger

/** ... All methods on Logger are multi-thread safe . */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public void setFilter(Filter newFilter)…{
if (!anonymous) manager.checkAccess();
filter = newFilter ;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& ! filter.isLoggable(record)) return;

} ...
} ...

}

21 November 2013
Analysis of Software Artifacts:

Concurrency
5

Class Logger has a race condition.

2

1

3

[Source: Aaron
Greenhouse]

Example: java.util.logging.Logger

/** ... All methods on Logger are multi-thread safe . */
public class Logger { ...

private Filter filter;

/** ...
* @param newFilter a filter object (may be null)
*/

public synchronized void setFilter(Filter newFilter)…{
if (!anonymous) manager.checkAccess();
filter = newFilter ;

}

public void log(LogRecord record) { ...
synchronized (this) {

if (filter != null
&& ! filter.isLoggable(record)) return;

} ...
} ...

}

21 November 2013
Analysis of Software Artifacts:

Concurrency
6

Correction: synchronize setFilter()

[Source: Aaron
Greenhouse]

Review: Race Conditions

Problem: Race condition in class Logger

• Race condition:

– A situation in which the result of computation is dependent on the

sequence or timing of program events

• Data race: a common source of race conditions

(From Savage et al., Eraser: A Dynamic Data Race Detector for Multithreaded Programs)

– Two threads access the same variable

– At least one access is a write

– No explicit mechanism prevents the accesses from being simultaneous

21 November 2013
Analysis of Software Artifacts:

Concurrency
7

Race Condition Challenges

Problem: Race condition in class Logger

• Non-local error

– Had to inspect whole class

• Bad code invalidates good code

– Could have to inspect all clients of class

• Hard to test

– Problem occurs non-deterministically

• Depends on how threads interleave

21 November 2013
Analysis of Software Artifacts:

Concurrency
8

Races and Invariants

Problem: Race condition in class Logger

• Not all race conditions result in errors

• Error results when invariant is violated

– Logger invariant

• filter is not null at call following null test

– Race-related error

• race between write and dereference of filter

• if the write wins the race, filter is null at the call

21 November 2013
Analysis of Software Artifacts:

Concurrency
9

Races and Design Intent

Problem: Race condition in class Logger

• Need to know design intent

– Should instances be used across threads?

– If so, how should access be coordinated?

• Assumed log was correct: synchronize on this

• Could be caller’s responsibility to acquire lock

⇒⇒⇒⇒ log is incorrect

⇒⇒⇒⇒ Need to check call sites of log and setFilter

21 November 2013
Analysis of Software Artifacts:

Concurrency
10

Review: Avoiding Races

How would you make sure your code avoids race conditions?

• Keep some data local to a single thread
– Inaccessible to other threads

– e.g. local variables, Java AWT & Swing, thread state

• Protect shared data with locks
– Acquire lock before accessing data, release afterwards

– e.g. Java synchronized, OS kernel locks

• Forbid context switches/interrupts in critical sections of code
– Ensures atomic update to shared state

– e.g. many embedded systems, simple single processor OSs

• Analyze all possible thread interleavings
– Ensure invariants cannot be violated in any execution

– Does not scale beyond smallest examples

• Future: transactional memory

21 November 2013
Analysis of Software Artifacts:

Concurrency
11

Lock-based Concurrency

• Associate a lock with each shared variable

– Acquire the lock before all accesses

– Group all updates necessary to maintain data invariant

– Hold all locks until update is complete

• Granularity

– Fine-grained locks allow more concurrency

• Can be tricky if different parts of a data structure are protected by

different—perhaps dynamically created—locks

– Coarse-grained locks have lower overhead

21 November 2013
Analysis of Software Artifacts:

Concurrency
12

JSure: Tool Support for Safe Concurrency

21 November 2013
Analysis of Software Artifacts:

Concurrency
13

Races and Design Intent

Problem: Race condition in class Logger

• Need to know design intent

– Should instances be used across threads?

– If so, how should access be coordinated?

• Assumed log was correct: synchronize on this

• Could be caller’s responsibility to acquire lock

⇒⇒⇒⇒ log is incorrect

⇒⇒⇒⇒ Need to check call sites of log and setFilter

21 November 2013
Analysis of Software Artifacts:

Concurrency
14

Models are Missing

• Programmer design intent is missing

– Not explicit in Java, C, C++, etc
• What lock protects this object?

– “This lock protects that state”

• What is the actual extent of shared state of this object?
– “This object is ‘part of’ that object”

• Adoptability

– Programmers: “Too difficult to express this stuff.”

– Annotations in tools like Fluid: Minimal effort — concise expression
• Capture what programmers are already thinking about

• No full specification

• Incrementality

– Programmers: “I’m too busy; maybe after the deadline.”

– Tool design (e.g. Fluid): Payoffs early and often
• Direct programmer utility — negative marginal cost

• Increments of payoff for increments of effort

21 November 2013
Analysis of Software Artifacts:

Concurrency
15

[Source: Aaron
Greenhouse]

Capturing Design Intent

• What data is shared by multiple threads?

• What locks are used to protect it?

– Annotate class: @RegionLock(“FL is this protects
filter")

Whose responsibility is it to acquire the lock?

Annotate method: @requiresLock FL

Is this delegate object owned by its referring object?

Annotate field: @aggregate … into Instance

21 November 2013
Analysis of Software Artifacts:

Concurrency
16

[Source: Aaron
Greenhouse]

• Tool analyzes consistency

– No annotations ⇒ no assurance

– Identify likely model sites

• Three classes of results

Code–model consistency

Code–model inconsistency

Informative — Request for annotation

Reporting Code–Model Consistency

21 November 2013
Analysis of Software Artifacts:

Concurrency
17

[Source: Aaron
Greenhouse]

Fluid Demonstration: Locks

21 November 2013
Analysis of Software Artifacts:

Concurrency
18

Incremental Assurance

Payoffs early and often to reward use

• Reassure after every save

– Maintain model–code consistency

– Find errors as soon as they are introduced

• Focus on interesting code

– Heavily annotate critical code

– Revisit other code when it becomes critical

• Doesn’t require full annotation to be useful

21 November 2013
Analysis of Software Artifacts:

Concurrency
19

[Source: Aaron
Greenhouse]

Fluid Demonstration: Aliasing, Inheritance, and

Constructors

21 November 2013
Analysis of Software Artifacts:

Concurrency
20

Analysis Issues: Aliasing

• Other pointers can invalidate reasoning
– @Unique – can other threads access through an alias?

• Similar issues in other analyses, e.g. Typestate

FileInputStream a = …

FileInputStream b = …

a.close() // what if a and b alias?

b.read(…) // may read a closed file

• Solution from Fugue (Microsoft Research)
– @NotAliased annotation indicates that b has no aliases

– Therefore closing a does not affect b

– Requires alias analysis to verify

– Can sometimes be inferred by analysis
• e.g. see Fink et al., ISSTA ’06

21 November 2013
Analysis of Software Artifacts:

Concurrency
21

Capturing Design Intent

• What data is shared by multiple threads?

• What locks are used to protect it?

– Annotate class: @RegionLock(“FL is this protects filter")

• Is this delegate object owned by its referring object?

– Annotate field: @Unique

• Can an object escape to the heap during construction?

– Annotate constructor: @Unique("return")

21 November 2013
Analysis of Software Artifacts:

Concurrency
22

[Source: Aaron
Greenhouse]

Analysis Issues: Constructors, Inheritance

• Constructors
– Often special cases for assurance

– Fluid: can’t protect with “this” lock
• But OK since usually not multithreaded yet

– Others
• Invariants may not hold until end of constructor

• Subtyping
– Subclass must inherit specification of superclass

– Example: @Unique(“return”) for Formatter

– Sometimes subclass extends specification
• e.g. to be multi-threaded safe

• requires care in inheriting or overriding superclass methods

• Inheritance
– Representation of superclass may have different invariants than

subclass

– super calls must obey superclass specs
• e.g. call to Formatter constructor

21 November 2013
Analysis of Software Artifacts:

Concurrency
23

Fluid Demonstration: Cutpoints, Aliasing

21 November 2013
Analysis of Software Artifacts:

Concurrency
24

How Incrementality Works 1

• How can one provide

incremental benefit with

mutual dependencies?

21 November 2013
Analysis of Software Artifacts:

Concurrency
25

Call Graph of Program

[Source: Aaron
Greenhouse]

How Incrementality Works 2

• How can one provide

incremental benefit with

mutual dependencies?

• Cut points

– Method annotations

partition call graph

– Can assure property of a

subgraph

– Assurance is contingent

on accuracy of trusted cut

point method annotations

21 November 2013
Analysis of Software Artifacts:

Concurrency
26

assured region

Call Graph of Program

cut point

[Source: Aaron
Greenhouse]

Cutpoint Example: @requiresLock

• Analysis normally assumes a method acquires and
releases all the locks it needs.

– Prevents caller’s correctness from depending on internals
of called method.

• Method can require the caller to already hold a
certain lock: @RequiresLock(BufLock)

– Analysis of method gets to assume the lock is held.

• Doesn’t need to know about caller(s).

– Analysis of caller checks for lock acquisition.

• Still ignores internals of called method.

21 November 2013
Analysis of Software Artifacts:

Concurrency
27

[Source: Aaron
Greenhouse]

Capturing Design Intent

• What data is shared by multiple threads?

• What locks are used to protect it?

– Annotate class: @RegionLock(“FL is this protects
filter")

• Is this delegate object owned by its referring object?

– Annotate field: @Unique

• Whose responsibility is it to acquire the lock?

– Annotate method: @RequiresLock(BufLock)

21 November 2013
Analysis of Software Artifacts:

Concurrency
28

[Source: Aaron
Greenhouse]

Concurrency: Summary

• Many ways to make concurrency safe

– Single-threaded data

– Locks

– Disabled interrupts

– Analysis of interleavings (simple settings)

– Transactions (future)

• Design intent useful

– Document assumptions for team

– Aids in manual analysis

– Enables automated analysis

21 November 2013
Analysis of Software Artifacts:

Concurrency
29

